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ABSTRACT The accuracy of image segmentation is critical for quantitative analysis.We report a lightweight
network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention
(FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of
the learned frequency information to the spatial domain, paying more attention to the precise high-frequency
information of diverse biomedical images. While FCA is widely used in image super-resolution with residual
network backbones, its role in semantic segmentation is less explored. Here we study the combination of
FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive
experimental results of FRUNet on three public datasets show that the method outperforms other advanced
medical image segmentation methods in terms of using fewer network parameters and improved accuracy.
It excels in pathological section segmentation of nuclei and glands.

INDEX TERMS Medical image segmentation, Fourier channel attention, residual unit, pathological section.
Clinical and Translational Impact Statement– Medical image segmentation can be used to measure the
position and size of human tissues or lesions, making the changes of anatomical or pathological structures in
the image clearer. It plays a vital role in computer-aided diagnosis and intelligent medical treatment. At the
same time, quantitative measurement and analysis of relevant imaging indicators before and after treatment
will help doctors diagnose, follow up or revise the treatment plan for patients.

I. INTRODUCTION
Medical image processing becomes essential in computer-
aided diagnosis(CAD) [1], image-guided surgery(IGS) [2],
and tumor radiation therapy [3]. With increased resolu-
tions that modern biomedical imaging instruments can offer,
segmentation algorithms have been developed and widely
applied in various imaging modalities, including X-ray
[4], Computed Tomography (CT) [5], Magnetic Resonance
Imaging (MRI) [6], [7], endoscopy [8], wireless capsule
endoscopy [9] and high-throughput imaging techniques, like
histopathology and electron microscopy (EM) [10]. In micro-
scopic applications, cellular imaging and subcellular region
segmentation are essential to characterize cellular dynamics
under normal and pathological conditions [11], study drug
discovery, and evaluate the efficacy of drug treatments [12].

Conventional methods, based on morphological operations
to segment cells or intracellular compartments, lack suffi-
cient accuracy in segmentation results and are inefficient in

generalizing the new datasets. Deep-learning-based segmen-
tation has been rapidly developed with improved accuracy
and can be adapted to a variety of pathological slice cell maps.
Al-Kofahi et al. use a cascade of multiple layers of nonlinear
processing units for feature extraction and transformation,
forming hierarchical features from low-level to high-level to
perform cell segmentation [13]. Greenwald et al. constructed
TissueNet containing more than 1 million manually labeled
cells to greatly improve the accuracy of the cell segmentation
network [14]. Estibaliz et al. embedded the cell segmentation
function into ImageJ so that experts without the machine
learning foundation can easily use this function for scientific
research [15]. These works have promoted the development
and application of cell segmentation algorithms.

A. RELATED WORK
Methods based on convolutional neural networks (CNNs)
have overcome many shortcomings of traditional algorithms
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in the field of medical image segmentation. Compared with
traditional methods, deep learning has higher accuracy and
robustness, even under dynamic backgrounds, resolution,
or light source conditions. Deep learning has good flexibility,
as CNN models and frameworks can train multiple types
of datasets and are more versatile. Deep learning is end-
to-end learning, and the network can automatically find the
most descriptive and obvious features without relying on the
judgment of engineers and long-term debugging and error
handling [16].

Long et al. [17] proposed a Fully Convolutional Net-
work (FCN) that further extends from image-level classifica-
tion to pixel-level classification for semantic segmentation.
FCN achieves end-to-end segmentation, but the segmenta-
tion accuracy is not enough. Based on a classic encoder-
decoder idea, U-Net has been developed from FCN by
Ronneberger et al. [18]. Compared with FCN, U-Net has a
symmetrical structure and skip connections. The downsam-
pling of U-Net increases the receptive field and upsampling
increases the resolution of high-level abstract features and
fuses with low-level surface features through skip connec-
tions. This allows features of different scales to be fused,
enabling multi-scale prediction and deep supervision.

