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ABSTRACT Objective: Parkinson’s disease (PD) is a common neurodegenerative disorder among adult
men and women. The analysis of abnormal gait patterns is among the most important techniques used in
the early diagnosis of PD. The overall aim of this study is to identify PD patients using vertical ground
reaction force (VGRF) data produced from subjects while walking at a normal pace. Methods and procedures:
The current study proposes a novel set of features extracted on the basis of self-similar, correlation, and
entropy properties that are characterized by multiscale features of VGRF data in the wavelet-domain. Five
discriminatory features have been proposed. PD diagnosis performance of those features are investigated
by using a publicly available VGRF dataset (93 controls and 73 cases) and standard classifiers. Logistic
regression (LR), support vector machine (SVM) and k-nearest neighbor (KNN) are used for the performance
evaluation. Results: The SVM classifier outperformed the LR and KNN classifiers with an average accuracy
of 88.89%, sensitivity of 89%, and specificity of 88%. The integration of these five features from the wavelet
domain of data, with three time domain features, stance time, swing time and maximum force strike at toe
improved the PD diagnosis performance (approximately by 10%), which outperforms existing studies that are
based on the same data set. Conclusion: with the previously published approaches, the proposed prediction
methodology consisting of the multiscale features in combination with the time domain features shows better
performance with fewer features, compared to the existing PD diagnostic techniques. Clinical impact: The
findings suggest that the proposed diagnostic method involving multiscale (wavelet) features can improve
the efficacy of PD diagnosis.

INDEX TERMS Wavelet transform, self-similarity, entropy, level-wise cross correlation, classification,
Parkinson’s disease.

I. INTRODUCTION
Parkinson’s Disease (PD) is the second most common neu-
rodegenerative disease after Alzheimer’s disease. Population
prevalence of PD increases from about 1 percent at age 60 to
4 percent by age 80 [1]. PD primarily affects the motor
regions of the central nervous system, causing abnormalities
in gait (unintended or uncontrollable movements), such as
shaking, stiffness, and difficulty with balance and coordi-
nation [2]. Over time, simple movements become more and
more difficult for patients. The most evident benefit of early
intervention is a reduction in symptoms, particularly dyskine-
sia, and the delay of levodopa initiation [3]. PD is clinically
diagnosed based on medical history or through neurological

examination [4]. The reliable diagnosis of PD using these
tests is very difficult and prone to error, especially in the
early stages [5]. There is high demand for more advanced PD
diagnosing techniques.

Several bodily functions in individuals with PD are
affected and have been used in developing advanced PD
diagnostic techniques. One of the most commonly moni-
tored functions is gait, as PD has major effects on the cen-
tral motor system. Gait abnormalities have been measured
through vertical ground reaction force (VGRF) data collected
from pressure sensors placed on the bottom of shoes while
individuals walk [6]. Additionally, other measurements such
as speech abnormalities and reactions to emotional states
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have also been useful in PD diagnosis, as reported by Zhang
et al. [7] and Ali et al. [8], and Murugappan et al. [9]. Based
on these body functions, multiple computer-aided methods
have been proposed for automated PD detection. Readers can
find more information about these automated technologies in
Mughal et al. [10].

Themajority of publishedmethods focus on feature extrac-
tion either in the domain of data acquisition (i.e., time-
domain), frequency/scale domain, or time-frequency/scale
domain. For instance, Alam et al. [11] investigated different
time domain features such as swing time, stride time variabil-
ity, and center of pressure and also procedures to select the
most meaningful of these features for PD diagnosis. The for-
ward feature selection procedure with support vector machine
classifier outperformed other classifiers with an accuracy of
93.6%. This study, however, used only a small VGRF dataset
(29 cases and 18 controls) published by Yogev et al. [12].
By using a larger VGRF dataset, Lee et al. [13] proposed
a neural network and weighted fuzzy membership based
model, and achieved classification accuracy of 77.33%. Gait
asymmetry features, such as step time, stance time, and
double stance time, were introduced via a time-frequency
analysis on VGRF data in Su et al. [14]. The study reported
that the degree of asymmetry of the proposed features in
PD patients is higher than in the control subjects. The main
advantage of these methods is that physicians and scientists
can use insights associated with selected features to further
understand the nature of PD and take a confident action in
clinically diagnosing the disease.

