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ABSTRACT Background and objective: Significant variability in the quality of healthcare supplied by
hospitals is drawing broad attention from the United States Centers for Medicare and Medicaid Services.
The primary issue is to evaluate hospital performance based on patient outcomes. Generalized linear random-
effectsmodels are a promising analytical tool for evaluating hospital performance. However, hospital compare
data often violate the classical assumptions of normality on random effects and linearity representation on
transformed conditional mean structures in these models. Methods: In this article, we proposed and tested
the performance of a class of hospital compare models that embraces nonparametric mean structures with
semi-nonparametric hospital random effects. Such models were further improved and integrated into a zero-
inflated model. SAS programs to implement these newly proposed hospital compare models were thoroughly
developed. The SAS programs are freely available via a GitHub (GitHub.com) repository. Results: We
demonstrate the robustness of the proposed hospital compare models by conducting intensive empirical
studies. Flexible semi-nonparametric random effects and functional fixed-effects mean structure were used
to analyze patient mortality in a large-scale intensive care unit data set. After applying the proposed models
to assess standardized modality rates and address patient-mix variability across hospitals, we detected those
underperforming hospitals with higher mortality rates. Conclusions: Our research findings highlight how
constructing advanced assessment tools for hospital performance could support better decision-making at the
administrative and public levels. The proposed hospital compare models are comprehensive in their capacity
to identify patterns of hospital random effects and to convey the variability in healthcare quality with powerful
accuracy and interpretability.

INDEX TERMS Hospital random effects, ICU mortality, repeated measures, risk adjustment, zero-inflated
models.

I. INTRODUCTION
The Centers for Medicare and Medicaid Services (CMS)
of the United States rely on various performance metrics,
including mortality rates, readmission rates, and healthcare-
associated infection rates, to provide the administration
and general public the information regarding the quality
of hospitals [1]. Measuring and improving hospital quality
has quickly become a fundamental focus of clinicians and
policymakers alike. Over the last decade, the CMS have
implemented national value-based purchasing programs,
which use Medicare provider payments to encourage and

incentivize hospitals to deliver higher quality care with
respect to clinical processes, patient experiences and out-
comes, and treatment efficiency [2]. For instance, since heart
failure, acute myocardial infarction, and pneumonia have all
led to greater hospitalization and death rates in recent years,
the CMS now ranks hospitals and imposes financial penalties
according to their 30-day mortality rates for these admitted
critical patients [3].

Inferior treatment can have substantial impacts on indi-
vidual patients and consequently on hospital performance.
In 2022, the U.S. News & World Report organization
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reported that due to age, physical ailments, or other chronic
conditions, nearly two million hospital inpatients faced the
prospect of surgery or special care, posing either unusual
technical challenges that must be overcome or a significantly
increased risk of harm or death [4]. Public reports of
hospitals’ performance not only support their administrative
management but also assist public health decision-making
pertinent to nationwide health policy, with hospital rankings
now a tool used by prospective patients to find sources of
skilled medical treatment [5]. Hence, the reliable assessment
and disclosure of healthcare providers’ clinical performance
within hospitals has emerged as a crucial tactic for monitoring
and improving the quality of the United States (U.S.) hospital
care.

In hospitals, their intensive care units (ICUs) are unique
units with concentrated resources to treat critically ill patients
in dire need of radical, life-saving treatments. In the U.S.,
these ICUs together spend $81.7 billion, and this total is
trending upward since 2005 with accounting for 13.4% of
hospital costs and 4.1% of national health expenditures [6].
Meanwhile, intensive care resources in the U.S. are lim-
ited [7]. Therefore, it is imperative to simultaneously improve
both the care provided to patients in the ICUs and the
cost-effectiveness of the critical care services. Uncovering
the key linkages between critical care services and clinical
outcomes can be very useful for optimizing the value of
certain treatments and evaluating the performance of U.S.
hospitals.

A. MOTIVATIONS
Mortality in the ICUs can be viewed as a proxy for a
hospital’s impact on the well-being of its patients. Whether
mortality occurs in the ICUs is significantly influenced by
the care provided by the hospitals, as well as demographics,
comorbidities, severity of illness, various vital signs, and
laboratory test results. Several traditional severity assess-
ment systems [8], including Acute Physiology and Chronic
Health Evaluation (APACHE), Mortality Probability Model
(MPM), and Simplified Acute Physiology Score (SAPS),
are routinely used to assess mortality risk among patients
in the ICUs. In these assessment tools, risk adjustment has
not been performed to adjust for various confounding factors
associated with individuals and hospitals. It has been shown
that building accurate risk-adjusted hospital compare models
based on ICU mortality rates is of paramount importance.
Doing so can enable us to better understand which factors
contribute to the diversity of health outcomes, in addition
to revealing potential superior and inferior performing
hospitals.

In assessing hospital performance and ranking the hos-
pitals, previous researchers have overwhelmingly relied
upon the generalized linear mixed models (GLMMs)
[9], [10], [11] due to the interpretability of their model
structure, in which random effects are used to account for
unobserved heterogeneity across the grouped individuals

with a hospital. Usually, these hospital-specific random
effects are assumed to be normally distributed in the
GLMMs as before. However, this may lead to a mis-
specification of the distribution of the random effects,
if the underlying truth is not a normal distribution, and
thereby further induce biases in estimation and prediction.
To reduce such biases, a more flexible nonparametric
distribution for characterizing random effects is evidently
required and desired. In this article, we explore a framework
for risk-adjusted hospital performance by proposing a
flexible semi-nonparametric (SNP) modeling approach to
the hospital random effects in the GLMMs as hospital
compare models, and meanwhile integrate the B-spline
nonparametric functional representation into the conditional
mean structure of the GLMMs. Such GLMMs for hospital
compare and assessment are further improved by a zero-
inflated modelling approach to characterize excessive zero
outcomes.

B. CONTRIBUTIONS
The major contributions of this research are briefly summa-
rized as follows:

1) A new framework for logistic random-effects models is
proposed to measure hospital performance in terms of
ICU mortality. The classical GLMMs are extended to
have hospital fixed effects represented by an additive
term of B-spline basis functional structure and to have
the semi-nonparametric random effects with an SNP
density. The goal of the extension is to more accurately
capture the heterogeneity across hospitals and a risk
factor that is a nonlinear addition term in the mean
structure.

2) The zero-inflated structure is introduced for modeling
mortality-risk-free individuals in the ICU data. To our
best knowledge, it is the first hospital compare
modeling framework that explicitly caters to random
effects nonnormality, conditional mean nonlinearity,
and response zero-inflation in large-scale hospital
compare data of patient outcomes.

3) The utility of the newly proposed models and the
robustness of their model fitting are demonstrated by
extensive simulation studies. We analyzed a large-scale
ICU data set and evaluated the risk-adjusted hospital
performance by direct and indirect standardization of
mortality rates. The corresponding SAS programs for
implementing the proposed hospital compare models
are provided on the GitHub platform (available at
https://github.com/YakunLab/SNP-MM).