As the network deepens, vanishing/exploding gradients
and network degradation problems are prone to occur. ResNet
[19] is a milestone in the history of CNN image processing,
winning first place in classification and object detection in
the 2015 ImageNet competition. Jha et al. proposed that
ResUNet++ performed well on polyp segmentation which
demonstrated a 10% improvement compared to the widely
used UNet baseline on the Kvasir-SEG dataset [20].

The attentionmechanism is to imitate the process of paying
attention to the Region of Interest. We can adaptively make
the network focus on more effective features by exploiting
the interdependencies between channel or spatial domain fea-
tures. This enables the network to extract richer information
in limited steps. At the same time, it improves the inter-
pretability of the network and has the potential to increase
clinician acceptance and trust in predictions given by AI
algorithms [21]. The core idea of the attention module is to
adaptively acquire the importance of each feature through
learning, automatically enhance useful features and suppress
unimportant features. Gu et al. make extensive use of mul-
tiple attention in the CNN architecture, synthesizing spatial
attention, channel attention, and scale attention to be aware
of the most important spatial locations, channels, and scales
for more accurate medical image segmentation [21]. The SE
block allows the network to perform feature recalibration by
explicitly modeling the interdependencies between channels
of convolutional features [22] Yu et al. specifically designed
a smooth network using Channel Attention Block and Global
Average Pooling to choose more discriminative features for
semantic segmentation [23].

Frequency domain conversion is very common in tradi-
tional image processing because the high and low frequency
of the image represents the contour and detail information

of the image, which is very important for image processing.
Yu et al. proposed importing spatial frequency domain instead
of RGB image into CNN to extract features. This method
can significantly reduce the amount of data transmission and
improve the accuracy of the model to a certain extent [24].
They successfully applied frequency domain information to
CNN. Qin et al. [25] proposed FcaNet with a multi-spectral
attention module, which popularizes the existing channel
attention mechanism in the frequency domain, uses DCT to
put the characteristics of different frequencies into different
channels, and then uses the attention mechanism to multiply
the weight of different channels by the corresponding chan-
nels in the spatial domain. We refer to the Fourier channel
attention (FCA Block) of Qiao et al. [26], and increase the
value of the high-frequency part after Fourier transforms
enhancing the contributions of high-frequency components.
While FCA is widely used in image super-resolution with
residual network backbones, its role in semantic segmenta-
tion is less explores. Here we study the combination of FCA
and U-Net to segment biomedical images.

B. OUR APPROACH
Inspired by these successful approaches above, we draw on
the encoder-decoder structure and use the Residual Unit as
the basic structure. The encoder downsamples three times,
reducing the size of the feature map by half each time, and
the decoder symmetrically upsamples three times symmet-
rically, enlarging the feature map by half each time. When
down-sampling, the encoder will obtain a high-level seman-
tic feature map as the depth deepens. Up-sampling com-
bines the low-level semantic features of the encoder with
the corresponding layer to enrich the overall features while
restoring the resolution. Every Residual Unit is composed
of two layers of FCA Block and the BN layer that follows
it. FCA Block gives the frequency domain information after
Fourier transforms as the weight of the channel to the spatial
domain through the attention mechanism so that the spa-
tial domain can obtain richer information to improve the
segmentation performance. We have evaluated our method
on three publicly available datasets. Our experiments show
that our model outperforms most of the baseline models and
achieves comparable performances with SOTA nucleus and
gland segmentation, and the network significantly reduces
the number of parameters and computational costs while
ensuring segmentation performance.

In summary, the contributions of the paper include:
The combination of FCA and U-Net – We propose a

novel FRUNet architecture that leverages the advantages of
FCA blocks and residual blocks based on an excellent U-Net
network. These ingenious structures enable the network to
quickly extract useful and effective features, accelerate net-
work convergence, and improve training efficiency while
improving segmentation accuracy.

Systematic evaluation – The effectiveness of FRUNet has
been evaluated using three public datasets: Kaggle 2018 Data
Science Bowl, GlaS, and MoNuSeg. These three datasets are
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FIGURE 1. The architecture of FCA Block.

mainly used for nucleus and gland segmentation, and each of
them has its characteristics to verify the network’s robustness
in handling diverse nuclei, its ability to segment irregular
and dense nuclei, and its capability to handle small sample
datasets.