As reflected by a vibrant research, wavelets are standard
signal processing tools useful in developing effective feature
extraction procedures for analyzing high frequency and noisy
signals. Wavelets decompose a signal into a set of coeffi-
cients belonging to different scales, and the analysis of these
coefficients can produce valuable information that can be
used in disease diagnosis [15]. In recent studies, wavelet-
based features have been extracted from movement-related
signals such as VGRF and used to distinguish PD patients
from healthy controls. For instance, Su et al. [14] used
wavelet transform to compute gait correlation at different
frequency sub-bands to characterize gait symmetry between
the left and right legs. Those correlations were then used
to differentiate PD patients from control subjects. Also,
Murugappan et al. [9] proposed a wavelet-based approach
to characterize variability in emotions of PD patients. How-
ever, the majority of studies have used wavelet primarily
as a data pre-processing technique for constructing complex
PD diagnosis models [13], [16]. Those studies did not take
into account potentially valuable information in gait time
series, such as fractality, self-similarity, and long-memory,
that could be effectively assessed through wavelet transforms
and that have demonstrated significant discriminatory power,
especially in the medical context [17], [18], [19]. Thus,
to the best of our knowledge, there are no studies that have
accounted for the full potential of wavelets, especially in
feature extraction, in the context of PD diagnosis. In the

context of diagnosing PD, this study first uses the range
of multiscaling features in gait data derived in the wavelet
domain.

In summary, the current study proposes a novel set of
discriminatory features in the VGRF data. The gait prop-
erties which are explored in the wavelet domain include
self-similarity, level-wise cross correlations, and level-wise
entropies. Self-similarity is a property of a signal to exhibit
similar characteristics when inspected at different resolu-
tions. This property primarily allows for characterizing regu-
larity of gait signals. Level-wise cross correlations explore
relationships that may exist in gait data at different scales
compared to the standard correlation that is used frequently
in the time domain of data. The measure of compressibility
(coding complexity) in gait data is characterized by wavelet
entropy. In total, nine multiscale (wavelets-based) features
were derived by using these three properties. The forward fea-
ture selection procedure was used to select most significant
features. We explored their potential in distinguishing gait
patterns between PD patients and control subjects by using
logistic regression (LR), support vector machine (SVM), and
k-nearest neighbor (KNN) classifiers on a publicly available
VGRF dataset. PD diagnosis performancewas further investi-
gated by combining the selected five multiscale features with
three time domain features, namely stance time, swing time
and maximum force strike at the toe. The obtained results
showed the positive effect that this feature set could have
on an enhanced PD diagnosing performance compared to
the previously published studies that used the same VGRF
dataset.

The remainder of the paper is organized as follows. Details
of the VGRF dataset and feature extraction methods are dis-
cussed in Section II. Methodology is described in Section III,
followed by Section IV, which describes the data analysis
procedure. Section V presents the performance of the pro-
posed feature set. Discussion and Conclusions are provided in
Sections VI andVII, while the technical details and additional
results are provided in Appendices A-E.

II. DATASET
The data used in this study is published at Physionet.org.
It contains measures of gait from 93 PD patients (mean age:
66.3 years; 63 percent men), and 73 controls (mean age:
66.3 years; 55 percent men) collected in three independent
studies [12], [20], [21]. These three studies followed similar
protocols and had the same data acquisition devices. Under-
neath each foot, eight force sensitive insole sensors were
placed evenly dispersed between the heel and the toe, and they
each produced their own results. The vertical ground reac-
tion force measurements from the subjects were obtained at
100Hz as they walked at their normal pace for 2 minutes on a
flat surface. Figure 1 shows a sample VGRF data of a case and
control subject for 10 seconds. A detailed description of the
dataset can be found in Hausdorff [22], while a description of
the insole sensors can be found on the manufacturer’s website
Ultraflex Computer Dyno Graphy, Infotronic Inc’s [23].
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FIGURE 1. A sample vertical ground reaction force (VGRF) signal during
walking. Ten seconds of a VGRF signal of the left and right leg from a
randomly selected PD patient and control subject.

1) DATA PRE-PROCESSING
According to the experimental settings used in data collection
process (VGRF measures for 2 minutes at 100 Hz), there
should be 12,000 data points per signal. In some cases, how-
ever, the number of data points present in data files varies
significantly. More precisely, the number of observations per
person in the case group ranges from 4,363 to 26,366, while in
the control group, it ranges from 4,034 to 12,119.We selected
individuals whose VGRF signals contain at least 8,192 (213)
data points to make subsequent discrete wavelet transforms
simple. As a result, 86 PD subjects from the case group and
63 subjects from the control group were selected.

During the process of extracting time domain features,
we encountered small sensor readings during the stance
phase, which is unexpected as this phase is generally con-
sidered not to produce any ground reaction force. We treated
these values as noise and set VGRF readings below 20 N to
zero.

III. METHODOLOGY
A. FEATURE EXTRACTION
In the current study, the feature extraction procedure relies
mainly on the scale/frequency domain, specifically, on the
features derived from the VGRF data in the wavelet-domain.
In the following, an overview of the wavelet transform proce-
dure is provided prior to describing features extracted through
wavelet transforms. This is followed by the description of
commonly used time domain features.

