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ABSTRACT Objective: Millions of people have been affected by coronavirus disease 2019 (COVID-19),
which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role
in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on
one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival
outcome of COVID-19 patients. Methods and procedures: We have considered two scenarios for survival
analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all
clinical variables (n=44) for predicting the short-term from long-term survival. We considered the random
forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups.
Results: Our experiments using the univariate analysis show that nine clinical variables are significantly
associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant
improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN)
in predicting the survival group of patients with COVID-19. Conclusion: Our model has been tested using
clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool
for detecting the risk of mortality and developing treatment plans in a timely manner. Clinical impact: The
findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in
predicting a patient’s chances of survival from COVID-19. Moreover, our predictive model shows that the
combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare
systems.

INDEX TERMS COVID-19, CNN, clinical variables.

I. INTRODUCTION
The COVID-19 pandemic, which began in 2019, has rapidly
spread across the globe and was officially declared a pan-
demic by the World Health Organization on March 11,
2020 [1]. This infectious disease is characterized by
symptoms such as fever, fatigue, dry cough, and respi-
ratory problems, and as of September 24, 2021, it has
resulted in over 230 million confirmed cases and more than
4.73 million deaths worldwide. The United States has been
particularly affected, with over 43.53 million cumulative
cases [2]. Despite recent research efforts to identify fac-
tors that contribute to COVID-19-related mortality, there are
few studies investigating the relationship between clinical

procedures, such as tests and treatments, and patient survival
outcomes.

Previous studies have primarily focused on computer-aided
diagnosis methods for detecting COVID-19 [3], [4], [5]
(and/or tracking its spread [6]), which include temperature
readings [7], molecular analysis such as RT-PCR (reverse
transcription polymerase chain reaction: RT-PCR), chest CT
scans, and chest radiographs [8], [9]. Some researchers have
also used 1DCNN to diagnose respiratory diseases associated
with COVID-19 using human respiratory sounds such as
voice, cough, and breath [10], [11].

In [12], COVID-19-related variables such as confirmed
cases, recoveries, and deaths were used with 1D CNN to
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forecast COVID-19 trends in France. Meanwhile, in [13],
a combination of statistical features and 1D CNN was devel-
oped to forecast COVID-19 time series. However, there are
still several clinical variables related to COVID-19 patients
and their survival that remain unexplored. Exploring these
variables through automated means could help improve clin-
ical procedures in patient treatment and enhance survival
outcomes. In this regard, artificial intelligence (AI) models
can have a significant impact on predicting clinical outcomes,
such as survival. Specifically, our objective is to build a prog-
nostic model for COVID-19 patients using available clinical
variables.

AI has played an increasingly important role in healthcare,
particularly in the context of big data analysis [14], [15], [16].
In the fight against COVID-19, AI has been used for a variety
of purposes, such as predicting infection [17] and identifying
poor outcomes in patients with the disease [18]. Machine
learning approaches have also been used to predict hospital
mortality and identify key predictors, including clinical char-
acteristics such as oxygen saturation readings, demographics,
and patient comorbidity information [19], [20], [21], [22].
However, one challenge is the identification of significant
markers among the numerous clinical variables associated
with COVID-19. Therefore, the aim of this study is to analyze
the relationships between clinical variables and the survival
outcome of patients with COVID-19. A predictive model
can be beneficial in this context by providing clinicians with
accurate treatment suggestions and enabling the analysis of
large quantities of data in a timely and accurate manner,
leading to more effective treatments.

The main contributions of our work are as follows:

• Our study conducts both univariate and multivariate
analyses to examine the association between clinical
variables and survival outcome of COVID-19 patients.

• Our study highlights the significance of clinical vari-
ables as predictors, both predictive and non-predictive,
in forecasting survival outcomes. This was demonstrated
by using the RF model as a baseline. model.

• Our work also introduces a novel 1D CNN model
that outperforms state-of-the-art techniques in predict-
ing the survival groups of COVID-19 patients, resulting
in improved performance metrics.

Based on our experimental results, we were able to
achieve significant classification performances in distin-
guishing between short-term and long-term survival of
patients with COVID-19. Our study provides a comprehen-
sive analysis of the relationships between clinical variables,
treatment options, and the survival outcome of COVID-19.