Network lightweight —The FRUNet parameters is sev-
eral times smaller than that of the current segmentation
networks, which results in near SOTA performance with
far fewer computational cost. Because the network has a
strong feature extraction ability and fast convergence, it can
obtain sufficient accuracy with a small number of layers and
channels.

II. METHOD
A. ARCHITECTURE OF FRUNet
The overall design is illustrated in Fig. 1. We utilize
features in the frequency domain with channel attention.
The frequency-domain information represents the change of
the gray values relative to the adjacent points in the image.
On the edge, the intensity of the image changes drastically,
as the high-frequency information of the image. In traditional
image processing, operations such as frequency domain filter-
ing are often used to process images, while little attention has
been paid to the Fourier domain so far in deep learning. Chang
et al. speculate that using the frequency content difference
between different features in the Fourier domain may enable
the super-resolution reconstruction precisely and efficiently
because it can learn high-frequency hierarchical information
more effectively [26]. As high-frequency information is also
important for image segmentation, we apply an FFT layer to
extract features in the frequency domain.

The squeeze-and-excitation (SE) block improves model
accuracy by weighting different channels to empha-
size the important features. Tomake the network pay attention
to the high-density information of the features, we referenced
the SE block and proposed a Fourier channel attention block.
The extraction of frequency domain information and the
channel attention mechanism greatly improve the richness
of information [22]. We combine frequency domain features
with the advantages of SE-Net to make the network more
sensitive to the important frequency domain features.

Therefore, we designed the FCA block to focus on the
high-frequency information of the edge. The FCA Block
structure first passes the input feature map through two layers
of 3×3 convolution, and each layer of convolution is followed
by a Gelu activation layer to extract spatial domain informa-
tion, and then Fourier transform is performed, 1×1 convolu-
tion to extract frequency domain information and use ReLU
as the activation function. The featuremap is then compressed
by global average pooling to obtain a global understanding
of each channel. After the global average pooling of fre-
quency domain information, the weight of each channel is
obtained through the Sigmoid activation function. Layers that
contribute more to the network have greater weight values
and then the frequency domain feature weight is adaptively
assigned to spatial domain feature maps by multiplying the
weights with the spatial feature map correspondingly. Finally,
the feature map with frequency domain weight is added to the
input feature map of this block to further fuse more feature
information.

The block diagram of FRUNet is shown in Fig. 2, which
is mainly composed of FCA blocks and residual blocks to
form a U-shaped network. The FCA block can extract both
spatial and frequency domain features in a small module.
The attention module allows the network to automatically
learn useful features to greatly improve the efficiency of
feature extraction. Residual block enables the network to be
deep and obtain more high-level useful information. Because
skip connections help information spread without degrada-
tion, the residual network converges faster with the same
number of layers, and a deeper network can be used. These
advantages suggest the ResNet structure is the basic module
of FRUNet. The residual block consists of two FCA Blocks
where each block is followed by the Batch Normalization
layer. The input feature map is added to the feature map that
has passed through these four layers, which helps the spread
of information and can greatly reduce parameters to optimize
the network design, making the model easier to train and
improving the accuracy of segmentation.

Input channels are determined as 3 channels or 1 channel
depending onwhether the input image is an RGB or grayscale
image. The 3× 3 convolution was used for feature extraction
and channel size adjustment shown as the orange rectangular
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FIGURE 2. Block diagram of the proposed FRUNet architecture. The network is mainly composed of FCA Block, Batch normalization, and
convolution layers. The thickness of the small square represents the number of channels. Except for the input layer and output layer, the number
of other layers is 64. Each max pooling shrinks the feature map in half and each upsampling doubles.

block. The last layer of the network uses 1×1 convolution and
Sigmoid activation functions to get the segmentation map.
As shown in the figure that with the proceeds of downsam-
pling, the size of the feature map gradually decreases from
128 × 128 to 16 × 16, but the number of channels remains
64. We try to increase the channels of feature maps as the
layers deepen, but the segmentation results do not change
much. The experiment shows that 64 channels are enough to
extract useful features. Adding channels here only increases
the number of network parameters, and the effect is not
significantly improved, as shown in TABLE 5.

