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ABSTRACT Background: Accidental falls are a major health issue in older people. One significant and
potentially modifiable risk factor is reduced gait stability. Clinicians do not have sophisticated kinematic
options to measure this risk factor with simple and affordable systems. Depth-imaging with AI-pose
estimation can be used for gait analysis in young healthy adults. However, is it applicable for measuring
gait in older adults at a risk of falling? Methods: In this methodological comparison 59 older adults with
and without a history of falls walked on a treadmill while their gait pattern was recorded with multiple
inertial measurement units and with an Azure Kinect depth-camera. Spatiotemporal gait parameters of both
systems were compared for convergent validity and with a Bland-Altman plot. Results: Correlation between
systems for stride length (r=.992, p<0.001) and stride time (r=0.914, p<0.001) was high. Bland-Altman
plots revealed a moderate agreement in stride length (−0.74 ± 3.68 cm; [−7.96 cm to 6.47 cm]) and stride
time (−3.7±54 ms; [−109 ms to 102 ms]). Conclusion: Gait parameters in older adults with and without a
history of falls can be measured with inertial measurement units and Azure Kinect cameras. Affordable and
small depth-cameras agree with IMUs for gait analysis in older adults with and without an increased risk of
falling. However, tolerable accuracy is limited to the average over multiple steps of spatiotemporal parameters
derived from the initial foot contact. Clinical Translation Statement— Gait parameters in older adults with
and without a history of falls can be measured with inertial measurement units and Azure Kinect. Affordable
and small depth-cameras, developed for various purposes in research and industry, agree with IMUs in clinical
gait analysis in older adults with andwithout an increased risk of falling. However, tolerable accuracy to assess
function or monitor changes in gait is limited to the average over multiple steps of spatiotemporal parameters
derived from the initial foot contact.

INDEX TERMS Gait, older people, falls, depth-camera.

I. INTRODUCTION
Reduced gait stability in older adults is a risk factor for
falls and is associated with loss of independent living, dis-
ability, and lower quality of life. Especially people with a
history of falls have a higher risk of falling again [1]. It has
been proposed that gait changes can be used as a marker
of fall risk and deterioration of functional capabilities [2].
In contrast to obvious gait instabilities, subclinical changes
in gait parameters and dynamic gait stability (e.g. margin
of stability, MoS) cannot be reliably quantified by visual

observations. Advanced technology in gait analysis has over-
come this barrier with accurate motion capture systems [3].
Infrared-cameras, as a gold standard of motion-capture sys-
tems, track reflective marker-sets on a patient’s body and
measure kinematics with high accuracy and a high sample
rate. However, these systems are cost intensive, consist of
multiple cameras, require a calibration procedure and often
a complex marker-set that needs to be attached to the sub-
ject. Therefore, this technique is limited to the laboratory
setting. Inertial measurement units (IMU) and joint-tracking
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from depth-images emerged over the past years as promising
alternatives for simple gait analysis. Especially IMU-systems
are widely available for gait analysis but limited to mea-
surement of acceleration and angular velocity at the point of
attachment and therefore not able to calculate spatial relations
between body parts (e.g. step width, margin of stability).
Further, depth-imaging cameras can be used to model human
movement, while often, only a single camera is required [4].
One of these depth-cameras is the commercially available
Microsoft Azure Kinect (AK). These novel cameras are a
spatial computing developer kit for various areas of applica-
tion as manufacturing, healthcare, media, robotics and retail.
Like its predecessor the Kinect v2, the AK is operating with
the Time-of-Flight principle but with a higher resolution
and the most recent version of a pose estimation AI known
as Bodytracking SDK [5]. A system of depth-camera and
body tracking could help to implement monitoring tools from
the lab in the daily care of older patients – a translational
process necessary to evaluate and re-assess individual falls
prevention interventions for populations with declining func-
tional abilities, such as gait. The comparison of AK to the
gold standard of a marker-based motion capture system indi-
cated temporal accuracy for the calculation of spatiotemporal
gait-parameters in healthy young adults with an average error
of −26 ± 22 ms for the correct identification of the initial
foot contact, and −88 ± 34 ms for the terminal foot contact
during treadmill walking with significantly higher spatial
accuracy in feet-tracking than the predecessor Kinect v2 [6].
Older adults are walking with increased cadence and shorter
stride length on a treadmill in comparison to over ground
walking [7]. Despite the lack of an effective treadmill famil-
iarization for older adults [8] the advantages of patient safety
with a fall harness and the ability of capturing consecutive
gait cycles in a small space without external influences makes
gait analysis in a clinical context more feasible [7]. Dynamic
gait-stability as a relevant indicator of fall risk, can be quan-
tified by the MoS as a relation of the centre of mass to the
base of support (BoS) with an inverted pendulum model [9].
Therefore, calculation of the MoS requires the tracking of
a velocity adjusted centre of mass. In clinical research, the
centre of mass is often approximated with fixed anatomical
positions, as the midpoint of the pelvis, which can be tracked
by depth cameras [10]. Mehdizadeh et al. [11] for example
used the MoS from AK in a care facility setting in older
people with dementia to estimate the risk of falling. Gait
stability is also affected by the arm swing amplitude [12]
which can be assessed with wrist worn IMUs [13] as well
as tracking the wrists with AK. In the current state, gait
analysis with AKwas mainly evaluated in younger adults and
populations without a history of falls [6], [14], [15]. Older
adults with and without a risk of falling potentially show
differences in their gait-pattern which could have an impact
on gait analysis systems. Normal aging effects including
alteration of the gait pattern have been identified as risk
factors for falling in older adults [16]. Older adults with a