The rest of this article is organized as follows. In Section II,
we summarize recent research on the analytical mod-
els used in the field of hospital compare and ranking.
In Section III, we propose the SNP random-effects models
with a nonparametric additive term and a zero-inflated
structure. In Section IV, we introduce direct and indirect
standardization of mortality rates. In Section V, we conduct
simulation studies, to compare the performance of the pro-
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posed models vis-à-vis existing competitors. In Section VI,
we illustrate the utility of the proposed models through an
analysis of a large-scale empirical ICU mortality data set
from the U.S. Section VII concludes this article with a brief
discussion of its findings.

II. RELATED WORK
A. CURRENT PRACTICE
In hospital compare studies, the patients can be clustered by
hospital. These observations are denoted by (Yhj,Xhj,Vh)
for j = 1, 2, . . . , nh and h = 1, 2, . . . ,H , where Yhj
is the response variable for patient j in hospital h; Xhj is
the covariate vector representing the patient’s attributes; and
Vh is the vector of hospital-specific attributes, such as the
number of admitted patients to the ICU. Here, we focus on
modeling the binary event Yhj for each patient, assigning a
value of 1 or 0 to indicate whether or not event (i.e., mortality)
occurred.

The assessment model used to estimate the hospital mor-
tality rates among patients tries to infer patient and hospital
effects [9]. It fits a random-effects logistic regression:

logit(phj) = a+ bh + X⊤
hjβ, (1)

where the logit link is log
(
phj/(1 − phj)

)
, and phj =

P(Yhj = 1|Xhj, bh) is the mortality rate for the j-th patient
within the h-th hospital, j = 1, . . . , nh, h = 1, . . . ,H .
As such, the patient effect is determined by the common
fixed-effect vector β. When subsuming the fixed intercept a
into the hospital random effect, bh, it is typically assumed
that bh follows a normal distribution N (a, σ 2) and reflects
all basic risks posed by hospitals. However, because this
model ignores the plausible impact of hospital-associated
factors, the Gaussian random intercept makes it difficult to
interpret the treatment effects of hospitals. Taking a Bayesian
perspective, Silber et al. [10] improved the above model (1) to
allow the bh to relate to hospital attributes Vh, by assuming
the expectation of bh given Vh to be a function of Vh; i.e.,
bh|Vh ∼ N (a(Vh), σ 2). In practice though, the Vh of interest
usually is the logarithm of the number of admitted patients,
or the number of beds, for the hospital. In a similar way,
to account for any potential relationship between mortality
and hospital attributes, George et al. [11] modified the
hospital compare model as follows:

logit(phj) = bh + V⊤
h α + X⊤

hjβ,

whereby the hospital effect is now specified by the fixed-
effect vector α, the distribution of bh depends on hospital
attributes Vh, equivalent to bh|Vh ∼ N (a(Vh), σ 2(Vh)).
Bayesian methods, however, require that careful attention
paid to the prior distribution as well as a follow-up sensitivity
analysis.

Some work has suggested ways to improve the hospital
compare model of George et al. [11]. For example,
Caroff et al. [12] showed that the ranking model of
hospitals provides a better risk adjustment with higher

accuracy when claims-based comorbidities and patient-
level electronic health records are both considered. Further,
the work by George et al. [11] also illustrated some
prospective approaches to improve the modeling of mortality
rates. This includes introducing robust parametric families
for random-effect distributions to mitigate the influence
of extreme values, or adopting a nonparametric prior
for the random effect to obtain more accurate fits in a
wide variety of realistic situations. In general, besides
adding more explanatory variables or deciding on one or
more random effects is also a key step in the GLMMs
modeling.

B. HOSPITAL RANDOM EFFECTS
Hospital compare or hospital ranking data which are naturally
clustered are commonly analyzed and interpreted using
mixed-effects models, in which the random effect follows a
Gaussian distribution, but this routine assumption is restric-
tive. Although some estimators are robust to misspecification
of the random-effects distribution, there is inconsistency
in the maximum likelihood estimators when violating the
distributional assumptions of normality [13], [14]. Classical
random-effects models can suffice in some fields, but they
fall short for complex scenarios.

Several researchers have proposed methods to relax
this normality assumption by relaying instead on a semi-
parametric projection method [15] or applying an alternative
scale mixture of skew-normal distributions [16]. These
attempts to model random effects with parametric families
do show some promising efficiency gains in fitting a more
flexible model when their normality assumption is violated.
By representing the smooth density of random effects in
a Hermite expansion [17], the SNP method is capable of
estimating the random effect of a GLMMwith computational
efficiency, which captures heterogeneity flexibly under a
variety of extensions [18], [19]. In this article, we adopt
the SNP structure for designating random effects to identify
latent hospital effects.

C. RISK ADJUSTMENT
The impetus for adjusting risk is to quantify the contribution
of relevant variables to mortality while controlling for any
potential risk factors [20]. To build a hospital compare
model that can rank hospitals fairly, a correct risk adjustment
is essential, especially when the underlying treatments
of hospitals differ in how they significantly influence a
disease. Risk adjustment can be done in two main ways,
via standardized indirect or direct methods [11]. Notably,
hospital volume (or the number of admissions) plays an
instrument role in quality assessments of hospitals. Being
easily detectable from ICU data, a low hospital volume may
indicate an inadequate risk adjustment, which could put small
hospitals at a disadvantage [20]. Thus, both the patient profile
and hospital volume are crucial factors in the risk adjustment
applied to mortality data.
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D. DRAWBACKS
Despite the above advances, current hospital compare models
still harbor several notable limitations:

1) Do the normality assumption on random effects and the
conditional linear mean structure suffice? The latent
random effects may not follow a normal distribution.
Thus, a normality assumption on their latent distribu-
tion can cause problems in inference and prediction in
hospital compare random-effects models. In addition,
nonlinear effects of risk factors may be neglected
in these models. For example, Mullah et al. [21]
precisely estimated the perinatal mortality in twins
when considering nonlinear associations between their
birth weight and gestational age response. Identifying
nonlinear effects on mortality is beneficial for accurate
inference and prediction.

2) How to address the issue of excessive zeros in mortality
outcomes? The prevalence of rare positive or mortality
cases (i.e., nonzero cases in responses) naturally exists
in hospital compare studies. Caroff et al. [12] suggested
that low-volume treatment procedures and sporadic
infections at the colon surgical site are barriers to
effectively comparing the performance of hospitals.
Dealing with the issue of excessive zeros raised from
rare nonzero cases can no longer be avoided and is
necessary for alleviating potentially hidden biases in
the inference and prediction provided by the GLMMs.

There seems to be ample room for further research to tackle
these challenges head-on. This article is devoted to providing
the first extensive study in the hospital compare research
aiming to explore analytical comparisonmodels for hospitals.

III. ENHANCED HOSPITAL COMPARE RANDOM-
EFFECTS MODELS
The proposed hospital compare models described here are
divided into two subsections. Beginning with the model (1),
in Section III-A, we propose hospital compare GLMMs that
combine the SNP hospital random effect and a nonparametric
hospital fixed effect, to better distinguish hospital effects.
In Section III-B, we propose the zero-inflated Bernoulli
(ZIB) hospital compare models by applying the zero-
inflation approach to characterize excessive zeros inmortality
outcomes in hospital compare data that contain a large
proportion of zeros that are raised by the group of patients
with zero probability of death during ICU care.