B. LOSS FUNCTION AND EVALUATION METRICS
The segmentation of cells and gland is performed on the pixel
level, and the samples are usually unbalanced. Therefore, two
different loss functions are chosen in this work. The first is
the cross-entropy loss function, which is commonly used to
describe the difference between two probability distributions.
However, when the number of foreground pixels is much
smaller than the number of background pixels in the seg-
mentation task, the model with only cross-entropy loss will
be heavily biased towards the background, resulting in poor
results. We further combine the Dice coefficient to calculate
the similarity between two images, which is more suitable
for unbalanced samples. The final loss function is described
in Eq. (3) as follows:

LBCE = (y− 1) log
(
1 − ŷ

)
− y log ŷ (1)

LDCS = 1 −
2yŷ+ 1
y+ ŷ+ 1

(2)

Loss = LBCE + LDCS (3)

where y is the ground truth value and yˆ is the predicted value.
The sum of these two loss functions is used to minimize the
gradient between the prediction map and the annotations.

The following metrics are used for the quantitative eval-
uation of our method with other recent methods, which are
commonly used metrics in medical image segmentation.

DICE =
2TP

2TP+ FP+ FN
(4)

mIoU =
1

k + 1

k∑
i=0

TP
TP+ FN + FP

(5)

Recall =
TP

TP+ FN
(6)

Precision =
TP

TP+ FP
(7)

F1 =
2 × Precision× Recall
Precision+ Recall

(8)

At the same time, we provide visual sample predictions of
qualitative results to analyze why the proposed method per-
forms better than other approaches.

C. DATASET
We have used three medical image segmentation datasets to
validate the performance of our proposed FRUNet network:
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TABLE 1. Medical image segmentation datasets used in our experiments.

Kaggle 2018 Data Science Bowl, GlaS, and MoNuSeg,
which are publicly available from their official websites.
The 2018 Data Science Bowl contained a large number of
segmental nuclear images of different cell types obtained
under a variety of conditions and varied in cell type, magni-
fication, and imaging modality [27]. This verifies the robust-
ness of the network to the segmentation of cells with large
differences. GlaS consisted of 165 histological sections from
16-stage T3 or T42 colorectal adenocarcinoma stained with
hematoxylin and eosin [28]. The dataset consists of tissue
images of tumors of different organs from different patients,
created by downloading H&E stained tissue images at 40×
magnification from the TCGA archive, all carefully anno-
tated by experts. This dataset was used to validate the per-
formance of the network for gland segmentation. MoNuSeg
was obtained by carefully annotating tissue images of several
patients with tumors of different organs and who were diag-
nosed at multiple hospitals [29], [30]. Given the diversity and
high density of nuclear appearances across multiple organs
and patients, the robustness of the network and the segmen-
tation ability of high-density nuclei can be well validated.
All of these datasets contain images and the corresponding
GroundTruth annotated by expert pathologists. Due to the
limited number of training images, we performed data aug-
mentation, including rotation, zoom in or out, shifting, hori-
zontal flip, and reflection. The detail of the datasets and their
distribution during the experiment can be found in TABLE 1.

D. IMPLEMENTATION DETAIL
Our experiment uses Keras neural network API and runs on
TensorFlow [31] backend. In the experiment, we used some
uniform hyperparameters. We set the batch size to 2, used the
Adam optimizer to train the network, and set the learning rate
to 0.0001. If saturation is reached in a few epochs during the
training, we set the learning rate to 0.00005. All experiments
were conducted on NVIDIA-RTX 3090 GPU.

III. RESULT
In this section, we discuss the results of experiments con-
ducted by our proposed network FRUNet. All 5-fold cross
validation results are also in the corresponding results table.