The structure of the paper is organized as follows:
Section II presents related works on the clinical variables and
survival of patients with COVID-19. Section III describes
the clinical variables with 1D CNN and RF models for the
classification tasks. The experimental results are presented in
Section IV, and the main findings are discussed in Section V.
Finally, Section VI summarizes the key contributions and

results of our work, highlighting the significance of our pro-
posed model for predicting survival outcome in COVID-19
patients.

II. RELATED WORK
Previous studies have shown that elderly patients tend to
have poor outcomes [23]. For example, patients infected with
COVID-19 were studied and a significant difference in age
was found between the survival groups. Using the multi-
variate analysis, age was a predictive variable that relates to
prognosis in patients with COVID-19. In [24], heparin treat-
ment was able to extend survival of COVID-19 patients. This
finding is proved by the safety and effectiveness of heparin
for COVID-19 in [25]. Similarly, treatment with enoxaparin
was able to extend survival [26]. Convalescent plasma therapy
is also considered, and patients with COVID-19 are associ-
ated with improved outcomes [27]. Another study shows that
older people and children have higher infection rates [28],
and the risk of death increases independently with age [29].
In addition, hormones such as N-terminal hormone (NT) -pro
BNP (NT-proBNP) probably help doctors screen high-risk
patients with COVID-19 [30]. In [31], the troponin value
increases more significantly in patients with severe infection
than in those with mild symptoms. In [32], it was found that
acute kidney injury is associated with a poor prognosis in
patients with COVID-19. In [33], in addition to age, three
biochemical parameters were related to mortality regardless
of other comorbidities. However, no study yet consists of
a comprehensive analysis using public clinical variables of
COVID-19 for further survival exploration.

From a technical point of view,many algorithms are widely
applied to predict the COVID-19 [34]. However, the sur-
vival outcome of COVID-19 patients using CNNs is still
limited. For example, a machine learning algorithm is used
to predict the mortality risk of COVID-19 [17]. In [35],
many algorithms with statistical analysis approaches used for
discharge-time prediction of COVID-19 cases. Their findings
show that the Gradient Boosting survival model outperforms
other models of patient survival. Additionally, cox regression
with auto-encoder are used to study the survival outcome for
COVID-19 and predict the most important symptoms (fea-
tures) affecting survival probability [36]. A new study, based
on deep learning technology, which incorporates multiple,
time-fixed data, longitudinal non-image data and longitudinal
images, shows the capacity to predict the survival outcome of
COVID-19 [37]. Compared against previous contributions,
our approach consists of two main scenarios: 1) apply the
univariate analysis to measure the relationships between clin-
ical variables and survival outcome, and 2) propose 1D CNN
to improve performance metrics compared to the random
forest model in predicting the survival groups of COVID-19.
To our knowledge, no comprehensive study has yet investi-
gated the relationships between clinical variables, treatment
options, and their relationships with the survival outcome of
COVID-19 patients.
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FIGURE 1. Our study presents a survival analysis-based pipeline for predicting the survival outcome of COVID-19 patients using a set of 44 clinical
variables. The pipeline involves (1) aggregating clinical data sets from multiple tests and treatments, (2) selecting relevant clinical variables, and
(3) using a proposed architecture that includes two convolutional layers, a max-pooling layer, two fully connected layers (FC1 and FC2), and an output
layer. The pipeline is evaluated using the log-rank test and Kaplan-Meier estimator to compare survival between two groups of COVID-19 patients.

III. MATERIALS AND METHODS
The survival analysis pipeline is illustrated in Figure 1. In this
study, we collected data on 44 clinical variables along with
the survival outcome of COVID-19 patients. We performed
statistical and classification analyses to investigate the rela-
tionship between these variables and survival outcomes using
two approaches, namely univariate analysis (Log-rank test
and Kaplan-Meier estimator) and multivariate analysis (1D
CNN and random forests). The subsections below provide
further details on these analyses.