history of falls have an additional, on average 3-fold increased
risk of falling [17]. Especially slower gait speed and short
step- and stride lengths were reported consistently as gait
characteristics of older people with a history of falls [18],
and/or fear of falling (FoF) [19]. Changes in quantitative gait
parameters, such as of older adults can be used as independent
fall risk markers [20]. Verghese and colleagues showed that a
slower gait speed (−10cm/s), shorter stride length (−10cm),
shorter swing phase (−10%), longer double support phase
(+10%), higher stride length variability (+10%) and higher
swing time variability (+10%) are all associatedwith a signif-
icantly higher risk-ratio for falling. The 10-unit changes were
selected to make the observations clinically intuitive [20].
The observation of changes in gait, in response to rehabilita-
tion are valuable for the assessment of efficacy of individual
therapies. Changes in gait are likely to be observed in tread-
mill walking, despite the known systematical differences to
over ground-walking [7]. Considering the marker-less princi-
ple, depth-cameras can be an alternative for motion analysis
and fall risk estimation outside of high-tech gait laboratories,
e.g. in clinical settings [21]. Therefore, it should be tested
whether this new iteration of depth-cameras agree with other
clinically used systems, as IMU’s, to measure gait parameters
in older adults without a history of falls and also older adults
with a history of falls, as a population with increased fall risk
and whether AK is able to measure additional, gait stability
specific measurements. In this study we conducted walking
trials on a treadmill with an older population with and without
a history of falls, and used a novel model of depth-cameras
in comparison with multiple inertial measurement units to
measure gait in a clinical setting. The aim is to test the
agreement between AK and established IMU-networks in
spatiotemporal gait parameters, related to fall risk of older
people with and without a fall history.

II. METHODS
A. PARTICIPANTS AND RECRUITMENT
The study was approved by the Medical Ethics Committee
of the University of Oldenburg (Nr.:2019-133) and is listed in
the German Clinical Trials Register (DRKS00020363). Prior
to data collection, written informed consent was given by all
participants. All procedures were conducted in accordance
with the provisions of the Declaration of Helsinki. A power
calculation on the basis of gait parameters from Roeles et al.
[22] revealed aminimum of 50 participants. Participants were
recruited via public announcements in newspapers, flyers and
the online presence of the University of Oldenburg. From
July 2020 until February 2022, N= 59 older adults≥70 years
of age with a history of falls (n=29) and without a history of
falls (n=30) were recruited. Requirement for all participants
was the ability to walk independently. Participants with a
body mass above 135 kg, body height above 185 cm (tech-
nical limitations), neurological and orthopedic disorders, that
have an acute effect on the gait pattern, severe arthritis,
joint replacement surgery in the past 6 months, blindness,
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and inability to provide informed consent were excluded
from the trial. The participants filled in questionnaires for
anthropometric- and health related data, including walking-,
hearing-aids, glasses, history of falls in the last 12 months as
well as the Falls Efficacy Scale-International (FES-I).