B. WAVELET TRANSFORMS-BASED FEATURES
1) WAVELET TRANSFORMS
Wavelet transforms (WTs) are a standard tool in signal
processing and are commonly used for analyzing a high
frequency signals. WTs, as scale-time decompositions, are
defined in terms of a scale, a parameter that determines the
support of wavelet basis function, and a shift parameter that
determines wavelet location in the time domain. The scales

are discrete, ranging over dyadic values, that is, each coarser
scale in the wavelet representation is twice the size of the
finer one. The frequency is a reciprocal of scale, and as the
scales are discrete, the frequencies in wavelet representation
are discrete as well. The finest (smallest) scale corresponds
to the Nyquist frequency in wavelets and for each subsequent
larger scale, the frequency is two times smaller.

The application of the WT on a data signal results in a
decomposition of the signal into a set of contributions that are
localized both in the time and scale. More precisely, wavelets
decompose a signal into a hierarchy of resolutions convenient
for the extraction of various scale-sensitive descriptors. For
example, such descriptors can be linked to the presence of
long memory, fractality, and self-similarity, as well as the
correlations and entropies confined to a particular scale.

Discrete wavelet transforms (DWTs) are a popular version
of WTs applicable to discrete data, such as sampled signals.
Technical details about DWT can be found in Appendix A.
Analysis of the resulting coefficients from DWT allows for
the extraction of valuable insights that could be useful in
understanding and characterizing underlying behaviors of the
signal. In the following, we extract three important descrip-
tors of the VGRF signals in the wavelet-domain, to define
discriminatory descriptors.

For the extraction of wavelet-based features described
below, we used the minimal phase Daubechies 6 wavelet (3
vanishing moments, 6 tap filter). This filter is a compromise
between the locality of representation and the smoothness
of decomposing scaling function. The two more local filters
Daubechies 2 (Haar) and Daubechies 4 are not smooth, while
Daubechies 6 is the most compact wavelet for which the
scaling function is differentiable [15]. Moreover, frequency
is the reciprocal of scale, and in this study, the original VGRF
time series had a sampling rate of 100 Hz. The finest scale,
which represents the smallest detail, corresponds to a Nyquist
frequency of 50 Hz. The wavelet coefficients are distributed
across different scale levels, denoted by 12, 11, 10, and so on,
in log base 2 units of the number of coefficients in that level.
The corresponding frequencies for these scales are 50 Hz,
25 Hz, 12.5 Hz, 6.25 Hz, and so on. Since scales are discrete,
the frequencies are also discrete, and each scale corresponds
to a specific frequency that is a dyadic ratio of the sampling
frequency. It is important to note that a specific scale does not
correspond to a range of frequencies, but to a single frequency
that is determined by the dyadic ratio.

2) SPECTRAL SLOPE
Self-similarity is an omnipresent phenomenon that charac-
terizes high frequency time series obtained in different con-
texts: health, geoscience, economics, and physics, to list
a few. This behavior refers to the stochastic similarity in
a signal when viewed at different scales. In the wavelet
domain, self-similarity is quantified commonly by using the
wavelet spectra. The wavelet spectrum of a signal consists of
wavelet log-energies (logarithm of average squared wavelet
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FIGURE 2. Sample wavelet spectra for the case and control group.
Wavelet spectra computed using a VGRF signal of the right leg are shown
in 1. The coordinate of the point at the scale index (or level) j is log2(d̄2

j
(aka log energy of wavelet coefficients d at level j ), where d̄2

j is the
average-square of the wavelet coefficients at the wavelet decomposition
level j (see Appendix A for more details on wavelet coefficients d ).
Slope-1 and slope-2 of the wavelet spectra are estimated by fitting a
straight line (green dashed) on the log energy of the wavelet coefficients
(black circles) within the scale index j ranging from 2 to 5 and
from 7 to 12 (red line).

coefficients) as a function of resolution level. Technical
details about wavelet spectra are given in Appendix B.

In general, it is accepted that a given signal possesses
the self-similar property if its wavelet spectrum exhibits a
regular decay with an increase of resolution scales. The rate
of the log energy decay (slope) is connected with the Hurst
exponent (H ∈ [0, 1]), which characterizes the regularity of
the signal. To estimate the slope, the linear regression of log
energies to the scale index is found and thenH is computed as
H = −(slope+ 1)/2. The spectral slope theoretically ranges
from -3 to -1. Larger slopes (> −2) indicate a higher degree
of persistence (i.e., more regular/smooth signal), and smaller
slopes (< −2) indicate a higher degree anti persistency
and intermittency. The Hurst exponent serves as a measure
of signal regularity. Signals with a Hurst exponent close to
1 are more regular (smooth), while the signals with a small
Hurst exponent are highly irregular. Overall, the degree of
regularity expressed by either spectral slope, or equivalently
by the Hurst exponent, represents an informative summary
of a complex and noisy signal for which standard statistical
summaries (moments, trends, etc) may be irrelevant.