A. THE HOSPITAL COMPARE MODELS WITH
AN SNP RANDOM EFFECT
1) FROM LINEAR TO NONLINEAR TRANSFORMED
CONDITIONAL MEAN STRUCTURES
The random effects in the GLMMs have the role of identify-
ing the remaining unexplained hospital-related heterogeneity
in the outcomes. However, the transformed conditional mean
structure may be beyond linear representation as presented by
George et al. [11]. Because nonparametric term in the mean
structure is capable of inferring the appropriate complexity

between the outcomes and the predictors in the GLMMs,
a more flexible model for mortality status Yhj was created as
follows [11]:

logit(phj) = bh + f (Vh) + X⊤
hjβ, (2)

where the logit link is log
(
phj/(1 − phj)

)
, and phj = P(Yhj =

1|Xhj,Vh, bh) is the probability of mortality of the j-th patient
within the h-th hospital, j = 1, . . . , nh, h = 1, . . . ,H .
Here, f (Vh) denotes a flexible nonparametric fixed effect
with respect to a hospital attribute Vh; β is the patient fixed
effect related to covariates Xhj; and bh is the random hospital
effect whose distribution is unknown. We do not assume any
specific functional form of f (Vh) other than smoothness. For
identifiability, it is stipulated that E(f (Vh)) = 0.
To construct a flexible nonparametric fixed effect f (Vh),

we take the B-spline approximation [22], a common com-
putationally efficient technique. With compact support, each
given basis function in the B-spline approximation is nonzero
over a span of a small number of distinct knots. Without a
loss of generality, we assume that Vh ∈ [0, 1]. Let B̃(Vh) =

(B̃1(Vh), . . . , B̃mn (Vh))
⊤ be a set of B-spline basis functions,

where mn = q + d + 1, with d being the degree of the
polynomial and q being the number of quasi-uniform interior
knots. Further details on the construction of B-spline basis
functions can be found in [22].

Next, let B(Vh) = (B1(Vh), . . . ,Bmn (Vh))
⊤, where

Bl(Vh) = B̃l(Vh) − H−1∑H
H=1 B̃l(VH). Such a transforma-

tion to the basis functions is required to render the model
identifiable and to restrict the subspace of splines in the
(q + d)-dimension. For f (Vh), there exists the unique vector
γ = (γ1, . . . , γmn )

⊤ which satisfies the following:

f (Vh) ≈ B(Vh)⊤γ . (3)

Concerning the expansion of each sample B(Vh) as a part
of the design matrix, γ can be estimated by following the
estimation procedures in the classical GLMMs because

logit(phj) ≈ bh + B(Vh)⊤γ + X⊤
hjβ. (4)

2) FROM NORMAL TO SNP RANDOM EFFECTS
The hospital effects of the model (2) is composed of the
fixed functional term f (Vh) and the random hospital effect
bh. We assume that bh is independent across the h, for
h = 1, . . . ,H , and that it can be expressed as the SNP
representation of

bh = σ zh + a, (5)

where a is a location constant, σ is a scale constant, and
zh is a random variable. If zh follows the standard Gaussian
density N (0, 1), then bh ∼ N (a, σ 2), which exactly satisfies
the classical normality assumption in model (1). To minimize
the induced biases associated the misspecified random-effect
density, the probability density of random effects satis-
fying certain smoothness restrictions and differentiability
conditions can be represented by an infinite Hermite series
expansion plus a lower bound on its tail behavior [17]. Here,
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we build upon the idea of truncated Hermite expansion [18]
to characterize the random effect bh in the proposed hospital
compare model (2).

Let the density of zh be hK (zh). We assume hK can be
represented by a standard SNP density,

hK (zh)∝P2K (zh)φ(zh) =


K∑
j=0

ξjz
j
h


2

φ(zh)=
(
z⊤h ξ

)2
φ(zh),

(6)

where the fixed integer K is the degree of truncation,
this expressing the order of the polynomial PK , zh =

(z0h, z
1
h, . . . , z

K
h )

⊤ is a vector of the random variable zh;
ξ = (ξ0, . . . , ξK )⊤ is the vector of coefficients; and φ(·) is
the density function of the standard Gaussian distribution.
Accordingly, K is a tuning parameter that governs the degree
of flexibility for density hK . For hK (zh) to be a density that
imposes the condition of E(P2K (zh)) = 1, the polynomial
coefficients ξ can be estimated by reparameterization in a
polar coordinate transformation method; for that, see [18] for
details.

As the density of hK is represented by equation (6), the
SNP density of bh can be derived as follows:

gK (bh; ξ , a, σ ) = P2K (zh; ξ )N (bh; a, σ 2) (7)

where zh = σ−1(bh − a),N (bh; a, σ 2) is the Gaussian
density with mean a and variance σ 2. Therefore, the SNP
density does not require that E(bh) = 0. When K = 0,
PK only has a constant coefficient of ξ0 = 1. Then SNP
density for random effect reduces to a Gaussian that follows
the normality assumption in GLMMs. A larger degree K
value allows for more flexibility in detecting heterogeneity,
but it severely limits the efficiency. Thus, choosing a small
K value can usually lead to a reasonable trade-off between
computational complexity and goodness of fit of the model.
In practice, it is advised to use information criteria such as
AIC and BIC to find an optimal K .

B. THE ZIB HOSPITAL COMPARE MODELS
1) FROM ONE-PART MODELS TO ZERO-INFLATED MODELS
For hospital compare data with excessive zeros that cause
class-imbalance, oversampling is a popular technique but can
overgeneralize minority instances due to indistinguishable
overlapping [23]. However, this approach is not beneficial
for risk assessment. To avoid possible biases in inference
and prediction, Hall [24] introduced zero-inflated regression
for count data having an excessive number of zeros.
Therefore, when too many zeros are observed in responses,
we recommend identifying risk-free patients (i.e., the patients
with zero probability of death during ICU care) by the ZIB
structure to improve the proposed hospital compare model
(2). The original ZIB model assumes the mortality status Yhj

results from the following process,

Yhj ∼

{
0, with probability 1 − ρhj,

Bernoulli(πhj), with probability ρhj,
(8)

where 1 − ρhj models the excessive zeros and describes
the proportion of risk-free patients, while πhj models the
probability of mortality for patients who are still at risk.