B. EXPERIMENTAL SETUP
The experiments were conducted at the Rehabilitation Centre
Oldenburg in Oldenburg, Germany. All participants walked
on a treadmill (BalanceTutor, MediTouch, Netanyha, Israel)
at their individually preferred walking speed. Participants
wore a harness, connected to an overhead suspension system
to ensure safety during the walking trials. Participants were
equippedwith six inertial measurement units (OPAL, APDM,
Portland, USA) on the feet, wrists, at the lumbar level and the
sternum. Each of the six IMUs recorded 3-axis acceleration
and angular velocity at a sample rate of 128 Hz. The treadmill
logged the applied belt-speed at a sample rate of 64 Hz. The
participants were recorded with an infrared-depth-camera
(Azure Kinect DK, Microsoft, Redmond, USA), which pro-
vides 3D-kinematics, using the time-of-flight principle to
calculate depth [5]. Data was recorded with a sample rate
of 30 Hz at the highest depth-resolution of 640 × 576 pixels
and an according RGB-resolution of 2048× 1536 pixels [5].
The Azure Kinect Recorder from the Azure Kinect Software
Developer Kit (Version 1.4.1, Microsoft, Redmond, USA)
was used for data recording. The camera was set up in front of
the treadmill at a height of 90 cm above the ground providing
a full body image with the lower extremities centred. The
distance from the lens to the longitudinal midpoint of the
treadmill belt was approximately 150 cm [23] and the camera
angle relative to the longitudinal axis of the subject at 0◦

(Figure 1a,1b) to ensure pose estimation for the right and left
extremities without the visual occlusion of one side [23], [24].
The camera was aligned horizontally to the ground via an
integrated acceleration sensor. At least 60 minutes prior to the
measurement, the camera was preheated to reduce the stan-
dard deviation of depth-sensing [23]. Systems were not syn-
chronized on step-by-step basis, since the analysis focuses on
average parameters of the same time interval of 120 seconds
until the treadmill came to a stop and the participants stood
still.

C. DATA COLLECTION
In order to ensure a reference pose for the AK and the IMU’s,
the subjects were instructed to stand still during the first and
last 3 seconds of the measurement. Each subject completed
one trial with approximately 5 minutes of walking. The first
3 minutes served to find the preferred walking speed and
to fundamentally familiarize with walking on the treadmill,
followed by a two-minute period for gait analysis during
walking at the chosen speed. Preferred walking speed on
the treadmill was determined via feedback from the subjects
as follows: the treadmill speed was increased and the par-
ticipants gave feedback when the preferred walking speed

FIGURE 1. (a) RGB-video from Kinect camera. Red circles show
attachment of IMU’s. (b) Visualization of depth-measurement from blue
(near objects) to red (far away objects). (c) Skeletal model from pose
estimation-AI of a depth-video. The black cross marks the camera
position in relation to the subject.

was first reached and first exceeded. The average of these
two speeds represents the preferred walking speed, similar to
other studies [25], [26]. Raw inertial data, depth-videos and
treadmill speed were stored for further signal processing and
analysis.

D. SIGNAL PROCESSING
The Azure Kinect Bodytracking Software Developer Kit
Version 1.2.0 with a pose estimation algorithm via Direct
ML was used to extract 3D-positions of 32 joints [5] from
the depth-videos. The body-tracking results were saved as
3-axis coordinates in distance from the depth-lens of the cam-
era. Bodytracking-results, IMU-data, and treadmill-speed
were processed with a custom Matlab-script (Matlab
R2022a, Mathworks Inc., California, USA). Acceleration
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and angular velocity from IMU’s were filtered with a
4th-order butterworth-filter with a cut-off frequency of 10 Hz
and joint positions from the AK were filtered with a 1st-order
butterworth-filter with a cut-off frequency of 6 Hz [27].
Non-walking parts at the beginning of the trial were cut
with threshold-detections. The data from the time interval of
finding the preferred walking speed and the familiarization
period were discarded. Data from both systems of the last
120 seconds of walking in each trial were analysed. Arm
swing amplitude in degreewas calculated from angular veloc-
ity at the wrist for IMU [13] and for AK with the cosine
theorem via the position of the shoulder, arm length and
subsequent maximum positions of the wrist. To calculate
gait-parameters, the events of initial contact and toe-off of
the feet with the ground were identified with algorithms
for 3D-kinematic data from AK [28] and inertial data from
foot worn IMU’s [29]. The AK method is a position-based
algorithm from Zeni et al. [28] and was also used in the
mentioned AK validation study from Albert et al. [6]. The
accuracy of the algorithm has been tested to a gold standard,
with an identification of 94% of gait events with a 16 ms
error [28]. The IMU method is an algorithm based on the
angular velocity around the medio-lateral axis of the foot [29]
and has been validated at 100 Hz with an average error of
−2 ms (CI −16 12 ms) for detecting the initial contact and
average error of 35 ms for detecting the toe-off in comparison
to foot switches at 200 Hz [30]. The gait parameters stride
time (s) and stride length (m) were calculated from the initial
contact for the AK and IMU system. For IMU-stride length,
the anteposterior acceleration between toe off and follow-
ing initial contacts of the same foot were double-integrated
from acceleration over velocity to distance plus the treadmill
translation during the stride. AK stride length was defined
as the difference in anteposterior-distance from the leading
ankle to the camera between consecutive initial contacts plus
the treadmill translation during the stride. Single support
time (s) and double support time (s) were calculated from
the combination of the initial contact and toe-off. The MoS in
mediolateral and anteposterior direction at each initial contact
was calculated with an inverted pendulum model utilizing
the velocity adjusted centre of mass in relation to the base
of support [9] where the centre of mass is estimated as the
midpoint of the pelvis and the base of support as the ankle
and toe landmark of AK [5], [10]. MoS (cm) as well as step
width (cm) could only be calculated from 3D-kinematic data
of AK but were calculated regardless to utilize the methods
up to their potential. All steps during the 120 seconds window
were averaged for statistical analysis.