Self-similarity is one of the behaviors of interest in the
VGRF time series. As evident from previous studies [19]
and [24], the self-similar property in high frequency signals
and images has been explored frequently in the wavelet
domain for different medical diagnosis purposes. In those
studies, slope of the wavelet spectra is one of the commonly
used discriminatory features. The present study also explores
the self-similar nature of VGRF time series for distinguishing
gait dynamics of PD patients from that of control subjects.

FIGURE 3. Sample level-wise cross correlation coefficient for case and
control group. The level-wise cross correlation coefficients show
breakdown of the typical sample correlation into a weighted sum of
correlations of the VGRF signals shown in Figure 1. This breakdown
provides a detailed examination of the correlation structure between two
aligned VGRF time series corresponding to the left and right leg, making it
possible to identify linear relationships at more precise scales,
corresponding to various frequency bands that are finer than the VGRF
values sampled.

As can be seen in Figure 2, the wavelet spectra of a VGRF
time series exhibit a self-similar property. However, when
inspected closely, the log energies among scale indexes 2-5
and 7-12 decay with different slopes. This is due to the fact
that the energies below the sixth scale index reflect the gait
dynamics between steps, while the energies above the sixth
scale index correspond to the gait dynamics within the steps.
Consequently, slope-1 and slope-2 are computed for the range
of scales 2-5 and 7-12, respectively, excluding the log energy
at the sixth scale. We use slope-1 and slope-2 as two discrim-
inatory features in distinguishing gaits between PD patients
and controls. It is important to note that if the features cor-
respond to frequencies higher than the frequency of walking,
we termed those as ‘‘between steps’’ features. If the frequency
attributes (corresponding to a scale of a selected feature) are
higher than the frequency of walking steps, then we termed
those as ‘‘within steps’’.

3) LEVEL-WISE CROSS CORRELATION
Level-wise cross correlation assesses the correlation between
two signals at various resolutions (scales). This enables us
to explore the individual contribution of correlations at each
of the scales to the sample correlation between those two
signals in the original data domain. That is, in the wavelet
domain, the sample correlation can be expressed as the
weighted sum of the level-wise cross correlation coefficients,
which are the correlations between the correspondingwavelet
coefficients of the two signals at matched scales. Thus, due
to orthogonality of wavelet transforms, the level-wise cross
correlations can be related effectively to the correlations in
the original data domain, providing additional information
about nature of relationships that may exist at a particular
scale(s). More specifically, the level-wise correlation enables
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TABLE 1. The set of multiscale (wavelet transforms-based) and time domain features considered in the present study.

capturing linear relationships at finer scales (at various fre-
quency bands 50 Hz, 25 Hz, 12.5 Hz and so on) than at which
VGRF values have been sampled.

Due to walking disorders in PD patients, their gait corre-
lations between left and right leg could be significantly dif-
ferent from those in control subjects. The sample correlation
between two aligned VGRF time series, corresponding to the
left and right leg, gives only a general overview about such
relationships. The analysis of such relationships using the
level-wise cross correlation results in a set of correlations
and subsequently has more potential to identify abnormal
gait dynamics, that be influenced by correlations at particular
scale. For instance, as can be seen in Figure 3, the level-wise
cross correlation coefficients of gaits in PD patients and
control subjects are clearly distinguishable over the first six
wavelet decomposition levels. Hence, those level-wise cross
correlation coefficients are used as another set of discrimina-
tory features. To extract cross correlation features, we specif-
ically choose wavelet decomposition level 6 to split scales
in the wavelet domain. This is based on the observation that
cross correlations above level 6 did not exhibit a notable
difference between cases and controls. Readers can findmore
technical information about computing level-wise cross cor-
relation coefficients in Appendix C.

4) WAVELET ENTROPY
Wavelet entropy (WE) is frequently used as a natural mea-
sure of compressibility or complexity of signals. A signal
generated from a random process can be considered as more
or less complex, depending on the mechanism of the ran-
dom generation. For example, if the signal is generated as
a Gaussian iid process, the entropy is maximum among all
random generation mechanisms with fixed mean and finite
variance and the signal is not readily compressible.Moreover,
standard Gaussian signal in the time domain corresponds
to standard Gaussian signal in the wavelet domain and all
level-wise wavelet entropies are theoretically the same. How-
ever, if the generating mechanism of a signal is not Gaussian,
the level-wise entropies in its wavelet representation can be
informative. In extreme cases, for example, an ordered signal
(e.g., sinusoidal signal) exhibits a narrow peak in the wavelet

domain which results in low entropy. More details about
wavelet entropy of signals can be found in [25].

As reported in previous research [13] and [26], gait dynam-
ics of healthy individuals have higher entropy compared to
the individuals with PD. That is, a VGRF time series of a
control subject exhibits more complexity, compared to a PD
patient. More specifically, there is a significant difference in
the level of synchrony between the two legs while walking
comparatively between PD patients and controls. Therefore,
wavelet entropy, in the present study, is used as a discrimi-
natory feature to differentiate PD patients and controls. The
unnormalized Shannon entropy of detail wavelet coefficients
of a VGRF time series at the sixth wavelet decomposition
level was selected. See Appendix C for more technical details
about computing WE.