A. DATASETS AND CLINICAL VARIABLES
We collected clinical data from 1384 COVID-19 patients
through The Cancer Imaging Archive (TCIA) [38]. The
patients included in these data had tested positive for
COVID-19 and did not have cancer. The patients had already
been de-identified by TCGA/TCIA, and our study did not
require any institutional review board or Health Insurance
Portability and Accountability Act approvals. Stony Brook
University had obtained these datasets from COVID-19
patients.1 These datasets contained clinical data for each
patient, such as their diagnosis, procedures, laboratory test
results, COVID-19-specific data values, and a range of
derived data elements that were analyzed in our study.
TCIA [38] provided a detailed list of clinical variables and
TCGA IDs for each patient. For survival analysis, we used
both uncensored patients (n=183; from the date of their first
COVID-19 diagnosis until their date of death) and censored
patients (n=1201; from the date of their first COVID-19 diag-
nosis until their discharge from the hospital), along with their
corresponding clinical features. We collected 44 prominent
clinical variables (i.e., v1,v2,. . . ,v44) and their corresponding
survival outcomes. These variables are : v1 : age, v2 : gender,
v3 : acute hepatic injury during hospitalization, v4 : acute
kidney injury during hospitalization, v5 : urine protein, v6 :

smoking, v7 : oral temperature, v8 : oxygen saturation in
arterial blood by pulse oximetry, v9 : respiratory rate, v10 :

heart rate beat to beat by EKG, v11 : Systolic blood pressure,

1https://doi.org/10.7937/TCIA.BBAG-2923

v12 : mean blood pressure by noninvasive, v13 : leukocytes
corrected for nucleated erythrocytes in blood by automated
count, v14 : neutrophils in blood by automated count, v15 :

lymphocytes in blood by automated count, v16 : sodium in
serum or plasma, v17 : aspartate aminotransferase in serum
or plasma, v18 : alanine aminotransferase in serum or plasma
by no addition of P-5’-P, v19 : creatine kinase in serum or
plasma, v20 : lactate in serum or plasma, v21 : troponin
T.cardiac in serum or plasma, v22 : natriuretic peptide.B
prohormone N-Terminal in serum or plasma, v23 : procal-
citonin in serum or plasma by immunoassay, v24 : fibrin
D-dimer DDU in platelet poor plasma by immunoassay, v25 :

ferritin in serum or plasma, v26 C reactive protein in serum
or plasma, v27 : hemoglobin A1c/hemoglobin total in blood,
v28 : body mass index (BMI), v29 : sodium in serum or
plasma, v30 : potassium in serum or plasma, v31 : chloride
in serum or plasma, v32 : bicarbonate in serum or plasma,
v33 : urea nitrogen in serum or plasma, v34 : creatinine
in serum or plasma, v35 : glomerular filtration rate/1.73 sq
M.predicted, in Serum, plasma or blood by creatinine-based
formula (CKD-EPI), v36 : pH of arterial blood adjusted to
patient’s actual temperature, v37 : erythrocyte sedimentation
rate, v38 : glucose in serum or plasma, v39 : cholesterol in
LDL in serum or plasma by calculation, v40 : cholesterol in
VLDL in serum or plasma by calculation, v41 : triglyceride
in serum or plasma, v42 : cholesterol in HDL in serum or
plasma, v43 : therapeutic exnox boolean, and v44 : therapeu-
tic heparin boolean.

To handle missing variable values, we employed a decision
tree-based imputation method. This involves constructing a
decision tree model for each variable that has missing values,
using the remaining variables in the dataset as predictors.
The model is trained on a subset of the data that contains
no missing values, and then used to estimate the missing
values for each variable. These estimated values are then used
to substitute the missing values. Our choice of the decision
tree method, as mentioned in [39], was due to its ability to
handle both numerical and categorical variables with mini-
mal bias, making it a preferable option over other machine
learning-based imputation techniques.
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B. STATISTICAL AND CLASSIFICATION
1) SURVIVAL ANALYSIS
In univariate analysis, we partitioned the patients into
two survival groups (below-median or above-median clin-
ical variables). We then performed a log-rank test and
Kaplan-Meier estimator to compare between the two survival
groups. In multivariate analysis, we applied the log-rank test
and Kaplan-Meier estimator to compare between predicted
groups (lower-than-median and higher-than-median survival
outcome) for patients with COVID-19 [40]. To account
for multiple comparisons of clinical variables, all p-values
obtained from significance tests were corrected simultane-
ously according to the Holm-Bonferroni procedure [41].
We considered the variables statistically significant when
corrected p < 0.05.

