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ABSTRACT Objective: Molecular subtyping is an important procedure for prognosis and targeted therapy
of breast carcinoma, the most common type of malignancy affecting women. Immunohistochemistry (IHC)
analysis is the widely accepted method for molecular subtyping. It involves the assessment of the four
molecular biomarkers namely estrogen receptor (ER), progesterone receptor (PR), human epidermal growth
factor receptor 2 (HER2), and antigen Ki67 using appropriate antibody reagents. Conventionally, these
biomarkers are assessed manually by a pathologist, who finally combines individual results to identify the
molecular subtype. Molecular subtyping necessitates the status of all the four biomarkers together, and to
the best of our knowledge, no such automated method exists. This paper proposes a novel deep learning
framework for automatic molecular subtyping of breast cancer from IHC images. Methods and procedures:
A modified LadderNet architecture is proposed to segment the immunopositive elements from ER, PR,
HER2, and Ki67 biomarker slides. This architecture uses long skip connections to pass encoder feature
space from different semantic levels to the decoder layers, allowing concurrent learning with multi-scale
features. The entire architecture is an ensemble of multiple fully convolutional neural networks, and learning
pathways are chosen adaptively based on input data. The segmentation stage is followed by a post-processing
stage to quantify the extent of immunopositive elements to predict the final status for each biomarker.
Results: The performance of segmentation models for each IHC biomarker is evaluated qualitatively and
quantitatively. Furthermore, the biomarker prediction results are also evaluated. The results obtained by
our method are highly in concordance with manual assessment by pathologists. Clinical impact: Accurate
automated molecular subtyping can speed up this pathology procedure, reduce pathologists’ workload and
associated costs, and facilitate targeted treatment to obtain better outcomes.

INDEX TERMS Molecular subtyping, breast cancer, image segmentation, deep learning.

I. INTRODUCTION
Breast carcinoma is the most common cancer type world-
wide and the leading cause of cancer-related deaths among
women. As per the latest GLOBOCAN report [1], 2.3 mil-
lion new cases of breast cancer and 6.84 lacs death cases
were estimated globally in the year 2020. Breast can-
cer is a heterogeneous disease marked by the uncontrol-
lable growth of malignant tumors that vary in their bio-
logical and clinical behavior. Accordingly, breast cancer
is categorized by multiple bases as histological subtypes,

molecular subtypes, functional subtypes [2] etc. Molecu-
lar subtyping of breast cancer helps in better prognostica-
tion [3] and targeted therapy [4] of the disease. Most studies
classify breast cancer into four major molecular subtypes,
namely Luminal A, Luminal B, Triple-negative/basal-like,
and HER2-enriched [5]. This classification is based on the
assessment of nuclear biomarkers such as estrogen receptor
(ER), progesterone receptor (PR), antigen Ki67, and cell
membrane marker Human Epidermal growth Receptor 2
(HER2). Hormonal receptors ER and PR present in the
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TABLE 1. Molecular subtypes, diagnosis, and prognosis of breast cancer
(Compiled from [8]).

tumor cells accelerate the growth and division of cells in the
presence of estrogen and progesterone hormones. In the IHC
analysis, if ER/PR is above a certain threshold, the biomarker
status is assigned as ER+/PR+. Ki67 is a protein found in
growing/dividing cells but absent in the resting phase of cells.
IHC analysis is used to measure the extent of this nuclear
protein, which indicates the cell proliferation rate. HER2 is a
protein that is responsible for the growth and repair of breast
cells. Gene mutation causes overproduction of the HER2
protein (a state known as HER2 positive), leading to the rapid
division of breast cells followed by mass formation.

The factors that influence the growth of different sub-
types vary substantially. For the best outcome, each molec-
ular subtype of cancer needs to be treated differently. The
most common and cost-effective way of molecular sub-
typing is immunohistochemistry (IHC) analysis [6]. Other
popular molecular testing approaches are fluorescent in situ
hybridization (FISH) and gene expression profiling [7] that
are costly and not widely available. IHC uses the princi-
ple of antibodies binding to specific antigens in biologi-
cal tissues to detect the biomarkers’ presence. Based on its
cost-effectiveness and universal availability, IHC analysis is
considered as the gold standard for molecular subtyping and
cancer prognostication [4]. Table 1 provides an account of
the molecular subtypes, their prognostic characteristics, and
treatment approaches of breast cancer.