E. STATISTICAL ANALYSIS
The statistical analysis was done using SPSS, version 28
(IBM, New York, USA). All variables were tested for nor-
mal distribution using a Shapiro-Wilk test. Two-sided paired
t-test was used to detect statistically significant differences
between methods. To test agreement between gait parame-
ters from IMU’s and the AK the convergent validity with

TABLE 1. Anthropometric and mobility related characteristics as mean or
proportion over all participants (N=54). Walking speed on the treadmill
was assessed as preferred walking speed. FES-I = falls efficacy scale
international.

correlations via Spearman’s rank correlation coefficient (rsp)
or Pearson product-moment correlation coefficient were cal-
culated. Additionally, a Bland-Altman plot of the overall
stride lengths and stride times displays the spatial and tempo-
ral agreement of both methods with the limits of agreement
(LoA) for error-estimation of futuremeasurements [31]. Tests
between systems were calculated over all participants. The
level of significance was set to α ≤ 0.05.

III. RESULTS
A. SAMPLE SIZE AND EXCLUSIONS
Of the total 59 we excluded 5 subjects (N=54) due to miss-
ing data which was caused by technical problems with the
treadmill belt leading to a premature termination of the test.
Data of 34 female (62.9%) and 20 male (37.1%) participants
were analyzed. Table 1 describes the characteristics of the
participants, included for analyses.

B. GAIT PARAMETERS
Gait parameters from both systems are distributed normally.
Table 2 shows the means of the calculated gait parameters
and statistical differences between both methods. Only the
cadence measured from AK and IMU were significantly
different (p=0.005).

C. CONVERGENT VALIDITY OF THE SYSTEMS
For convergent validity of IMU and AK, the Pearson cor-
relation coefficients for stride length (r=.992, p<0.001)
(Fig. 2b), stride time (r=.914, p<0.001) (Fig. 3b), single
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TABLE 2. Comparison of gait parameters, measured with AK and
IMU-system, with mean values ± standard deviation and range (min-max)
during gait analysis on a treadmill.

support time (r=.775, p<0.001) and double support time
(r=.767, p<0.001) between the two systems are high.
Figure 2b shows an almost linear relationship between IMU
and AK stride lengths and Figure 3b depicts a strong rela-
tionship between IMU and AK stride times. Correlations
between IMU and AK for the arm swing are low to moderate:
Arm swing left (r=.556, p<0.001), arm swing right (r=.385,
p<0.001) (Fig.7b and 8b in Suppl. Material).

D. BLAND-ALTMAN PLOT FOR AGREEMENT OF METHODS
Bland-Altman plots showed moderate agreement in spatial
and temporal parameters. Difference in mean stride length
between IMU and AK is −0.74 ± 3.68 cm with LoAs of
−7.96 cm to 6.47 cm and 2 out of 54 (3.7%) data points
outside of the LoA (Fig. 2a). And difference in mean stride
time between IMU and AK is −3.7±54 ms with LoAs of
−109 ms to 102 ms and 3 of 54 (4.7%) data points outside
the LoA (Fig. 3a).