2) CLASSIFICATION
We divided the COVID-19 patients into two groups based
on their survival time: below median-survival (short sur-
vival) and above median-survival (long survival). We used
all 44 clinical variables as input for a classifier model, which
included a 1D CNN and/or a random forest. Initially, we used
the random forest classifier with 500 decision trees and
10 maximum tree depths as a baseline model. We chose this
model due to limited samples and its ability to assess the
importance of predictive variables [42], [43].

We used two validation scenarios to evaluate the classifier
models: 1) leave-one-out cross-validation (LOOCV), where
we divided the training variables into n samples and tested the
RF classifier on a single sample at each iteration while using
the remaining n − 1 samples to train the model. We evalu-
ated the cross-validation-based classifier models based on the
average iterations n for metrics such as AUC-ROC,Accuracy,
Sensitivity, Specificity, and Precision. 2) We randomly split
the samples into training and test sets to provide an unbiased
evaluation of the model fitted on the training samples. The
overall performance of the model was measured by calculat-
ing the average ± standard deviation obtained over 10 iter-
ations for metrics such as AUC-ROC, Accuracy, Sensitivity,
Specificity, and Precision.

Accuracy =
TP+ TN

N
× 100 (1)

Sensitivity =
TP

TP+ FN
× 100 (2)

Specificity =
TN

TN + FP
× 100 (3)

Precision =
TP

TP+ FP
× 100 (4)

where TP (TN , resp.) is the number of correctly predicted
short-term survival (long-term survival) examples, FP (FN ,
resp.) the number of examples incorrectly predicted as
short-term survival (long-term survival, resp.), and N the
total number of examples. Using these metrics, we can mea-
sure the AUC-ROC and plot True positive rate (Sensitivity)

versus False positive rate (1-Specificity) at different decision
thresholds.

C. PROPOSED 1D CNN CLASSIFIER
The objective of the proposed end-to-end 1D CNN archi-
tecture is to automatically learn essential clinical features
from clinical variables and predict the survival groups of
COVID-19 patients. To achieve this, the architecture utilizes
trainable convolutional layers to learn an appropriate repre-
sentation of the clinical variables. Each neuron in a layer is
only connected to a small region of the previous layer, which
is referred to as the ‘‘region of connectivity.’’ For instance,
the input to the 1D CNN is an array that represents clinical
variables denoted as X . The network is designed to learn a
set of parameters 2 that maps the input to the prediction T .
The hierarchical feature extraction is performed through this
mapping process.

T = fl(Xl |2l) = h(W
⊗

Xl + b), 2l = [W , b] (5)

where
⊗

denotes the convolution operation, The input matrix
Xl consists of N feature maps and is in a two-dimensional
format. The set of one-dimensional kernels, denoted by W ,
consists of N elements and is utilized to extract a new set of
features from the input array. The bias vector is represented
by b, and the activation function, such as ReLU (Rectified
Linear Unit), is denoted by h. After the final convolutional
layer, its output is flattened and subsequently employed as
input for multiple stacked fully connected layers. This pro-
cess can be characterized as follows:

T = fl(Xl |2l) = h(WXl + b), 2l = [W , b] (6)

The output layer follows the fully connected layer and is
responsible for making predictions. In this model, we propose
a 1D CNN architecture that takes 44 clinical variables as
input, with an image size of 1 × 44. The architecture of the
proposed 1D CNN is as follows.

• Input: 1D image size = 1 × 44,
• Convolution layer 1 (Filters = 64, size = 1 × 3;
Activation = ReLU),

• Convolution layer 2 (Filters = 128, size = 1 × 3;
Activation = ReLU, Average pooling = 1 × 2),

• Fully connected layer 1 (Activation = ReLU; Output =
(1)×128),

• Fully connected layer 2 (Activation = ReLU; Output =
(1)×64),

• Output layer (Activation = Softmax; Output = 1 × 2).
The 1D CNN architecture comprises six layers and uses

a training/validation/testing dataset split of 110/12/61, with
a learning rate of 0.0005, a cross-entropy loss function, and
stochastic gradient descent optimization with a momentum
value of 0.9. The goal of applying the 1D CNN was to clas-
sify samples into short-term and long-term survival groups.
To compare the predicted survival outcomes between the
groups, we used the Log-rank test and Kaplan-Meier estima-
tor. Additionally, we compared the predicted survival groups
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TABLE 1. Comparison of COVID-19 patient survival grouped by individual variable values: Summary of clinically significant variables
(corrected p-value < 0.01).

obtained from different models, such as the 1D CNN versus
the RF model as a baseline. To determine the significance
value, we calculated the chi-square test as described in [44].
All processing and analysis steps were carried out using
Matlab’s Deep Learning, Statistics, and Machine Learning
Toolbox.