The conventional pathology procedure for molecular sub-
typing is predominantly a manual process. Here, the patholo-
gists assess the aforementioned biomarkers in the chemically
stained biopsy specimen of cancer patients by visual analysis
through a microscope. The high-power field under observa-
tion is labeled as positive or negative for the three biomark-
ers (ER+/-, PR+/-, HER2+/-) based on visual analysis of
the color response. For Ki67, a cell proliferation status as
Low/Intermediate/High is assigned based on the number of
Ki67 immunopositive cells. Once the individual assessments
of all four biomarkers are completed, these outcomes are used
to identify the molecular subtype, as shown in Table 1.
The manual procedure of molecular subtyping is tedious,

error-prone, and has high inter-observer variability [9].
Digital pathology enables capturing and storage of biopsy
slides in the form of digital images, and paves way for

FIGURE 1. Representative IHC images of biomarkers used in molecular
subtyping at 40X magnification (a) ER, (b) PR, (c) Ki67, and (d) HER2.

automating the process of molecular subtyping using image
analysis algorithms. Fig. 1 demonstrates the samples of IHC
slide images captured in this way. These images are then
analyzed using computational algorithms to extract clinically
relevant information.

Deep learning has been in the forefront of methodolo-
gies adopted in several works on medical image analysis
recently [10], and they have given high performance, match-
ing or even exceeding human-level accuracy. We used CNN
based semantic segmentation models for the assessment of
each of the histological biomarkers separately, based on
the color intensity differences expressed by immunostaining.
Using the standard guidelines and specifications [11], [12],
[13], the final IHC biomarker status is assigned to samples
of each biomarker. After this step, the molecular subtype
is determined by combining the individual biomarker status
according to the St Gallen International Expert Consensus on
breast cancer [4].

The main contributions of this work can be summarized as
follows.

1) A deep learning-based fully automated system is pro-
posed for molecular subtyping of breast cancer using
the IHC images of the biomarkers ER, PR, HER2, and
Ki67.

2) An improved LadderNet architecture is proposed for
the semantic segmentation of IHC images. The pro-
posed architecture improves segmentation accuracy
compared to the state-of-the-art architectures.

The proposed system to classify breast carcinomas based
on immunohistochemical markers will reduce the manhours
and report generating time. Conventionally, pathologists eval-
uate each immunomarker stained section/slide independently
or as a consensus, collates all four markers’ data, and then
comments on the final subtype. This is time-consuming
and introduces interobserver variability unless reported as a
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consensus. The proposed system would speed up the pro-
cess and spare the pathologist for higher-level interpretations.
It would help overcome interobserver variability, promot-
ing appropriate and timely patient care. The system would
help pathologists and oncologists to plan hormone ther-
apy/chemotherapy for individual patients, paving the way for
precision medicine.

Rest of this paper is organized in the following manner.
In Section II, a brief review of the related works from litera-
ture is carried out. Section III explains the methodology and
the proposed architecture in detail. Experimental set up and
obtained results are presented in Section IV alongwith related
discussion. Section V concludes the paper with a discussion
on the results and future work.