To explain the probability ρhj, we first introduce another
binary variable: Shj. It denotes whether the individual is either
still at risk of mortality (Shj = 1) or at no risk of mortality
(Shj = 0). Nevertheless, zero responses (i.e., Yhj = 0) will
include both fixed zeros from the risk-free group in addition
to random zeros from the at-risk group, whose members are
unknown. To distinguish those patients having no risk of
mortality, we propose the following:

logit(ρhj) = T⊤
hjθ , (9)

where ρhj = P(Shj = 1|Thj), Thj is a covariate vector
constructed by the risk-related factors of a given patient,
and θ is a vector of the corresponding unknown parameters.
In practice, Thj may overlap one another or even be identical
to Xhj. For a patient at risk of mortality (i.e., Shj = 1),
we characterize the mortality-related factors by extending the
model (2) in the way of

logit(πhj) = bh + f (Vh) + X⊤
hjβ, (10)

in which πhj = P(Yhj = 1|Xhj,Vh, bh, Shj). Further, the
individual mortality rate is given by

phj(Xhj,Thj) = P(Yhj = 1|Xhj,Vh, bh,Thj)

= P(Yhj = 1|Xhj,Vh, bh, Shj)P(Shj = 1|Thj)

= πhjρhj. (11)

2) LIKELIHOOD ESTIMATION
Suppose (Yhj,Xhj,Thj,Vh) is a sample of independent ran-
dom vectors for the j-th patient in the
h-th hospital, where j = 1, . . . , nh, h = 1, . . . ,H . Define
Y = (Y⊤

1 , · · · ,Y⊤
H )

⊤ with Yh = (Yh1, · · · ,Yhnh )
⊤, then the

likelihood function of Y is given by

L(β, θ , γ ;Y )

=

H∏
h=1

∫ nh∏
j=1

fYhj|bh (Yhj|bh; β, θ ,Xhj,Thj,Vh)gbh (bh)dbh

=

H∏
h=1

∫
exp

{ nh∑
j=1

[
Yhj
(
τhj + κhj

)
+ (1 − Yhj) log

(
1 + eτhj + eκhj

)
− log

(
1 + eτhj

)
− log

(
1 + eκhj

) ]}
gbh (bh)dbh, (12)

where τhj = T⊤
hjθ , κhj = bh + B(Vh)⊤γ + X⊤

hjβ with
B(Vh)⊤γ being the B-spline basis expansion of f (Vh) in
model (10), and gbh (bh) is the density of bh as defined in (7).
In the SAS programs, adaptive Gaussian quadrature can be
employed to numerically evaluate L(β, θ , γ ;Y ). Maximum
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likelihood or restricted maximum likelihood estimates of
unknown parameters can be obtained when combined with a
nonlinear optimization algorithm, such as the quasi-Newton
or Newton-Raphson.

IV. STANDARDIZED MORTALITY RATES FOR HOSPITAL
COMPARE REPORTING
Indirect and direct standardization of mortality rates is a
central concept in hospital compare and ranking. Support
the mortality events Yhj, j = 1, . . . , nh, h = 1, . . . ,H , and
then the overall average event rate can be obtained by OR =

N−16h,jYhj, where N = 6hnh, and the observed mortality
rate for hospital h is ORh = n−1

h 6jYhj. Due to differences in
the number of patients served in hospitals and attributes of
patient populations across hospitals, comparability is lacking
when estimating hospital-specific mortality rate by simply
averaging the estimated patient rates from the proposed
models (2) and (11).

Since the mortality rate is modeled by related risk
factors, a more accurate evaluation of mortality rates
should eliminate patient case-mix effects via some type of
standardization [20]. To achieve this goal, we first introduce
the evaluation method for the probability of death for one
patient seeking treatment at a specific hospital. Based on
model (2), if a patient with covariates X received treatment
at hospitalH, the mortality rate prediction is given by

pH(X ) = logit−1
(
bH + f (VH) + X ⊤β

)
, (13)

whereβ is the usual patient effect associatedwithX , f (VH) is
the hospital fixed effect, bH is the random effect for hospital
H, and H = 1, . . . ,H . When X = Xhj and H = h, formula
(13) determines the mortality rate of the hj-th patient in the
observations who received treatment at hospital h. Indirect
and direct standardization of mortality rates based on (13) are
introduced below.

A. INDIRECTLY STANDARDIZED MORTALITY RATES
The mortality rate for a specific hospital h is assessed
contingent on patient cases formerly received and served,
which is a function of observations with patient attributes
Xh1, . . . ,Xhnh . An indirectly risk-standardized, hospital-
specific mortality rate is presented in the CMS White
Paper [1] is given by

PISh = (Ph/Eh) × OR, (14)

where Ph = n−1
h
∑nh

j=1 ph(Xhj) with H = h as given
in (13), which is an average of the mortality rate prediction
ph and measures the mortality risk of hospital h; Eh is an
average of the expected mortality rate when presupposing
the same type of patients were treated in the target hospitals
at the ‘‘national-level’’. Since Eh conveys the national-level
performance of care, a more suitable option is that proposed
by George et al. [11], which expands the scope of ‘‘national-
level’’ hospitals to include all hospitals within the current

hospital compare data as follows:

Eh =
1
nh

nh∑
j=1

[
1
H

H∑
H=1

pH(Xhj)

]
. (15)

Thus, indirect standardization of mortality rates relay on the
perspective of received patients and investigate differences in
their outcomes between past and ‘‘national-level’’ services.

As in [11], low-volume hospitals serving relatively fewer
patients have a higher-than-typical risk, with their proportion
Ph/Eh being significantly larger than one. The denominator
of (14), Eh, takes on a benchmarking role and conveys the
systemic risk faced by patients served in hospital h. Yet,
when evaluating the mortality risk of individuals in other
hospitals, equation (15) assigns the same weight to each
patient under consideration. Because high-volume hospitals
are more popular among prospective patients, the Eh given
by (15) should be adjusted further, to balance the subjective
choices of patients. To that end, we propose a weighted risk
in hospital h given by

Eh =
1
nh

nh∑
j=1

[
H∑
H=1

wHpH(Xhj)

]
, (16)

where H = 1, . . . ,H and
∑H
H=1 wH = 1. In practice, these

weights can be specified through the hospital’s volume.

B. DIRECTLY STANDARDIZED MORTALITY RATES
The mortality rate for a specific hospital h is assessed
contingent on patient cases might get served there, which
is a function of all patients within the investigation with
attributes XHj, j = 1, . . . , nH, and H = 1, . . . ,H .
Denoted as PDSh , the directly risk-standardized, hospital-
specific mortality rate [11] is given by

PDSh =
1
N

H∑
H=1

nh∑
j=1

ph(XHj), (17)

which does not rely on Eh. Here, the direct standardization of
mortality rates adopts the perspective of evaluated hospitals
and directly eliminate patient-mix effects by averaging the
mortality rates of all patients had they been treated at
hospital h.

V. SIMULATION EXPERIMENTS
In this section, we carry out extensive simulation studies to
illustrate the performance of the proposed hospital compare
models. In Section V-A, we demonstrate by conducting simu-
lation experiments that the classical normality assumption for
the random effects and the linearity assumption for the fixed
effects struggle to cope with complex real-world scenarios,
and further validate the flexibility and robustness of the SNP
random effect and the functional fixed effect in the proposed
hospital compare model (2). In Section V-B, we investigate
the utility of the proposed ZIB hospital compare models
(9)-(10) for analyzing data with excessive zeros. All these
experiments are conducted in SAS version 9.4.
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A. UTILITY OF FLEXIBLE HOSPITAL RANDOM AND FIXED
EFFECTS
To reveal the importance of introducing semi-parametric
and semi-nonparametric modeling approaches into hospital
compare GLMMs, we focus and report the results from
statistical simulations conducted with the following hospital
compare model:

log
(

phj
1 − phj

)
= bh + f (Vh) + X⊤

hj1β1 + X⊤

hj2β2 + X⊤

hj3β3,

(18)

in which the vector of covariates, X⊤
hj = (Xhj1,Xhj2,Xhj3),

comes from N (0, I3), where Ip is a p identity matrix.
Parameters of patient effects are set as β = (β1, β2, β3)⊤ =

(3, 0.5, −5)⊤. In the two scenarios described below,
we respectively control the random effect bh and the
functional fixed effect f (Vh), to illustrate the role of either
component in the modeling. Values for the outcome Yhj after
a medical event are obtained from Bernoulli(phj) distribution,
with phj generated from (18).