A. COMPARISON OF THE NETWORK PERFORMANCE
Kaggle 2018 Data Science Bowl dataset contains 670 images
with image sizes 256 × 256. in which 570 images were
for training and 100 for testing. The images under various
conditions are converted into grayscale images and then taken
as the input of the network in their original size. The result
of the proposed FRUNet and the comparison of the present

result shows in TABLE 2. The evaluation results show that
our proposed network achieves a DICE of 0.9253, mIoU
of 0.8657, recall of 0.9441, and precision of 0.912 which
outperforms the previous best-performing MSRF-Net in all
matrics. We can observe that the predicted results are very
robust, and has high segmentation accuracies for nuclei of
different types, sizes, and densities.

GlaS contains 165 images with image size 775 × 522,
in which 85 images are used for training and 80 images are
used for validation. The images are resized to 128 × 128,
which is same with the SOTA network. Since the RGB color
has a certain auxiliary role for gland segmentation, the RGB
images are used as the network input. The quantitative results
for the GlaS are shown in TABLE 3. We can observe that our
method achieved an F1 of 0.8600 and mIoU of 0.7454 which
outperforms the SOTA networks. Although the glands are
usually irregular in shape and similar in color to the back-
ground, our method achieves almost consistent results with
the ground truth (Fig. 3). The result highlights the superior
segmentation ability of the network. Our network achieves an
improvement of nearly 5% on F1 score and 4.93% on mIoU
compared to the current SOTA.

MoNuSeg contains 51 images with a size of 512 × 512,
of which 37 images are for training and 14 for testing.
The original images are converted into a grayscale image
as input. From the quantitation result shown in TABLE 4,
the proposed method achieves 0.7865 in DICE, 0.6499 in
mIoU, and 0.7943 in F1 score which outperforms the back-
bone architectures. The dataset obtained from several organs
with annotations of tens of thousands of individual nuclei
validates the network’s ability to segment highly dense cells
(Fig. 3). The results also demonstrate that our network can
have good segmentation performance for small and complex
datasets.

B. COMPARISON OF THE NETWORK STRUCTURE
From the result table, we can see that the number of net-
work parameters of FRUNet is less than all networks except
MedT.We conduct a series of comparative experiments on the
dataset Kaggle 2018 Data Science Bowl. Based on FRUNet,
change the number of channels, and the number of layers
of the network to determine the optimal network structure.
As shown in TABLE 5, the number of channels is always
64, and the number of layers is 3 layers is the combination
with the best overall performance and the smallest network
parameters. The size of the feature map of the U-Net network
decreases as the network deepens, and channels are increased
to retain more information. We imitated the characteristics
of the U-Net and changed the number of channels of the
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TABLE 2. Results on the 2018 data science bowl.

TABLE 3. Results on glas.

FIGURE 3. Qualitative results of FRUNet on sample test images from Kaggle 2018 data science bowl, GlaS, and MoNuSeg datasets.
Two images are selected for each dataset to compare the prediction results with the ground truth.

3-layer network to 64, 128, and 256. Although Precision
is the best result, other parameters are much lower than
other models, which means that when the number of chan-
nels is 64, enough features can be obtained for segmenta-
tion, and increasing the number of channels cannot improve
the results or even have a negative effect. We have tried
to increase the number of layers by changing the original
3-layer U-shaped structure to 4 layers, with the number of

channels being 64. The segmentation performance is reduced
compared to the best results. When the number of layers
and channels are increased at the same time, the results are
very similar to FRUNet, ignoring the influence of experi-
mental errors, the results can be considered consistent, but
the network parameters are increased by 25 times. All the
above experiments show that the FRUNet is very ingenious,
the structure is small and compact, and the information in
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TABLE 4. Results on MoNuSeg.

TABLE 5. Parameter experiment on the 2018 data science bowl.

TABLE 6. Ablation study on glas.