IV. RESULT
A. VARIABLES ASSOCIATED WITH SURVIVAL
We evaluated the association between individual clinical vari-
ables and the survival of COVID-19 patients by conducting
a log-rank test and Kaplan-Meier estimator on a sample of
deceased COVID-19 patients (total sample size, n=183).
We find that nine clinical variables (i.e., age; acute kidney
injury during hospitalization; troponin T.cardiac in serum
or plasma natriuretic peptide.B prohormone; N-Terminal in
serum or plasma; urea nitrogen in serum or plasma; creati-
nine in serum or plasma; glomerular filtration rate/1.73 sq
M.predicted (Volume rate/area) in serum, plasma or blood
by creatinine-based formula (CKD-EPI); therapeutic exnox
boolean; therapeutic heparin boolean) are significantly asso-
ciated with survival outcome with corrected p < 0.05.
We observe that the most significant variable is related to
Therapeutic heparin Boolean (v44). Specifically, a longer
survival was associated with a higher variable value for v44
(i.e., median survival: 7 versus 19 days, Hazard Ratio (HR) of
3.59, Confidential Intervals (CI) of 2.55-5.04 and corrected
p of 1.36×10−8. Table 1 reports the significant clinical
variables with corrected p < 0.05. The rest of the clinical
variables were not significant, with corrected p > 0.05.

B. CLINICAL SIGNATURE RELATED TO SURVIVAL
We considered the RF model inside LOOCV to classify
the censored patients (n = 183), in the shorter-term or
longer-term survival groups. Therefore, the classifier model
using all clinical variables (v1, v2, . . . ,v44) shows a significant
difference between these two groups, with a corrected p <

0.05. Specifically, the RF model shows an AUC, Accuracy,
Sensitivity, Specificity, Precision, HR, CI, and p value of
77.64%, 73.77%, 73.68%, 72.22%, 4.73, 3.28 – 6.82 and p =

2.2×10−16, respectively. Using the RF model, we measured

FIGURE 2. Bars of individual variables’ importance for predicting the
survival group of censored COVID-19 patients (n = 183). Importance
values represent the average increase in prediction error obtained by
permuting the values of individual variables across out-of-bag
observations.

the importance of variables. Figure 2 shows that 26 clinical
variables have positive predictive values (i.e., importance
value> 0) while 18 variables have negative values. Once
again, the importance of variables in the RF model demon-
strates that the Therapeutic heparin Boolean is the highest
predictive variable.

C. DEEP SURVIVAL ANALYSIS BASED CLINICAL
VARIABLES
Our deep CNN model was trained using clinical variables,
with 110 training samples and 12 validation samples.We then
tested the model using 61 samples and found that its per-
formance metrics were significantly better than those of the
random forest model in classifying short-term and long-
term survival groups of COVID-19 patients. Specifically, the
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FIGURE 3. Performance metrics derived from 1D CNN and RF models for predicting short-term and long-term survival groups (A: censored
patients (n = 183), training/testing = 122/61; B: Training/testing = 1107/277). ROC (left), confusion matrix, log-rank and Kaplan-Meier
measure the significance of the predicted survival groups from classifier models.

TABLE 2. Metrics for predicting COVID-19 patient survival group: Analysis of performance for 61 patients.

TABLE 3. Performance metrics for predicting the survival group of 277 COVID-19 patients.

1D CNN model had an AUC-ROC of 79.24%, accuracy of
75.40%, sensitivity of 76.47%, specificity of 74.07%, pre-
cision of 78.78%, HR of 7.48, HRci of 3.70–15.10, and
p-value of 5.3 × 10−8, while the random forest model had
an AUC-ROC of 72.48%, accuracy of 70.49%, sensitivity of
79.41%, specificity of 59.25%, precision of 71.05%, HR of
6.19, HRci of 2.95–13.01, and p-value of 3.6 × 10−6. These
results are shown in Figure 3A and Table 2, and indicate
that the 1D CNN model is a superior classifier of short-term
and long-term survival groups in COVID-19 patients, with a
p-value less than 0.05.