A Monte Carlo simulation with 200 replications is
conducted for the empirical analysis. Each data set consists
of 500 hospitals. The number of patients nh for each hospital
is the same, at 50. To measure the accuracy of function
approximation, the integrated squared error (ISE) is used:

ISE :=
1
H

H∑
h=1

(
f̂ (Vh) − f (Vh)

)2
. (19)

Meanwhile, the relative distance (RD) is used to quantify the
accuracy of the β parameter estimates, which is defined as

RD :=
∥β̂ − β∥

∥β∥
. (20)

The estimates of E(bh) and Var(bh) are then used to evaluate
the performance of random-effect estimation.

1) RANDOM EFFECTS
In this scenario, we generate the functional fixed effect
as f (Vh) = e−2Vh sin(6Vh) − 0.5748, where Vh ∼

Uniform(−1, 1), h = 1, . . . ,H . As in [13], the true
density of bh covers a wide range of shapes, including
symmetric, asymmetric, skewed, unimodal, and bimodal
distributions. Seven types of distribution, each trans-
formed to satisfy the mean zero and unit variance, are
considered:

1) Normal: N (0, 1)
2) Uniform: Uniform(−

√
3,

√
3)

3) Exponential: Exp(1) − 1
4) Log-normal: LogN(0, 0.6937) − 1.2720
5) Symmetric mixture: 0.5N (−0.96, 0.282) + 0.5N

(0.96, 0.282)
6) Asymmetric mixture: 2

3N (− 2
3 , (

1
3 )

2) +
1
3N ( 43 , (

1
3 )

2)
7) Discrete: P(bh = −1) = P(bh = 1) =

1
2

We first fit the data using hospital compare model (2) with
an SNP random effect, as defined in (7). This allows us to

evaluate the flexibility of SNP estimation under different
settings. To estimate the nonparametric f (Vh), we adopt cubic
splines (d = 3) with three equally spaced interior knots
(q = 3) for the B-spline approximation. Here, the SAS
macro SNP_NLMM is used to implement the model fitting;
more information about this macro can be found in [25]. The
BIC criterion is employed to determine the SNP structure
of bh. To investigate the impact of bh’s misspecification on
modeling, by way of comparison, we still use model (2) to
fit the data but instead assume that bh follows the classical
normal distribution N (a, σ 2). All these results are reported in
Table 1. In Table 1, to the left are results for the SNP method,
while those under the classical normality assumption are on
the right.

As seen in Table 1, the results for both the SNP and
normal densities are all close to the true values. However,
the latter gives conservative results and suffers from a loss
of efficiency, especially when the true bh is drawn from a
multimodal or heavy-tailed distribution. This reveals that the
normality assumption on bh will prevent the model from
capturing all possible heterogeneity across hospitals. In com-
parison, the SNP approach used in the proposed model (2)
estimates the expectation and variance of bh more accurately.
At the same time, with respect to various types of the true
bh, both the ISE for the functional f (Vh) and the RD for the
coefficients of patient effect β are quite small in the SNP
columns of Table 1. Two components of hospital effects are
complementary. Precisely identifying the random effect via
the SNP approach can render the estimation of another part
unbiased. Figure 1(a, b) depicts the plots of the 20 randomly
selected SNP density estimates of bh when setting the true
density by the standard normal and asymmetric mixture
normal distributions. Using true density (i.e., red curve)
as a benchmark, the blue curves show desirable estimates.
These results further support the flexibility of the SNP
approach.

2) FIXED EFFECTS
Since the SNP random effect exhibits robustness in the pro-
posed hospital compare model (2), the simulations conducted
below aim to examine the performance on the estimation of
nonparametric f (Vh). In this scenario, we draw bh from the
bimodal distribution 0.7N (−1.5, 0.72)+ 0.3N (2, 0.72). Four
different functions are considered, including polynomial,
periodic, and decaying with the attribute Vh, which follow the
Uniform(−1, 1) for h = 1, . . . ,H . All choices of f (Vh) are
given as follows:

1) f1(Vh) = 2Vh
2) f2(Vh) = (Vh − 0.5)2 − 0.5833
3) f3(Vh) = Vh cos3(3Vh)
4) f4(Vh) = e−2Vh sin(6Vh) − 0.5748
We first fit the data using the hospital compare model

(2) with the SNP random effect, as defined in (7). This
allows us to evaluate the flexibility of functional estimation
by B-spline approximation under the different scenarios. The
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TABLE 1. Results of different random-effect distributions under mean zero and identical variance. Standard deviations are shown in parentheses.

FIGURE 1. Estimation of hospital effects. For each example, the blue curves is the estimate
for replicates, while the true setting with red curve as the benchmark. (a) Standard normal
random-effect distribution. (b) Asymmetric random-effect distribution. (c) Linear functional
effect f1. (d) Nonlinear functional effect f4. Each panel includes 20 randomly selected
replicated simulations.

cubic splines of order d = 3 with equally spaced interior
knots q = 3 are used to approximate all functions fi(Vh),
i = 1, . . . , 4. Choosing a small q value avoids overfitting.
Similar results are obtained when q ranges from 2 to 4; for
example, a simple quadratic function f2 can be approximated
rather well by a quadratic spline basis with d = 2 and
q = 2. For brevity, we only report in Table 2 the results
for q = 3 with 200 replications. To investigate the impact of
hospital fixed-effect misspecification on modeling, by way of
comparison, we again fit the data by (2) with the SNP random
effect, but now designated f (Vh) as the linear effect αVh.
The left side of Table 2 shows the results from the B-spline
approximation, while on the right side are those under the
linearity assumption.

When the true hospital fixed effect is linear f1, fitting by
linear specification αVh is naturally in efficiency. In using
the B-spline method to estimate the functional effect, the
left side of Table 2 shows that the estimation of β and
f (Vh) is unbiased in all four cases, with the estimates for
the expectation and variance of bh close to their true values.
However, under an inappropriate and simple hospital fixed-
effect specification αVh, the results of examined performance
metrics are compromised. In particular, as seen in the
right side of Table 2, when f4 has a significant nonlinear
pattern with respect to the attribute Vh, the hospital effects
produce erroneous estimates. This reveals that the linearity
assumption for the hospital fixed effect makes it difficult
to detect the complex relationship between response and

VOLUME 11, 2023 239



Y. Liang et al.: Evaluating Risk-Adjusted Hospital Performance

TABLE 2. Simulation results under different nonparametric functions, with standard deviations in parentheses.

explanatory variables, which inevitably affects the estimation
of other components in the mean structure. To visualize the
B-spline approximation effects, the 20 randomly selected
B-spline estimates f̂1(Vh) and f̂4(Vh), marked with blue color
smoothed curves, are shown in Figure 1(c, d). They precisely
depict the trend of the true curve (the red curve), which
provide further evidence of the flexibility by the nonlinear
modeling approach. In particular, the linear trend in f1 can be
accurately captured as depicted in Figure 1(c).