C. TIME DOMAIN FEATURES
As evident from previous studies, several time domain fea-
tures that are based on VGRF time series data have been
proposed for diagnosing PD. In general, they rely mostly
on gait cycle dynamics. In the present study, two types of
frequently used time domain features are listed below. These
features have been found to be some of the most promising
and frequently used ones for distinguishing gait dynamics
between case and control subjects according to several pre-
vious studies [11], [27], [28], [29], [30], [30], [31], [32].

• Swing time and stance time: A gait cycle is made up
of two phases: stance time and swing time. During the
stance time phase, one leg is in contact with the ground.
In contrast, during the swing time phase, the leg is not
touching the ground. The duration and effort required
to complete these two phases can vary, particularly in
individuals with walking disorders. For example, people
with Parkinson’s Disease (PD) often exhibit increased
variability in both stance and swing times compared to
healthy individuals. In this study, we used the average
stance and swing times of each participant as two time-
domain features.

• Peak force at toe off: Patients with Parkinson’s Disease
(PD) often apply less pressure during the heel strike and
toe-off phases of walking compared to healthy individ-
uals. As a result, the maximum VGRF at heel strike
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FIGURE 4. The distribution of nine multiscale features summarized in Table 1.

TABLE 2. The set of optimal multiscale features selected using forward
feature selection method.

TABLE 3. Comparison of different classifier performance (mean ± std )
with the selected set of optimal multiscale features listed in Table 2.

and toe-off can vary between PD patients and control
subjects. In this study, we used the mean maximum
toe-off force as a discriminatory feature.

IV. DATA ANALYSIS
We computed multiscale features, including slope, cross-
correlation, and entropy, as well as time-domain features for
either the left or right leg. These features were calculated for
all eight sensors and then averaged. To compute the multi-
scale features, we used the cumulative sum of the z-scored
vertical ground reaction force (VGRF) time series. For the
time-domain features, we used the total sum of VGRF data
from all eight sensors. This resulted in a set of nine multiscale

features and three time-domain features, which are summa-
rized in Table 1. Below, we describe the procedure used
to evaluate the performance of these features in diagnosing
Parkinson’s Disease (PD).

A. CLASSIFICATION MODELS
Our data analysis involved evaluating three commonly used
classification algorithms: Logistic Regression (LR), Support
Vector Machine (SVM), and k-Nearest Neighbors (KNN).
We used default model parameters in the context of analyzing
vertical ground reaction force (VGRF) data. The LR classifier
was implemented using stochastic gradient descent as the
solver, while the SVM classifier used a linear kernel with
automatic kernel scaling. The KNN classifier was based on
the Euclidean distance metric and used five nearest neigh-
bors for classification. To determine the optimal number of
features for each model, we employed the sequential forward
feature selection method.

B. FEATURE SELECTION
We used the sequential forward selection method to select
features. This method involves selecting features one at a time
based on a custom criterion that measures the performance of
a learning algorithm, in this case, classification. The process
involves creating candidate feature subsets by adding each
unselected feature one at a time. We then performed 10-fold
cross-validation on each candidate feature subset and calcu-
lated the averagemisclassification rate as the custom criterion
to evaluate the performance of each subset.

After computing the mean misclassification rate val-
ues for each candidate feature subset, the sequential for-
ward selection method selects the candidate feature sub-
set that minimizes the average misclassification rate. This
process continues until including additional features no
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longer reduces the criterion. In our study, we used the default
settings of the sequentialfs Matlab function and a more
detailed explanation of this method can be found in [33].

C. PERFORMANCE EVALUATION
To fit the classification model, we randomly assigned 80% of
the rows from each feature matrix to the training set and used
the remaining rows for testing. To balance the group sizes for
model training and testing, we randomly selected 63 subjects
from the 86 Parkinson’s Disease cases to match the number of
controls. This was done to avoid bias due to imbalanced group
sizes. We assessed classifier performance using sensitivity,
specificity, and overall accuracy.

We repeated the data splitting and model performance
evaluation process 100 times with the optimal feature subset
for each classifier. The reported performance measures were
averaged over these repetitions.

V. RESULTS
This section presents the performance of multiscale features
and their combined use with time-domain features in dis-
tinguishing Parkinson’s Disease (PD) patients from healthy
controls. First, we discuss the selection of a subset of mul-
tiscale features for each classifier that contributes to achiev-
ing the highest classification performance using the forward
feature selection procedure. Next, we integrate the selected
subset of multiscale features with time-domain features and
evaluate classifier performance using the combined feature
set. In these analyses, we repeated the classifier performance
evaluation 100 times and reported the average performance.
We used MATLAB R2021b software for our data analy-
sis [34].