IV. DISCUSSION
A. SPATIOTEMPORAL GAIT PARAMETERS
Spatiotemporal gait parameters from AK highly correlated
with values of IMU (Fig.2b and Fig.3b). The Bland-Altman
Plots for stride length and stride time showed a moderate
agreement between the two systems with an estimated error
of up to 7.21 cm and 105ms, respectively (Fig.2a and Fig.3a).

FIGURE 2. (a) Bland-Altman Plot of mean stride lengths (n=54) between
IMU and AK. 1 as IMU stride length – AK stride length. The solid line
represents the mean of 1 in mean stride lengths. Participants with a
history of falls are marked as triangles, and participants without a history
of falls as circles. Dotted lines represent the limits of agreement as upper
and lower doubled standard deviation of the mean stride lengths
between methods of measurement. (b) Correlation of stride lengths from
IMU and AK with a Pearson correlation coefficient of r=0.979.

The outliers from stride length and stride time were the same
subjects but a control of the data and comparison of the videos
to other subjects did not reveal any abnormality. Overall, the
graphs do not indicate a systematic difference in agreement
for the two systems, between the groups. Regarding the other
gait parameters, single and double support times have a lower
convergent validity and agreement between IMU and AK
(Suppl. Material, Fig. 5 and 6). Single support times are
typically between 390 ms and 440 ms and double support
times between 290 and 360 ms in comparable older adults
from 70 to 85+ years [32]. With an AK sample rate of
33 ms, the relative error per sample is too high to detect small
differences between groups or in longitudinal monitoring of
subjects in single- and double support time. This could be
explained by the calculation of the single and double support
times based not only on the initial contact, as the other
spatiotemporal parameters, but also on the toe-off, which has
a higher error itself with the used algorithms for AK (mean
error of −26 ± 22 ms for initial contact and −88 ± 34 ms
for toe-off in comparison to marker-based systems [6]). This
is also indicated by the lower correlations in single- and
double support times between AK and IMU in relation to
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FIGURE 3. (a): Bland-Altman Plot of mean stride times (n=54) between
IMU and AK. 1 as IMU stride time – AK stride time. The solid line
represents the mean of 1 in mean stride times. Participants with a history
of falls are marked as triangles, and participants without a history of falls
as circles. Dotted lines represent the limits of agreement as upper and
lower doubled standard deviation of the 1 in mean stride times between
methods of measurement. (b) Correlation of stride times from IMU and
AK with a Pearson correlation coefficient of r=0.914.

the correlations of stride length and stride time. Agreeing
with Albert and colleagues [6] that spatiotemporal parameters
calculated from AK data, relying only on the initial contact
are suitable for treadmill gait analysis. Higher step width in
comparison to normative values from Hollmann et al. [24]
were observed, but step width from AK was calculated from
the midpoint of the ankle joint and not from the inner bound-
aries of the foot which are commonly used to calculate step
width [32]. Step width was comparable to AK gait parameters
from Albert et al. [6] (17±3 cm).

B. MARGIN OF STABILITY
The margin of stability in mediolateral direction with
9.8±3.3 cm appeared larger compared to 6.1±1.3 cm for
healthy older adults [22] and 8.89±1.2 cm for healthy
younger adults [33] from marker-based motion capture but
also had a higher variability. Margin of stability in antepos-
terior direction with 6.5±5.4 cm was smaller compared to
9.38±2.86 cm in healthy younger adults and had also a higher
variability [33]. AK has a lower spatial and temporal resolu-
tion asmarker-basedmotion capture, which likely contributes
to a higher variability but also calculates the midpoint of the
pelvis as the center of mass instead of a marker attached to

lower lumbar level or sacrum (marker-based motion capture)
which likely results in a systematical difference in anteposte-
rior margin of stability.

C. ARM SWING
For the arm swing amplitude algorithm from IMU data
Warmerdam et al. [13] report a small systematic error of
0.9-1.1 degree, while the average position error of wrists from
AK is about 25 mm and up to 30 mm [6]. Therefore, if the
error of 30 mm applies to the maximal forward and backward
position of the arm, the summarized error of one swing would
be as high as 60 mm. The convergent validity and agree-
ment of methods for arm swing amplitude are relatively low
(Suppl. material Fig. 7 and 8). Arm swing amplitude results
also indicated a significant difference between the left and
right arm for both systems with a higher difference in AK.
Excessive arm swing amplitude on one side is common [34],
and due to slow sample rate, the cameras are likely to perform
poorly in faster movements (e.g. bigger arm swing at same
stride time). We found no comparable studies concerning this
problem. Decreased arm swing amplitude and symmetry in
older people have a negative effect on gait [35]. Interpreta-
tion of this arm swing data from AK should be done with
caution regarding a possible performance issue of AK with
arm movements.