II. LITERATURE REVIEW
Automated assessment of individual breast cancer biomark-
ers has attracted considerable research interest. However,
to our knowledge, there is only one published work on
automated molecular subtyping by analyzing all the four
biomarker images [14]. In this method, a classification
approach is adopted where nuclei-based patches are auto-
matically extracted from the biomarker images and classified
as +ve or −ve for the specific biomarker. Distribution of
the nuclei-based patches is approximated as the actual dis-
tribution of nuclei in slide images. Since there are no other
methods found for molecular subtyping, this literature review
considers the methods reported for the individual biomarker
assessment. Dhondalay et al. [15] used a 3-layer ANN to
predict ER status of breast cancer from gene microarray data.
Oscanoa et al. [16] used histogram thresholding to separate
the background from the nuclei in an ER image, followed
by segmentation and fuzzy c-means clustering. Overlapping
nuclei are further detected using watershed segmentation.
The method proposed by Mungle et al. [17] presented an
automated Allred scoring model for screening ER images.
The model used Markov random fields (MRF) with expec-
tation maximization (EM) for cell segmentation and positive
proportion scoring. The intensity score is computed with an
ANN classifier, and both these scores are used to compute
the final Allred score for ER. Progesterone receptor (PR)
expression in breast tumors is similar to ER, and the same
Allred system is used for determining PR status. Accordingly,
Saha et al. [18] proposed a combined method for ER and
PR status prediction based on deep learning (HscoreNet),
which consists of three components, i.e., encoder, decoder,
and scoring layer.

The biomarker Ki67 is an indicator of cell proliferation
rate and hence tumor growth. Niazi et al. [19] used hotspot
detection to classify Ki67 response images into immunopos-
itive and immunonegative classes. This method considers
hotspot detection as a clustering problem; hence several
nuclei present together are counted as single nuclei and that
affects the scoring accuracy. Saha et al. [20] identified the
hotspots that form seed points in Ki67 images. The centroid
of the seed point is used in patch selection such that only

one nucleus exists in each patch. This is done using the
expectation-maximization algorithm with a Gamma mixture
model. CNN is further used to predict whether a patch is
immunopositive or negative. Zhang et al. [21] used gener-
ative adversarial network (GAN) to generate more image
samples for training. CNN-based image classification and
object detection using a single shotmultibox detector are used
for Ki67 assessment. Narayanan et al. [22] used a VGG16
CNN model to extract sparse hyper column descriptors from
selected convolutional layers to which the Ki67 image was
fed as input. This pipeline can overcome the challenge of
detecting weakly stained Ki67 negative nuclei. Dirican and
Kilic [23] presented a retrospective investigation to cluster
breast cancer prognostic factors based on the Ki67 score
using machine learning algorithms. Lakshmi et al. [24] used
a U-Net based segmentation to identify immunopositive and
immunonegative nuclei, followed by connected component
analysis for estimating the percentage of immunopositive
cells and achieved a Dice score of 96%.

HER2 is a protein present in cell membranes that facili-
tates the proliferation of cells. Overexpression of HER2 is
linked to tumor growth and forms an important factor in
molecular subtyping. Tuominen et al. [25] proposed a color
deconvolution-based method for HER2 status prediction and
developed a free software application called ImmunoMem-
brane based on this method. Wdowiak et al. [26] pre-
sented another approach to discover small membrane sections
defined by linear patterns of different shapes. This approach
assumes that the complex shape of the membrane staining
results from the small membrane sections. The method by
Labellapansa et al. [27] assigns a score to HER2 samples
as 1+ and 3+ based on the overexpression of HER2 pro-
tein. HER2 overexpression area percentage is calculated by
dividing the HER2 positive area by the tumor area. Rodner
et al. [28] used bilinear features introduced by Lin et al. [29]
for HER2 scoring. AlexNet [30] pre-trained on the Ima-
geNet dataset is used here to compute the bilinear features.
A multi-class logistic regression is used to classify the four
scoring classes. Saha and Chakraborty al. [31] proposed a
deep learning model called Her2Net, consisting of two parts
- convolution and deconvolution. The output of this model
is a segmented mask consisting of cell membranes, nuclei,
and background. The FC layer was used as a final layer or
classification layer to assign scores to the HER2 sample.
Mukundan [32] presented an approach for scoring HER2
samples based on key properties of four different types of
features - texture features (through uniform local binary pat-
terns), morphological features (to describe the connectivity
of regions), the difference in stain intensity, and histogram
statistics.