A. PERFORMANCE OF MULTISCALE FEATURES
The set of nine multiscale features listed in Table 1 was com-
puted by using the pre-processed VGRF dataset described in
section II. Figure 4 shows the distributions of these features
for the case and control groups. Overall, all feature distribu-
tions exhibit varying levels of discrimination between the two
groups. To assess quantitative differences in discriminatory
behavior, we conducted aWilcoxon rank-sum test to evaluate
the ability of the proposed features to distinguish between
cases and controls. The results indicate that the medians of
most features show a significant difference between the two
groups (with a p−value < 0.05), except for cross-correlation
at levels 1 and 2 in the wavelet domain features. This analysis
is exploratory and designed to identify candidate features for
classification.

We performed the sequential forward feature selection pro-
cedure with each classifier to select the subset of multiscale
features that achieves the best classification performance.
We executed the procedure with all possible permutations of
multiscale features. The best feature subsets for the Logis-
tic Regression (LR), Support Vector Machine (SVM), and
k-Nearest Neighbors (KNN) classifiers were {9, 7, 4, 8}, {4,
7, 8, 9}, and {9, 8, 4} for the LR, SVM, and KNN classifiers,

TABLE 4. Classifier performance with the integration of five WT-based
features and three time domain features.

respectively. Table 2 summarizes the selected optimal feature
sets for each classifier.

The classification was performed with the selected subset
of features. Table 3 summarizes classification performance of
the three classifiers. The SVM classifier achieved the highest
performance, followed by LR and KNN classifiers.

B. PERFORMANCE WITH BOTH TIME AND WAVELET
DOMAIN (MULTISCALE) FEATURES
The classifier performance was evaluated by using the multi-
scale feature subsets and three time domain features listed in
Table 1. The introduction of time domain features increased
the classifier performance (see Table 4). The SVM classifier
achieved the highest performance with a 97.43 ± 2.93%,
sensitivity 0.99 ± 0.02, and 0.95 ± 0.06 specificity. This is
followed by the KNN and LR classifiers.

VI. DISCUSSION
In contrast with earlier studies that used WT mostly as a
data pre-processing tool in PD diagnosis, the present study
proposes a novel set of features that are solely based on
WT. Therefore, the present study emphasizes the greater
potential of WT serving as a feature extraction tool in PD
diagnosis. Additionally, incorporating multiscale features in
conjunction with time domain features enhances PD diagno-
sis performance, as shown in Table 5. That is because they
are derived respectively in frequency and time domain, and
hence theoretically, they should be independent. As evident
in Figure 5 in Appendix E, the majority ofWT-based and time
domain features do not share strong correlations. Comparing
our PD diagnosis performance with that of previous studies
using the same VGRF dataset, our classification technique
displays better or comparable performance with a simple
model.

Table 5 compares the feature extraction domain, features,
and performance of our proposed method with previous stud-
ies that used the same VGRF dataset. Lee et al. [13] reported
an overall accuracy of 77.33% by utilizing 40 frequency-
domain features extracted via wavelet transform on VGRF
data. These features primarily comprise frequency distri-
butions of wavelet coefficients and their variabilities. The
model proposed by Channa et al. [16] also employed fre-
quency domain features, but it shows superior accuracy with
a smaller number of features compared to Lee et al. [13].
Meanwhile, Srivardhini et al. [30] present a NN model that
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TABLE 5. Performance comparison with the existing studies that used the same dataset.

utilizes time domain features and outperforms many previous
studies. By incorporating both time and frequency domain
features as proposed in our study, we can achieve better or
comparable performance with a relatively simple model (in
terms of the number of features). Therefore, the integrated use
of discriminatory features from different domains can lead
to developing better-performing classifiers with a relatively
smaller number of features.

The improved performance of our methodology is primar-
ily due to the unique selection of classifying features that
have higher discriminatory power compared to the features
proposed in the previously published studies. To the best
of our knowledge, this is the first study that introduces the
level-wise cross correlation coefficients to classify gait in
PD diagnosis, although the standard correlation coefficient
frequently appears as a discriminatory feature. As we pointed
out, the use of level-wise cross correlation coefficients allows
for a more detailed analysis of the correlation structure of
gait dynamics than the standard correlation coefficient. This
allows for the characterization of the similarity between the
VGRF time series of the left and right legs during walk-
ing. The cross correlations of the VGRF time series in PD
patients are generally higher than those in the control group
(Figure 4), suggesting that PD patients rely more heavily on
both legs during walking due to their increased risk of falls
resulting from gait disturbances. Additionally, PD patients
have a more regular signal and less erratic gait dynamics
compared to healthy controls, as indicated by a higher slope
under features 7 and 8 in Figure 4. This can be attributed to
less disruption of long-memory correlations in gait dynam-
ics caused by walking disorders. Furthermore, the entropy
of gait behaviors in PD patients is comparatively smaller
than in healthy controls (Figure 4), indicating reduced com-
plexity in gait dynamics. Overall, these multiscale features
can be used as important tools for detecting abnormalities
in gait patterns and tracking the progression of conditions
such as PD.