D. FRAMEWORK FOR AZURE KINECT IN GAIT ANALYSIS
As a result of the low temporal resolution of AK compared to
the temporal dimension of single support times, double sup-
port times and arm swing amplitude, substantial differences
in these parameters can be between to data frames (33 ms).
Therefore, no conclusions should be drawn from these data.
The general use of this type of depth camera for adequate
parameters like stride length and stride time requires still
some considerations. We would advise to clear the captur-
ing area of persons during measurement to limit the pose
estimation to the patient and avoid therefore common and
sudden switching of the body-designation in the pose estima-
tion algorithm. TheMicrosoft SDK provides basic interaction
with the camera, for advanced use, a customized software is
recommended. At the time of the study a certain type of high-
performance graphics-processor is required for body tracking
of depth videos [5]. The error of AK could have its origin in
the depth-images, the artificial intelligence algorithm of the
body tracking and the gait parameter algorithm. Also, one has
to keep in mind, that these results are only valid for averaged
values over two minutes and the possible errors for step to
step analysis are higher. The use of a single depth-camera for
gait analysis is preferable for treadmill walking and limited in
over ground walking, because of the restriction of a capture-
area [15] and diverging accuracy over different distances
between the person and the camera [23]. Ongoing updates for
tracking algorithms, and the fast-paced development of new
cameras are promising that accuracy can be optimized and
cameras can operate at a higher sample rate.
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E. TRANSLATION INTO CLINICAL PRACTICE
Given the aforementioned adaptations, paired with software
for automatic gait analysis, the implementation for insti-
tutions, that already use treadmills as a tool for training,
diagnosis- or rehabilitation, is reduced to the setup of the
camera (e.g. via tripod) in front of the treadmill and the
operation of a connected computer. Furthermore, the use of
depth-cameras can be simplified with intuitive user interfaces
for clinicians and therapists. As a result of a marker-less
principle of AK, the patient does not need to be prepared with
sensors or markers before measurement leading possibly to
better acceptance in older adults and more frequent analysis.
In summary, this simple infrared-technology paired with AI
could allow for a quick to perform gait analysis in a controlled
environment without the application of body-worn sensors or
markers on the patient.

F. LIMITATIONS
Restricted by the study setting, motion capturing with AK
was not compared with a marker-based motion capture sys-
tem as gold-standard. However problems with interferences
between the infrared emitters of marker-basedmotion capture
and AK resulting in large areas without depth-information
were reported [15]. Rather, an inertial measurement system
was used for comparison which represents a validated and
available system for clinical settings [36]. Furthermore, sys-
tems were not synchronized for step by step analysis and
instead the same time interval, the last 120 seconds of walk-
ing, was analyzed. An unknown potential source for error
besides the depth measurement is also the implemented artifi-
cial intelligence of the Body racking SDK. Additionally, it is
possible that white or black clothes as well as the surrounding
infrared light can affect the pose estimation performance [37].
We did not control these circumstances.

V. CONCLUSION
Gait parameters from a depth-camera, averaged over
120 seconds of treadmill walking in older adults at risk of
falling, have a higher convergent validity to IMU-data when
based on initial contact instead on initial- and toe-off e.g.
stride length and step time instead of single- and double
support time. Due to the good agreement of methods in stride
length and stride time the results of our study promote the use
of depth-cameras in treadmill gait analysis of older people
with and without increased risk of falling as an alternative to
the use of IMUs. Furthermore, depth-cameras have the poten-
tial to allow measurement of stability-relevant metrics [38],
without interfering with the patient’s personal space, and are
available at relatively low cost. However, this method is to be
further validated and body tracking, spatial resolution as well
as low framerate are technical problems to be considered and
solved. The next steps for gait analysis in people at risk of
falling should also include the technical difficulties to assess
gait parameters in balance challenging situations, for example
from mechanical treadmill perturbations, which are able to
highlight balance insufficiencies [39].
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