It is observed in our literature study that most of the
existing methods for molecular biomarker status prediction
of breast cancer address prediction of one or at most two
of the four essential biomarkers of breast cancer molecular
subtyping. Moreover, none of the existing methods target
molecular subtyping as an outcome. In the proposed method,
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FIGURE 2. High-level breakdown of stages in automated molecular
subtyping of breast cancer (L: Low, I: Intermediate, H: High).

we address these research gaps in the current literature.
We have collected samples of all the four biomarkers from
multiple patients and implemented a comprehensive auto-
mated system for molecular subtyping of breast cancer, using
deep learning-based image analysis. For the components ER
and PR, our system follows the Allred scoring system [11],
ASCO guidelines for HER2 [12] and for Ki67, recom-
mendations from International Ki67 Breast Cancer Working
Group [13]. Since the criteria for scoring and classification of
each biomarker are different, we have developed separate cus-
tomized deep learning models to analyze the image data, han-
dle class imbalance, and extract the required elements from
them. The proposed method is explained in the following
section.

III. METHODOLOGY
Molecular subtyping of breast cancer requires the assessment
of four important biomarkers’ presence in tumor tissues. The
proposed method uses CNN based semantic segmentation to
separate the relevant cellular elements such as nuclei and cell
membranes that express the presence of these biomarkers.
Image samples of biomarkers - ER, PR, Ki67, and HER2
are analyzed separately, and the response is assessed accord-
ing to the clinical guidelines and the molecular subtype is
determined as per the St. Gallen International Expert Consen-
sus [4]. Fig. 2 presents a high-level operational overview of
the proposed method. Since IHC images of the four biomark-
ers have different characteristics based on immuno-response,
target objects etc., individually trained deep learning models
are used for analyzing each biomarker type. During testing,
the test image samples are passed as input to the trained
deep learning models, and the corresponding multi-class seg-
mentation masks are generated as output. These masks are
then passed on to the respective biomarker status assess-
ment modules to compute the score and predict the sta-
tus of each biomarker. Finally, the decision unit combines
the individual biomarker statuses to predict the molecular
subtype.

A. DATA ACQUISITION AND PRE-PROCESSING
The proposed method uses digitized biopsy slides of
biomarkers: ER, PR,HER2, andKi67 images captured at 40X
magnification. The dataset is collected from Kasturba Med-
ical College, Mangalore, India, and it consists of 600 slide
images from 15 breast cancer patients. There are 150 images
per biomarker, and each image has a spatial resolution of
1920 × 1440 pixels. Processing images at this resolution is
computationally intensive, and hence, non-overlapping slices
of size 480 × 480 are created from each original image.
These images are then resized to 240 × 240 to provide
a better trade-off between the segmentation accuracy and
the computation overhead while training. Since there are
12 sliced image patches per IHC image, this process creates
sufficient samples (1800 image samples from 150 images of
each biomarker) to meet the training requirement of the deep
learning models.

B. SEGMENTATION OF CELL ELEMENTS
FROM IHC IMAGES
Color intensity differences in the IHC images express the
presence or absence of targeted antigens in the correspond-
ing biopsy specimen (Refer Fig. 1). In ER and PR slides,
nuclei with a violet color indicate immunonegative cells,
whereas solid dark-brown stained nuclei and granular dark-
brown (or faint brown) nuclei correspond to strong and weak
positive cells, respectively. So, A four-class segmentation
approach (background, weak positive, strong positive, and
immunonegative) is used ER and PR stains for segment-
ing cells. In Ki67 images, the immunopositive cells appear
brownish-red, whereas the immunonegative cells appear vio-
let, so a three-class segmentation approach (background,
immunonegative, and immunopositive) is followed for Ki67
samples. In HER2 images, the nuclei appear blue-violet while
the cell membrane appears brown. Hence, a three-class seg-
mentation approach (background, nuclei, and membrane) has
been used in the case of HER2 images.