B. UTILITY OF ZIB HOSPITAL COMPARE MODELS
The simulations in Section V-A confirm the robustness
of the proposed hospital compare model (2) for estimating
the distribution of the random effect and the functional
form of the fixed effect. Yet, when there are excessive
zeros in the patient responses, we need to employ the ZIB
hospital compare models (9)-(10) proposed in Section III-B
to properly fit such unbalanced data with excessive zeros,
in order to demonstrate the generality of our proposed
modeling framework. In this simulation, we assume the data
are generated from the following two-status model. One
models the probability of the status for being at risk of
mortality with Shj = 1 as

log

(
P
(
Shj = 1 | Xhj

)
1 − P

(
Shj = 1 | Xhj

)) = X⊤

hj1θ (21)

for j = 1, . . . , nh and h = 1, . . . ,H . Here, we set
H = 500 and nh = 100. The value of θ controls the
average proportion of positive events (APE) with Yhj = 1.
The other models the probability of the status of mortality
with Yhj = 1 as follows:

log

(
P
(
Yhj = 1 | Xhj, Shj

)
1 − P

(
Yhj = 1 | Xhj, Shj

))=bh+f (Vh)+X⊤
hjβ,

if Shj = 1,

P
(
Yhj = 1 | Xhj, Shj

)
= 0,

if Shj = 0,
(22)

where β = (β1, β2, β3)⊤ = (3, 0.5, −5)⊤, X⊤
hj =

(Xhj1,Xhj2,Xhj3) are generated from N (0, I3); the functional

TABLE 3. Results of different configurations when the data have
excessive zeros. Standard deviations are shown in parentheses.

fixed effect f (Vh) is specified as e−2Vh sin(6Vh)−0.5748 with
Vh ∼ Uniform(−1, 1); and bh is generated by standardizing
the bimodal distribution 0.7N (−1.5, 0.72) + 0.3N (2, 0.72).

To generate the data in which responses have excessive
zeros, for each individual patient, we set θ = 2 and θ =

−2 with Xhj1 generated fromN (1, 1.52) to control the APE so
it is 32% and 11%, respectively. As described in Section III-B,
for each realization (yhj, xhj, vh), shj, shj is considered as
unknown if yhj = 0. The simulation data are divided into
training and test data sets of equal size within each cluster for
further evaluation.We use the proposed ZIB hospital compare
additive models (9)-(10), denoted by ‘‘ZI-HCAM’’, and the
proposed hospital compare additive models without any zero-
inflated structure (2), denoted by ‘‘HCAM’’, to fit the training
data. Regarding the ZI-HCAM, all of its covariates xhj are
used to fit the two statuses given by (9) and (10). The area
under the receiver operating characteristic curve (AUC) is
calculated after fitting the test data set. To evaluate the fitting
performance of the above two models, five metrics are used:
the estimated mean and variance of bh, ISE, RD, and AUC.
We record the results of 200 replications for each model and
report the average results of those metrics in Table 3.

From Table 3, it is evident that E(bh) and Var(bh) are
reasonably estimated by the ZI-HCAM since they lie near
their true values. Further, the metrics ISE and RD are also
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close to zero, which implies the estimates of f (Vh) and β

are very close to their true values also. Given its higher
AUC, the ZI-HCAM is more robust for prediction. By way
of comparison, the HCAM performs worse, especially when
the APE drops. This indicates that the proposed ZIB hospital
compare model (9)-(10) is superior for analyzing the zero-
inflated data.

VI. EXPERIMENTS ON THE ICU MORTALITY DATA
IN U.S. HOSPITALS
A. DATA DESCRIPTION
We acquire the data from Women in Data Science (WiDS)
Datathon 2020 [26], an open-access data set—based upon
the Massachusetts Institute of Technology’s Global Open
Source Severity of Illness Score (GOSSIS) database—that
contains groups of features, including identifiers, patient
demographics, acute physiology and chronic health evalua-
tion (APACHE) scores, laboratory results, and various vital
signs. The minimum and maximum values from clinical
monitoring for the first hour and first 24 hours after admission
to the ICU are recorded. We now shift our focus to comparing
hospital performance on the basis of their medical and
surgical ICUs to eliminate the heterogeneities in different
types of units. In fact, the patients admitted to two types
of ICUs account for nearly 70% of the recorded total
observations. Following recent work on measuring feature
importance for predicting mortality [27], [28], we select the
related variables and summarize their descriptions in Table 4.
All these variables are recognized as important predictors of
mortality in patients.

Records during the first 24 hours of the patients’ ICU
stays are revised by the minimal and maximal records of
daily and hourly clinical monitoring. Missing values and
those cases from 16 hospitals with no patient deaths (cases
of yhj = 1) during the observation period are excluded in
our study. The pre-processed data set records the instances
for 47852 patients treated in 124 hospitals. Following the
notations in Section II, each case contains an indicator of
whether a patient died (yhj = 1) after being admitted to
the ICU, patient-specific attributes (such as age, body mass
index or BMI, APACHE scores, etc.), and a hospital-specific
attribute (i.e., hospital volume). Within this data set, the total
number of admitted patients per hospital nh varies greatly,
ranging from 3 to 1153, with a median value of 167. The
observed mortality rate, ORh = n−1

h
∑

j yhj, is distributed
between 0.88% to 28.30%, and its overall average is 8.33%.

Figure 2 plots the observed mortality rate by volume, the
hospital attribute of interest, for all death events occurring
in the ICU at hospital h. The overall average rate (red
horizontal line) only represents the average risk, while the
green smoothed curve showing a rapid downward trend
at smaller volumes and a gentle upward trend at larger
volumes. The mortality rate in some low-volume hospitals
is considerably higher than the overall average, which could
imply their potential treatment risk. When the volume is

FIGURE 2. Observed mortality rates by volume (the number of admitted
patients). The red horizontal line shows the overall observed rate of
0.0833. The green smoothing curve indicates the rate averaged by volume.

FIGURE 3. Box plots and bar plots for the various patient characteristics.

around 200, we observe an aggregation of points representing
the hospitals with relatively low mortality rates. We may
thus speculate that the high-volume hospitals deliver more
reliable and effective treatment and care, which results in
an average mortality rate. On the other hand, the healthier
patients’ physical conditions are treated by a hospital, the
fewer deaths may occur.

In Figure 3 are box plots and bar plots of the patient
characteristics vis-à-vis different volume levels; to the left are
continuous attributes and to the right the binary attributes.
To compare with the whole, we screened out three subsets
of data in which the volume is less than 65 (10% quantile),
between 300 and 360 (45% to 55% quantile), and greater than
728 (90% quantile), respectively. As evinced by Figure 3,
there are substantial differences in the attributes’ distribution
across those three levels. For instance, in the low-volume
hospitals, the patients have higher values that are recorded
for continuous variables and have a higher proportion for the
variable ventilated .