FIGURE 4. Qualitative result of ablation study of FRUNet on GlaS dataset. Select 4 samples a, b, c, and d in the GlaS dataset as the demonstration of
the ablation experiment results.

the Fourier domain and channel attention can quickly obtain
useful information, so the network parameters are greatly
reduced.

C. ABLATION STUDY
We conduct extensive ablation experiments to verify the
effect of each block of the network in the proposed method.
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FIGURE 5. Qualitative results comparison on the MoNuSeg dataset. From the left: (1)Images, (2) Ground truth, (3) FRUNet, (4) U-Net, (5) UNet++., and
(6) ResUNet, From the experimental results, we can say that FRUNet produces better segmentation masks than other competitors.

In this experiment, the dataset we have used is GlaS. We have
analyzed the effect of the Fourier transforms, the channel
attention mechanism, and the different loss functions on the
whole network separately. TABLE 6 shows the quantitative
results of the ablation study, missing parts of the network
make the difference in results noticeable. Firstly, we removed
the Fourier transform of the FCA Block which equivalently
led to this part becoming spatial domain channel attention,
and that has resulted in the worst results on all the metrics
except precision. It can be seen from the visualization results
(Fig. 4) that the network with Fourier transform can better
segment the glands with similar color or brightness to the
background, as shown in sample c, almost all results are
predicted to be false without the Fourier transform. We dis-
abled the Fourier channel attention block to get a better
result than in the first experiment. But relative to our pro-
posed network, it will have more false positives. We can
conclude from these two experiments that the spatial atten-
tion mechanism seems to have a negative effect on the net-
work, but the attention mechanism in the Fourier domain
has a positive effect, Samples b and d clearly show this
feature. We use a combination of dice losses and binary
cross-entropy losses for monitoring our proposed network
during training. We first set the loss as Binary cross-entropy
and followed by setting the loss of the Dice coefficient.
Neither of them gives better results than the combination of
the two.

IV. DISCUSSION AND CONCLUSION
In order to help clinicians make an accurate diagnosis, it is
necessary to segment some key objects in medical images and
extract features from the segmented regions. This paper seg-
mented three different tissues or cells from different patients
and hospitals and verified the good segmentation perfor-
mance and robustness of the proposed network, which helps
doctors understand the pathological structure more clearly.
We propose a lightweight network FRUNet for cell and
gland segmentation that takes advantage of Fourier domain

channel attention and encoder-decoder architecture. Such an
ingenious structure allows the network to extract more useful
features with a much smaller model size, resulting in high
segmentation accuracy. FRUNet is based on the U-Net, FCA
Block, and Residual block. FCA Block utilizes frequency-
domain channel attention to give weights to the network’s
spatial-domain features, making the network more sensitive
to important features. Residual networks allow deeper neural
networks that can address each encoder degradation problem,
improve channel interdependencies, and save computational
resources. The encoder-decoder structure of U-Net, com-
bined with skip-connection, can make the high-level feature
map integrate more low-level features, which is conducive
to the accurate classification of pixels. FRUNet performs
significantly on three datasets of cell and gland segmentation.
We did experiments to compare our network with the current
classical networks with better segmentation effects such as
U-Net, U-Net++, and ResUNet, as shown in Fig. 5. Our
proposed network can segment the edges more finely and can
separate each nucleus individually, the segmentation accu-
racy is greatly improved. And the parameters are much less
than other networks, which saves computational overhead
and reduces training time to just a few hours. The model
file of this network has been open source, and the website
is https://zenodo.org/record/6919253#.Y2utT3ZByUk.

The ablation experiment demonstrates that the frequency
domain information after the Fourier transforms and channel
attention mechanism is added to greatly increase the segmen-
tation accuracy. Dice coefficient loss can get better results,
but combined with Binary cross-entropy loss, the best results
of the experiment are obtained.

Our preprocessing of images is resizing, which may lose
image information to a certain extent. The datasets we have
chosen are the segmentation of nuclei and glands, and their
segmentation results can outperform the performance of the
SOTA network, but for other datasets, we can only achieve
comparable performances with SOTA and cannot surpass the
best.
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