The final biomarker scoring is highly influenced by the
accuracy of estimating the immunopositive and immunoneg-
ative cell elements from the IHC images of the biomark-
ers. Though the number of target classes is different for
the biomarkers, the IHC slide images share some common
characteristics such as the shades in biomarker color response
and the background color. Hence, the proposed semantic
segmentation model is designed to segment immunopositive
elements from all four IHC image types. The model uses an
improved LadderNet architecture, consisting of two encoder-
decoder U-Net modules connected serially with customized
skip connections and convolution blocks.

1) NETWORK ARCHITECTURE
The proposed segmentation model is inspired from the Lad-
derNet architecture [33] that uses a series of connected
U-Net [34] modules. We have experimented with several
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FIGURE 3. The proposed CNN architecture for IHC image segmentation.

popular standard deep learning architectures such as U-Net,
ResNet, DenseNet, U-Net++, and LadderNet and their
derivatives to select an appropriate model for the IHC seg-
mentation. Among these models, LadderNet has given the
best segmentation performance. We further optimized the
performance by incorporating different design choices into
the baseline LadderNet architecture. The concatenated skip
connections in the U-Net model across the encoder-decoder
branches help to pass information across the layers. The num-
ber of learnable paths and information flow across a U-Net
model is limited due to fewer skip connections. In addition,
the semantic gap between the feature space at an encoder and
decoder level is higher (especially at lower depths) and can
lead to adverse effects in the learning process. Basic Lad-
derNet addresses many of these issues by providing multiple
pairs of encoder-decoder branches. However, decoder mod-
ules in each depth use feature space from the corresponding
encoder depth and hence limit the information flow from the
encoder and decoder paths.

The proposed model aims at providing more learnable
paths to the basic LadderNet architecture. The architecture
of the proposed segmentation model is represented in Fig. 3.
This network uses concatenated feature space from different
semantic levels that allows the model to learn from different
scales of the image data. The expansive path of the proposed
model at level l uses a concatenated feature space from:
1) A downsampled output from (l − 1)th level encoder.
2) Encoder output from the same level l.
3) An upsampled output from (l + 1)th level encoder.
4) An upsampled and deconvoluted output from (l + 1)th

level decoder.
The additional skip connections in the proposed architec-

ture also create more data flow paths. Hence, the overall
architecture acts as an ensemble of multiple fully convolu-
tional neural networks and the learning paths are adaptively
selected based on the nature of input image samples. The

multi-scale feature concatenation and the adaptive selection
of learning paths provide an optimal segmentation perfor-
mance over different types of images. These benefits of the
proposed architecture help to use the same architecture to
segment the four types of biomarker images. The architecture
also uses residual convolution blocks for feature extraction
and strided convolution for downsampling feature space in
the encoding path.

Class imbalance is a major challenge faced in the current
IHC image analysis. The regions of pathological relevance
typically occupy only a small image area, leading to instabil-
ity in the learning pattern. The dataset shows a skewed ratio
of pixels belonging to different classes. Among the target
classes, the pixel distribution is quite unbalanced and, in the
order, background ≫ strong ≫ intermediate ≫ weak. For
instance, the average pixel ratio of background, strong, inter-
mediate, and weak classes in the ER images are 141:14:6:1.
To reduce the adverse effect of class imbalance, the proposed
method uses a customised loss function (Eqn. 1) which is a
combination of Categorical Cross-Entropy (CCE) and Focal
Tversky Losses:FTL1 that penalizes false positives andFTL2
that penalizes false negatives.

Floss = (0.2 × CCE) + 0.4 × (FTL1 + FTL2) (1)

FTL1 = (1 − TI1)(γ );FTL2 = (1 − TI2)(γ ) (2)

TI1 =
TP

TP+ (0.75 × FP) + (0.25 × FN )
(3)

TI2 =
TP

TP+ (0.25 × FP) + (0.75 × FN )
(4)

where TP,FP, andFN stand for true positives, false positives,
and false negatives, respectively and TI1 and TI2 represent
the Tversky similarity indices with different weights for FP
and FN .