To provide a reasonable evaluation of death events in these
hospitals and to understand the reasons behind variation in
their health outcomes, we suggest adjusting the mortality
risk by improving the hospital compare models. However,
the classical GLMMs are not robust for this task given the
complexity of large-scale hospital compare data. Instead,
we recommend applying the proposed hospital compare
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TABLE 4. Description of the predictor variables used in this study.

models (2) and (9)-(10) to reveal the information behind the
data. Baseline demographics, clinical variables, and hospital
attributes are compared between the patients with andwithout
deaths using our proposed models.

B. EVALUATION OF THE PROPOSED HOSPITAL
COMPARE MODELS
In this subsection, we investigate the performance of two
types of proposed hospital compare models, namely (2)
and (9)-(10) incorporating the flexible SNP random effect
mentioned in Section III, these respectively abbreviated as
‘‘HCAM’’ (hospital compare additive model, with additive
hospital fixed effects) and ‘‘ZI-HCAM’’ (zero-inflated hos-
pital compare additive model, with a zero-inflated structure).
To model the varied effects across groups, the hospital
attribute chosen in volume. The other 14 important patient
characteristics are entered as predictors to explain the
response variable, death. Regarding the ZI-HCAM, risk-free
mortality is a manifestation of individual immunity modeled
by eight variables: age, BMI ,GCS, heartrate, resprate, temp,
bun, and comorbidity (Table 4). To further compare the
performance of different models in terms of inference and
prediction, the GLMM (1) with linear hospital fixed effect
αVh is applied as well. The observations are randomly split
into a training data set (2/3) and a test data set (1/3) within
each hospital.

FIGURE 4. The estimated hospital random effect bh and the fixed
effect f (Vh).

Unless no differences among hospitals exist, an SNP
random effect can measure this heterogeneity more flexibly
than a standard Gaussian random effect. We use the following
performance evaluation metrics to compare above three
models: AUC with 95% confidence intervals (CIs), accuracy,
F1-score, and positive predictive value (PPV). In addition
to the AUC, the observed overall average rate of 0.0833 is
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FIGURE 5. Plots of the estimated hospital effect (a–c) and the estimated average expected mortality rate (d–f) versus volume
(the number of admitted patients). Green smoothing curves indicate the estimated value averaged by volume. Red horizontal
lines in (d–f) show the overall observed rate of 0.0833.

determined as a unified threshold to calculate the above
measures.

The results for the above diagnostic measures are presented
in Table 5, while the estimated expectations and variances of
bh (with the standard error in parentheses) are also displayed
in the last two rows. As the benchmark, the GLMM’s
AUC and corresponding 95% CI was 0.840 (0.830, 0.851)
in the test data set. Applying the HCAM, we find that
its performance is nearly identical to the GLMM, with an
AUC of 0.839 (0.829, 0.850). In stark contrast, using the
ZI-HCAM gives a significant improvement in performance,
with an AUC of 0.851 (0.841, 0.862). The prediction
performance of the HCAM is comparable to the GLMM in
terms of the AUC, but slightly higher in terms of accuracy,
F1-score, and PPV. This indicates the HCAM is a more
refined model than the GLMM, that is, when not assuming a
linear relationship for the hospital fixed effect and a Gaussian
type of random effect. Since the proportion of deaths in
such medical records is exceedingly low, both the GLMM
and HCAM lead to inconsistent parameter estimation and
uncertainty in classification ability; therefore, the ZI-HCAM
outperforms them.

Model assessment entails more than just forecasting
performance, however. The newly proposed models (2) and
(9)-(10) could fully capture information in the data by
relaxing assumptions about the random-effect distribution
and the structure of the hospital fixed effect. Figure 5 shows
the estimated density of bh and the relationship between
hospital attribute volume and response death for the three
models. As presented in Figure 4, the parameter K governs
the adaptability of an SNP bh and provides the optimal
selection with a multimodal shape for both the HCAM
and ZI-HCAM. The estimated function f̂ (red curve) has
a nonlinear relationship with the attribute volume, whose

TABLE 5. Comparison and summary results for the prediction
performance of random-effects models.

trend is similar to the green curve in Figure 2. The estimated
hospital fixed effect f̂ is exceptionally high in hospitals with
small volumes, tends to be flat in medium-sized hospitals,
and undergoes rapidly decline in larger hospitals. When the
volume increases from about 200 to 800, the corresponding f̂
gradually rises as well. This suggests the potential quality of
healthcare in large-volume hospitals may not be as good as
that of hospitals having medium volumes.

C. INFERENCE ON MORTALITY RATES IN
HOSPITAL COMPARE
Precise evaluation of the hospital mortality rates is the target
of developing a hospital compare model. Using the acquired
data set, we can arrive at a preliminary inference on the
hospital mortality rates. Let Ph be the average expected
mortality rate for hospital h with Ph = n−1

h
∑nh

j=1 ph(Xhj),
in which H = h and X = Xhj in (13). Similar
to (11), we define the individual expected mortality rate
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FIGURE 6. Estimated standardized rates, P̂ IS
h or P̂DS

h , by volume. Red horizontal lines show the overall observed rate of
0.0833. Blue horizontal lines indicate the simple average of the standardized rates. Green smoothing curves indicate the
estimated the indirectly standardized (IS) mortality rate and directly standardized (DS) mortality rate averaged by volume (the
number of admitted patients).

using ZI-HCAM as ph(Xhj,Thj) = πh(Xhj)ρ(Thj), where
πh(Xhj) = logit−1(bh + f (Vh) + X⊤

hjβ) and ρ(Thj) =

logit−1(T⊤
hjθ ). Figure 5 plots the estimated hospital effect and

Ph for fitted the GLMM, HCAM, and ZI-HCAM.
The green smoothed curves in Figure 5(a–c) are trends

for the average of estimated hospital effects across volume,
revealing the variability in estimated mortality rates. Com-
pared with Figure 5(a), significant variation appears in the
scatter for estimated hospital effects in Figure 5(b) and 5(c)
distributed on both sides of the green smoothing curve.
This is because the hospital fixed effect specifies the macro
trend with changes to volume, and the estimated multimodal
random effect divides this tendency into three groups to
identify their corresponding micro trend. Referring to the
estimated coefficient α = 0.0514 (standard error = 0.1601)
of the hospital attribute volume under the GLMM, the higher
mortality rates at the lower-volume hospitals are more due to
a riskier patient case-mix rather than variation in the hospital
effect per se. Yet, Figure 5(e) and 5(f) depict that the estimated
mortality rates in many smaller-volume hospitals are larger
than 0.12, which points to hazards inherent in these hospitals.
Estimates of the ZI-HCAM are adjusted from the HCAM
after considering the risk-free patients. The average predicted
mortality rate among the hospitals increases from 0.0793 to
0.0808, while for the GLMM it is 0.0779.