It is worth to note that there are some algorithms that show
near perfect classification performance based on the same

dataset. For instance, El Maachi et al. [35] proposed a deep
neural network classifier and differentiated PD patients from
controls with 98.7% accuracy. However, the overall com-
putational cost of deep neural network-based approaches is
generally higher than the LR, KNN, and SVMclassifiers used
in this study. Therefore, in terms of overall computational
cost, our wavelet-based classification procedure would be a
competitive alternative.

An important advantage of the proposed approach is that
it does not require extensive data pre-processing. Feature
extraction procedures proposed in previous studies rely heav-
ily on data pre-processing. For instance, Park et al. [36],
Shaban and Amara [37], and Xue et al. [38] performed WT
to denoise signals observed from different bodily functions
in PD diagnosis. Such pre-processing may lead to losing
valuable information and negatively impact PD diagnosis
performance as a result. Compared to those studies, the
present study performed minimal pre-processing on VGRF
time series ( z-score and cumulative sum) data. This could
also be a reason contributing to better classification perfor-
mance.

The present study has some limitations as well. Specif-
ically, a subset of values from the VGRF dataset was not
used in the WT-based feature extraction process. In order
to apply DWT, the data size has to be a power of two.
In the dataset, the majority of the VGRF signals had 12,000
measurements, hence only 8, 192(= 213) data points were
used. Thus, we did not utilize approximately 4,000 mea-
surements. In terms of time, this would amount to roughly
40 seconds of data that was not used. Although the pro-
posed WT-based features were extracted using only 2/3’s of
the VGRF time series data, they distinguished gait between
PD patients and controls with greater than 90% accuracy.
However, the remaining 1/3 of the data may also con-
tain valuable insights that could contribute to even greater
accuracy. One possible approach to overcome this limita-
tion is through the use of the non-decimated wavelet trans-
form, as it is not necessary to have input signals of dyadic
length.
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In this study, self-similarity in VGRF data was assessed by
estimating the slope of the wavelet spectra using the standard
method. That is the mean of the squared wavelet coefficients
was used to compute the wavelet spectra. However, the high
frequency and noisy behaviors of VGRF data may hamper the
ability to accurately assess self-similarity due to sensitivity of
the traditional mean and variance to outliers. Other statistical
measures such as median, tri-mean and distance variance can
be used to assess self-similarity in a more robust way [39].

Overall, the features derived in this study are only on the
basis of vertical ground reaction force. Considering ground
reaction forces in other directions may also contain valuable
information for better differentiation of gait between PD
patients and controls.

VII. CONCLUSION
In the present study, we investigated a feature extraction
procedure to identify PD based on gait data produced from
PD patients and controls. A novel set of nine features was
extracted on the basis of self-similarity, relationships between
the left and right legs and order/disorder properties of VGRF
data. These properties were characterized by performing WT
on VGRF data. The set of most significant features was
selected using the forward feature selection procedure, and
their PD diagnosis performance was evaluated using LR,
SVM, and KNN classifiers. The classifier performance was
evaluated by using the multiscale feature subsets and three
time domain features. The introduction of time domain fea-
tures increased the classifier performance. The SVM classi-
fier achieved the highest performance with a 97.43± 2.93%,
sensitivity 0.94 ± 0.02, and 0.99 ± 0.06 specificity. This
is followed by the KNN and LR classifiers. Compared to
previously published approaches, our proposed prediction
methodology, which combines multiscale and time domain
features, exhibits superior performance while using fewer
features. This suggests that the proposed diagnostic method,
which leverages multiscale (wavelet) features, can have a
significant impact on improving the efficacy of PD diagnosis
in a clinical setting. Therefore, outcomes of this study suggest
that WT-based feature extraction procedures integrated with
time domain features can serve as an effective tool in PD
diagnosis.

In the spirit of reproducible research, the software used in
this paper is available at https://github.com/vimalajeewaruh/
Parkinson

APPENDIX A
DISCRETE WAVELET TRANSFORM (DWT)
Suppose Y represents a VGRF time series of length N , Y =

(y(t1), y(t2), · · · , y(tN ))′ at equally spaced time points ti for
i = 1, 2, · · · ,N . Wavelet transform of Y is given by

d = WY , (1)

where d is a vector of size N × 1 and W is an orthogonal
matrix of size N × N of which elements are determined by
wavelet filters such as Haar, Daubechies, or Symmlet.

FIGURE 5. Correlation between wavelet and time domain features.