Focal Tversky Loss (FTL) allows better control over the
learning performance using the parameter γ . In IHC analy-
sis, estimating the different classes of cell elements is more
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critical than pixel-level segmentation. FTL becomes useful
in such cases with 0 < γ < 1. This results in a higher loss
gradient for samples with TI > 0.5, which leads to better
generalized learning. Hence, the combination of CCE and
two FTL components helps adequate learning of the image
characteristics.

In the proposed architecture, both the left and right
encoder-decoder modules use 16 filters each at level 0, and
the number of filters in each subsequent level is increased
by a factor of two. All convolution and deconvolution layers
(except the final layer) use ReLU activation followed by
batch normalization, and SoftMax activation is used in the
final classification layer. The input layer that accepts images
of size 240 × 240 × 3 is common to all four biomarker
models. The output layer is defined based on the number
of segmentation classes in each IHC biomarker. Hence for
training and testing, input images and corresponding ground
truth masks are sliced into non-overlapping patches of size
240 × 240. After patch-wise segmentation, the prediction
masks of all the patches from an IHC image are stitched
together to create the final prediction mask corresponding to
the image.

C. POST-PROCESSING
The segmentation stage extracts target objects such as differ-
ent classes of nuclei and cell membrane from IHC images.
The segmentation output may contain noise elements and
overlapped cells. Hence, a post-processing stage is intro-
duced to reduce the misclassified pixels from the segmen-
tation output and separate the target objects in each image.
We applied thewatershed segmentationmethod [35] followed
by morphological operations (opening and closing) to split
overlapping nuclei and remove tiny pixel patches from the
segmentation output.

D. BIOMARKER SCORING, AND DECISION MAKING
The biomarker scoring for each IHC image is conducted
separately for the molecular subtype prediction. In the case
of ER and PR images, the counts of positive nuclei (strong,
intermediate, weak) and negative nuclei are obtained using
connected component analysis of the segmented mask. The
Allred Scoring system is used to determine the ER/PR status,
where each sample is assigned with a Proportion Score (PS)
and an Intensity Score (IS) [11], [36]. Tables 2 and 3 show
the criteria for assigning proportion and intensity scores to a
sample. The total score (TS) is then computed as the sum of
PS and IS. When TS < 3, the sample status is negative and
vice versa. Following this criterion, each ER and PR sample
is identified as positive or negative. Multiple image slides
from a patient are examined and hence use a majority voting
scheme to obtain the final patient-wise biomarker status of
both ER and PR biomarkers.

In the case of Ki67, the counts of immunopositive and
immunonegative nuclei are obtained using connected com-
ponent analysis of the Ki67 prediction mask. Then the Ki67

TABLE 2. ER/PR intensity score calculation.

TABLE 3. ER/PR intensity score calculation.

TABLE 4. HER2 scoring based on cell membrane features.

proliferation index (PI) is calculated using Eqn. 5.

PI = (Np × 100)/(Np + Nn) (5)

where Np and Nn are the number of immunopositive and
immunonegative nuclei present in each slide. Based on the
PI value, each image sample is assigned with a Ki67 prolif-
eration status as low (PI < 14%), intermediate (14% ≤ PI ≤

21%), or high (PI > 21%). The patient’s Ki67 proliferation
status is also obtained by the majority voting scheme of the
image-wise results.

HER2 scoring is based on two factors - intensity and com-
pleteness of the cell membrane, as per the American Soci-
ety of Clinical Oncology (ASCO) [12]. Intensity is obtained
using a shallow CNN classifier which takes the HER2 image
as input and classifies the membrane as faint or intense. The
completeness of cell membranes is determined by computing
the percentage of membrane over a specific radius outside
each nucleus. The final HER2 scoring is made based on the
intensity and completeness of the cell membrane as shown in
Table 4. HER2 status for a patient is then assigned based on
the majority voting scheme of the image-wise results.

After computing the patient-level biomarker statuses for
ER, PR, HER2, and Ki67, they are combined to determine
the molecular subtype, based on the medical guidelines for
treatment planning as shown in Table 1.