The primary purpose of carrying out a hospital compare
analysis is to estimate and standardize the mortality rate by
adjusting patient case-mix variation. Two mortality rate stan-
dardization methods reviewed in Section IV are implemented
here to comprehensively evaluate expected risks and to rank
hospitals accordingly. Treating the standardized rate from
the GLMM as the benchmark, the indirectly standardized
(IS) mortality rate and directly standardized (DS) mortality

FIGURE 7. Risk-standardized mortality rates P̂DS
h for three models. Red

horizontal lines represent the overall observed rate observed, i.e. 0.0833.
Dark blue dots represent those hospitals with a standardized mortality
rate below the overall observed rate; conversely, red dots represent those
above the overall observed rate. The shaded area indicates the 95%
bootstrap confidence intervals for the directly standardized mortality
rates estimates.

rate are each determined for the HCAM, as well as for
the ZI-HCAM. Corresponding to (11) and (13), P̂ISh and
P̂DSh for the ZI-HCAM is calculated by pH(Xhj,Thj) =

πH(Xhj)ρ(Thj), as if the hj-th patient had been treated at
hospitalH, where πH(Xhj) = logit−1(bH + f (VH)+ X⊤

hjβ),
ρ(Thj) = logit−1(T⊤

hjθ ). The estimated P̂ISh and P̂DSh for each

244 VOLUME 11, 2023



Y. Liang et al.: Evaluating Risk-Adjusted Hospital Performance

FIGURE 8. Comparison of hospital rankings in quartiles between the GLMM, HCAM, and ZI-HCAM. Each axis
represents the risk-adjustment model used in this study. The number in each circle indicates the number of
hospitals that fall into the quartiles shown on each axis, spanning the best-performing quartile ‘‘1’’ to the
worst-performing quartile ‘‘4.’’

of the three models are plotted in Figure 6. Here, we use the
weighted expectedmortality Eh as defined in (16), to measure
P̂ISh . The weights take wh = nh/N , where N =

∑
h nh.

Intuitively, these P̂ISh s shrink the P̂hs to resemble their
corresponding hospital effects in Figure 5. At the same

time, P̂ISh and P̂DSh are characterized by a similar trend in
Figure 6. Specifically, the risk-adjusted mortality rate is
generally higher in low-volume hospitals for the proposed
HCAM and ZI-HCAM, irrespective of the indirect and
direct standardization of mortality rates used. Low-volume
hospitals expose substantial risk. This risk presents a clear
downward sloping trend as the volume increased to about
200. It differs from the GLMM whose indirect and direct
standardization of mortality rates instead show a gentle trend.
Another phenomenon is that some medium-volume hospitals
harbor the same adjusted risk as low-volume hospitals. The
average of P̂ISh and P̂DSh (the blue horizontals) rises above
the overall average mortality rate (the red horizontals). This
indicates that the observed rate for all patients essentially
understates the baseline risk.

Certainly, patients tend to seek medical care in larger-
volume hospitals due to the latter’s perceived lower risk of
death. Referring to George et al. [11], while the indirectly
standardized mortality rates does have shortcomings when
trying to eliminate the effect of patient case-mix variation,
it is still a worthwhile alternative since the patient’s
selection is more realistic. The proposed weighted indirectly
standardized mortality rates adjust the probability of a
patient’s decision to choose a given hospital by weighting
Eh. By contrast, direct standardization of mortality rates uses
a fixed patient population to fairly compare hospitals. The
estimated weighted indirectly standardized mortality rates
have strong linear correlations with the estimated directly
standardized mortality rates, with correlation coefficients
of 0.9971, 0.9968, and 0.9930 under the above GLMM,
HCAM, and ZI-HCAM, respectively. Therefore, we only
include the directly standardized mortality rates P̂DSh for these
124 hospitals in the below comparison and their ranking.

By applying the bootstrap method—using 2000 boot-
strapped samples, each resampling 2000 patient caseswithout
replacement—we calculate the confidence interval for the

directly standardizedmortality rates P̂DSh . As seen in Figure 7,
P̂DSh varies considerably across the hospitals, ranging from
0.0487 to 0.1294 for the GLMM; from 0.0429 to 0.1249 for
the HCAM; and from 0.0482 to 0.1206 for the ZI-HCAM.
The directly standardized mortality rates in more than a third
of the hospitals is greater than the overall average of 0.0833.
Unlike the GLMM, the directly standardized mortality rates
from our proposed HCAM and ZI-HCAM present higher
risks for those hospitals ranked near the bottom. This may
imply that these hospitals’ standard of medical service and
care is inferior; hence, the patients admitted to hospitals
with low rankings are more vulnerable to death. Compared
with the GLMM, a majority of hospitals change in rank:
121 for the HCAM (or 97.6%) and 153 for the ZI-HCAM (or
93.5%), respectively. The corresponding median of absolute
rank changes is 15 and 13, respectively.

We use quartiles to distinguish the ranking outcomes of the
three models. As Figure 8 shows, utilizing the ranks from the
GLMMas a benchmark, 46 and 45 hospitals undergo revision
by the HCAM and ZI-HCAM, corresponding to 37.10% and
36.29% of all hospitals, respectively. Among these changes,
23 and 22 hospitals are reclassified into the lower-performing
quartile according to the HCAMand ZI-HCAM, respectively.
Notably, the ranking of four hospitals based on HCAM
is adjusted downward by two quartiles. The ranks of the
proposed HCAM and ZI-HCAM give similar results, both
in Figure 7(b, c) and Figure 8(b, c). As a model with better
predictability, the ZI-HCAM revises the ranking given by the
HCAM.

VII. DISCUSSION
The classical GLMMs have difficulty capturing nonnormal
random effects, nonlinearity in conditional mean structures,
and excessive zeros. Inspired by the zero-inflated structure,
in this article, we propose a novel framework to model and
analyze hospital compare data, which combines the flexibility
of functional terms for the hospital fixed effect and the
SNP random hospital effects. Our proposed models (2) and
(9)-(10) were evaluated against the classical GLMMs with
respect to predictability and interpretability. In general, the
flexible SNP random effect reduces errors that arise from
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violation of normality assumptions in random effects. The
nonparametric mean structure, as opposed to a simple linear
representation, reliably captures the information closest to the
underlying truth.

The value of our work lies in that it is the first time that
the semi-nonparametric approach and zero-inflated structure
are combined and utilized to build and improve the hospital
compare models. The solutions of the proposed models
are founded on the SAS platform, with the help of semi-
parametric and semi-nonparametric methods to specify the
fixed and random effects, respectively. Hence, we provide the
corresponding SAS programs for their convenient implemen-
tation and application.

While we have built a modeling framework containing
linear additive terms, there remains room to strengthen the
proposed models. Usually, a comprehensive evaluation of
one hospital depends on measuring the effects from multiple
hospital-associated attributes, such as the number of beds, the
number of nursing staff, etc. Consequently, several additive
forms of hospital fixed effect

∑p
i=1 fi(Vi,h) could be available

in model (2), in which p denotes the dimensions for the
hospital attributes of interest. In addition, the hospital fixed
effects, denoted by Vh = (V1,h, . . . ,Vp,h)⊤, with varying
coefficient terms [29] or even single index terms [30], could
also be considered in model (2). We can still use the B-spline
method to approximate the above nonparameteric terms.
This will expand the applicability and optionality of the
framework.
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