D. IMPACT OF CENSORED PATIENTS
Using the proposed 1D CNN and RF models, we considered
the survival analysis for whole COVID-19 patients (n =

1384 : 183 uncensored and 1201 censored). We partitioned
the whole samples (n= 1384) into two survival groups (below
and above median survival = 6 days) with training/testing
of 1107/277 samples. Once again, the 1D CNN perfor-
mance metrics (AUC-ROC = 90.25%, Accuracy = 83.75%,
Sensitivity = 85.82%, Specificity = 81.81%, Precision =

81.56%, HR = 12.70, HRci = 8.85 – 18.23 and p value =

0) are significantly better than the random forest model
(AUC-ROC = 84.78%, Accuracy = 79.06%, Sensitivity =

85.07%, Specificity = 73.42%, Precision = 75.00%, HR =

9.23, HRci= 6.45 – 13.22 and p value= 0) to predict survival
groups with p < 0.05 (i.e., Figure 3B and Table 3). Using
the classifier model to predict survival of censored patients
may be validated when we applied the log-rank test and
the Kaplan-Meier estimator to assess the difference of the
predicted groups.

For a censored patient (i.e., if the person was alive at
the end of the study or was lost to follow-up at any time
during this study), the survival imputation technique was used
for the classifier model. For censored patients (n = 1201),
we considered the average survival time of the remaining
patients with a time-to-death greater or equal to their own,
as of the time at the last visit. This result can be explained by
the nature of survival distributions, which can be appreciated
in Fig 4

E. COMPARISON WITH OTHER STATE-OF-ART MODELS
To evaluate the impact of the proposed 1D CNN, we consid-
ered also another CNN architectures using whole COVID-19
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FIGURE 4. Histogram of survival lengths for patient with COVID-19 (days).
(right) Uncensored (n=183) distribution. (left) whole cases (n=1384).

FIGURE 5. Heatmap of significance value (− log10(p-value)) from
chi-square test to measure the differences between two CNN model of
the predicted groups (e.g., predicted groups using Convolution-LSTM [45]
versus SAVSNet [48]), green-black circle represents the significance
difference between two predictive models in predicting the shorter-term
from longer-term survival with p < 0.05.

patients (n = 1384 : 183 uncensored and 1201 censored).
We randomly partitioned the samples (n= 1384) into two
survival groups (below and above median survival = 6 days)
with training/testing of 1107/277 samples. In Table 4,
we compared our 1D CNNmodel’s results with those of other
1D CNN architectures for classifying short and long survival
groups. Our findings suggest that our model’s performance is
comparable to state-of-the-art models, as described in [45],
[46], [47], and [48]. Specifically, we achieved a higher AUC
(90.25% versus 84.36–88.10%) and accuracy (83.75% versus
79.06–81.94%) than these previous CNN architectures. Our
1D CNN model resulted in an AUC improvement of 3–6%
over the other 1D CNN architectures for predicting the sur-
vival group of COVID-19 patients. Based on the chi-square
test, the improvement of our method over other approaches
tested is significant, with p < 0.05 (Fig. 5).

F. 1D CNN BASED ANALYSIS
To analyze the impact of 1D CNN, we use the same
conditions in training 1D CNN with training samples
(train/test=110/12) of uncensored patients to predict the test
samples (n= 61) of short-term and long-term survival groups.
We performed two other 1D CNN with different convolu-
tional layers as follows:

• 6 layers: Input image, 3 Convolutional layers (Filters =

64, 128 and 128) and 2 Fully connected layers.
• 9 layers: Input image, 6 convolution layers (Filters= 32,
64, 128, 32, 64 and 128) and 2 Fully connected layers.

Table 5 reports the performance metrics of 61 test samples
with 6 and 9 layers of 1D CNN. We found that the 1D
CNN with 6 and 9 layers are significantly predicting the
survival groups with p-value of 4.1 × 10−8 and 2.7 × 10−8,
respectively. We note that the convolutional layers (filters)
extract features that were used to adjust their weights.