The computational complexity of WT increases with large
N when matrix form-based DWT is performed. Mallat devel-
oped a computationally fast algorithm, overcoming this issue.
Technical details about this algorithm can be found in Mal-
lat [40]. The DWT on the signal Y using this algorithm results
in a multiresolution representation of the signal that includes
a smooth approximation (c~) and hierarchy of details coeffi-
cients djk at different resolutions (scale index) j and locations
k within the same resolution level. That is, the vector d given
in Eq 1 contains both the discrete scaling coefficients and
detail coefficients, and has the following structure

d = (c~J0 , d~J0 , · · · , d~J−2, d~J−1), (2)

where c~J0 is a vector of coefficients corresponding to the
smooth trend in signal Y and d~j are details coefficients at
resolution levels j such that J0 ≤ j ≤ J − 1. The coarsest
decomposition level is denoted by J0 and J = log2 N .

APPENDIX B
WAVELET SPECTRA
Consider the DWT of signal Y given in Eq 2. Suppose d~j =

{d1, d2, · · · , dn} represents the detail wavelet coefficients in
jth decomposition level. Since the wavelet coefficients have
theoretically zero mean, the wavelet spectra of signal Y is
computed as follows

S(j) = log2(σ̂
2(d~j)), for J0 ≤ j ≤ J − 1, (3)

where σ̂ 2(d~j) is an estimator for sample variance of vector d~j.
The spectral slope (and Hurst exponent) is estimated from the
linear regression on pairs (j, S(j)).

APPENDIX C
LEVEL-WISE CROSS CORRELATION COEFFICIENTS
Suppose X and Y are two VGRF time series of size N ×

1, and correspond to a same location in left and right leg,
respectively. Also, consider that they have zero mean and
finite variance (i.e., E(X ) = E(Y ) = 0 and Var(X ) < ∞

and Var(Y ) < ∞).
According to Eq 1, the DWTs on X and Y can be expressed

as dX = WX and dY = WY , respectively, where W is
an orthogonal matrix of size N × N . The sample covari-
ance between X and Y , Ĉov(X ,Y ) is equivalent to the
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inner-product of the DWT of X and Y . That is, Ĉov(X ,Y )
can be computed by using Eq 2 as follows:

Ĉov(X ,Y ) = ⟨dX , dY ⟩ = c(0)X c(0)Y +

J−1∑
i=1

⟨d (j)X , d (j)Y ⟩, (4)

where ⟨., .⟩ denotes the standard inner product in RN and
⟨d (j)X , d (j)Y ⟩ =

∑2j−1
i=0 d (X )j,i d

(Y )
j,i for j = 0, 1, · · · , J − 1.

Eq 4 implies that the sample correlation between the sig-
nals X and Y can be expressed as the summation of level-wise
inner products of their detail wavelet coefficients. Then, this
leads to deriving the sample correlation coefficient between
X and Y as:

ρ̂X ,Y =
c(0)X c(0)Y

||d (j)X ||2 ||d (j)Y ||2

+

J−1∑
j=0

wjρ̂
(j)
X ,Y , (5)

ρ̂
(j)
X ,Y =

⟨d (j)X , d (j)Y ⟩

||d (j)X ||2 ||d (j)Y ||2

, for 0, 1, 2, · · · , J − 1, (6)

where wj =

√
w(j)
X w

(j)
Y , w(j)

X =
||d (j)X ||

2
2

||dX ||2
, and w(j)

Y =
||d (j)Y ||

2
2

||dY ||2
.

Here, d (j)X and d (j)Y represent the detail wavelet coefficients of
X and Y at the jth scale, and ρ̂

(j)
X ,Y is the correlation coefficient

between X and Y at the jth scale.

APPENDIX D
WAVELET ENTROPY
Suppose wavelet decomposition of a signal Y size N × 1 and
d~j = {d1, d2, · · · , dn} represents the set of detail wavelet
coefficients at the resolution level j. Then, non-normalized
Shannon wavelet entropy (WE) of Y at jth scale level can be
expressed as:

WE(j) = −

n∑
i=1

d2i log d
2
i . (7)

APPENDIX E
INTERACTION BETWEEN WAVELET- AND TIME DOMAIN
FEATURES
Figure 5 shows the correlation structure of the features used
to build classifiers. The majority of WT-based and time
domain (biomechanical) features do not share strong corre-
lations. However, the time domain features swing time and
stance time are strongly correlated with theWT-based feature
slope-2, which characterizes the regularity in gait dynamics.
The swing time is the time interval during which the foot
is off the ground and the stance time is the time interval
during which the food is on the ground while walking, and
regularity in gait dynamics refers to the consistency of gait
patterns. Research has shown that a decrease in regularity
of gait dynamics is associated with an increase in variabil-
ity in swing and stance time, which indicates instability in
walking patterns [41], [42], [43]. In other words, when gait
dynamics become more irregular, there is a corresponding
increase in the variability of swing time. This relationship
has been observed in various populations, including older

adults and individuals with neurological disorders, including
Parkinson’s disease.
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