V. DISCUSSIONS
WithCOVID-19, the ability to develop anAImodel is critical,
through a predictive modeling routinely used is often under-
diagnosed, so a deep learning model using clinical variables
has remarkable potential. We note that a survival analysis
cannot directly combat COVID-19 (i.e., treatment). However,
a deep CNN model allows us to monitor the severity of
virus infection with related factors, thus allowing clinicians
to make the required policies timely. Many predictive models
have been used to predict COVID-19 cohorts with varying
results; some of them have previously been developed to
predict the presence of COVID-19 using chest CT and X-ray
scans [34], [49]. Investigation of the association between
survival and treatment options or other molecular analysis is
still limited.

In this work, we propose a predictive model based on
1D CNN using 44 clinical variables as input to predict the
survival outcome of patients with COVID-19. Our findings
demonstrated that two clinical variables, heparin and exnox
are the most significant indicators of survival prediction. This
is consistent with previous literature on heparin and enoxa-
parin that were associated with long survival in COVID-19
patients [24], [25], [26]. Specifically, this study investigated
all prominent clinical variables related to COVID-19. The
other studies almost focused on an early warning model to
predict COVID-19 in hospital mortality [50], [51]. Experi-
ments with many sizes of filters (Table 4 and Table 5) showed
significant differences between predicted survival groups
with p< 0.05. Comparing to other 1D CNN architectures, the
proposed 1D CNN shows superior performance. However,
the proposed 1D-CNN does not improve the performance
metrics when more convolutional layers (filters) are imple-
mented in the samemodel. This means that the model was not
learning efficiently from the collected features as the number
of filters increased from the optimal value. It then provides
no improvement for testing sample prediction performance,
as reported in Table 5 comparing to Table 2.

The advantage of using clinical variables as input into
the deep CNN model is that all of these variables can be
synergized to improve the performance in survival prediction.
The novelty of our study is represented by showing the impact
of each of clinical variables in predicting the survival outcome
and offered a simple 1D CNN implementation for clinical
tasks (i.e., survival, etc.). Another major advantage is related
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TABLE 4. Performance comparison of 1D CNN models for predicting the survival group of 277 COVID-19 patients.

TABLE 5. Performance metrics of two different 1D CNN architectures for predicting the survival group of the 61 test COVID-19 patients.

to compact configuration of 1D CNN that perform only
1D convolutions. It shows good performances on a limited
amount of data sets (n = 1384), low computational require-
ments (compared to 2D CNN and 3D CNN architectures),
and a good ability to extract relevant features from clinical
variables. More details about 1D CNN benefit is discussed
in [52]. In the case of exploiting further CNN architectures,
there is still ample room to improve the performance metrics
by involving the corresponding CT-Scan and X-ray images.

In this work, we used the median survival time because
it provides a balance of classes. However, other strategies
for this task could be considered, such as dividing patients
into a potentially larger number of clinically relevant survival
periods caused by different causes of COVID-19. Another
option is to formulate the problem as a regression task
rather than a classification process and predict the risk of
death of patients [53] or rank the survival time of differ-
ent patients [54]. In addition, this study only focuses on
COVID-19 without to consider the new variants and/or sub-
variants like Omicron and Delta [55]. More investigation in
this direction will improve the accuracy of survival analysis.
More importantly, efforts must be directed to automatically
exploit lung image segmentation with public access to these
labels from the TCIA website. As such, this may simplify
our understanding of COVID-19 when clinicians estimate
the survival group from chest CT and / or X-ray images and
provide accurate treatment to achieve the goal of personalized
medicine.

VI. CONCLUSION
This study presents a 1D CNN model to predict the survival
outcomes of patients with COVID-19 while investigating the
impact of clinical variables on the prediction. The findings
revealed that heparin treatment significantly influenced the
survival outcome. Despite the promising results demonstrated
by the 1DCNNmodel in survival prediction, the performance
may be improved by integrating new clinical variables and
imaging features. Moreover, we plan to present a part of the
results at [56]. Furthermore, the study proposes the develop-
ment of a novel model, the CNN+RNN, which can model
temporal sequences with images. This model is expected

to offer more options of data types and to achieve higher
performance metrics than the current model.
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