IV. EXPERIMENTAL RESULTS & DISCUSSION
The experimental setup, training methodology, ablation study
over different design choices in the proposed architecture,

166 VOLUME 11, 2023



S. Niyas et al.: Automated Molecular Subtyping of Breast Carcinoma Using Deep Learning Techniques

quantitative and qualitative results, and the performance com-
parison of the proposed model with state-of-the-art IHC
biomarker analysis methods are included in this section.

A. EXPERIMENTAL SETUP
All experiments are conducted using the Google Colab
environment and NVIDIA® DGX-1® machine loaded with
Canonical Ubuntu OS, Dual 20-Core Intel® Xeon E5-2698
v4 CPU @2.2 GHz, 512 GB of RAM, and 8X NVIDIA®

Tesla® V100 GPU with 32GB dedicated memory.

B. TRAINING METHODOLOGY
The proposed deep CNN model of depth 4 with an input size
of 240×240×3 is used for segmentation of different classes
of nuclei and cell membranes. The hyperparameters, such as
the number of filters, depth, dropout level, loss parameters
etc., are empirically selected based on the performance in
multiple experiments carried out. For each biomarker, exper-
iments are separately conducted using 150 slide images per
biomarker collected from 15 patients. Since the patient sam-
ples are low, leave-one-out cross-validation (LOOCV) is used
to guarantee an unbiased performance evaluation. In each
fold, all images from one patient are used for testing and
the remaining 14 patients’ images as the training data. This
was repeated 15 times, and average performance across the
15 folds is taken as the final result. The same procedure is
repeated for all four biomarkers by training from scratch to
generate the trained models. Though the training set consists
of only 140 images in each IHC type, after slicing them into
patches of size 240 × 240, there are 1680 training image
samples to make a sufficient training set. Hence in each fold,
140 images from 14 patients are used for training, and ten
images from the remaining patient are used for testing.

Best performance is observed using a batch size of four
and dropout (with a rate of 0.1) in the decoding layers.
L2 regularization has been used to avoid overfitting, and
Adam optimizer is used with a learning rate = 0.001. The
He normal initializer is used for initializing kernel weights
in all segmentation models, and each model is trained from
scratch for 50 epochs.

C. RESULTS & DISCUSSION
The performance of segmentation models for each IHC
biomarker is evaluated qualitatively and quantitatively. Qual-
itative analysis of ER, PR, and Ki67 segmentation involves
verifying whether all the immunopositive nuclei are seg-
mented and classified into the correct classes specified in the
ground truth. In HER2, the nuclei and cell membrane need
to be accurately segmented without obscuring each other.
To our knowledge, no automated methods for molecular sub-
typing based on all four IHC images have been found in the
literature, and thus we compared our results to state-of-the-
art segmentation models in each biomarker category. For ER
and PR, we compared the result of our improved LadderNet
with the state-of-the-art HScoreNet [18]. ForKi67 andHER2,
the segmentation results are compared with U-Net based

FIGURE 4. Qualitative analysis of the immunopositive cell segmentation:
(a) Biomarker image samples of ER, PR, Ki67 & HER2 (from top),
(b) Ground truth, (c) Predicted outcomes from the state-of-the-art
(HScoreNet [18] for ER & PR, and [24], [34] for Ki67 and HER2,
respectively), and (d) Predicted outcomes from the proposed method.

TABLE 5. Pixel-wise evaluation of the segmentation results.

approaches [24], [34] in their respective domains. Fig. 4
shows the segmentation performance of the proposed model
and the state-of-the-art methods. The proposed model results
are closer to the ground truth, and the false predictions across
the subclasses are relatively lesser. Pixel-wise analysis is one
of the popular methods for evaluating semantic segmenta-
tion. The pixel-wise cross-validation results for each IHC
biomarker are reported in Table 5.

Molecular subtyping depends on detecting responses of
cell elements like nuclei and cell membrane to IHC reagents
and estimating the number of nuclei belonging to different
classes is highly significant. Hence, an object-wise evalua-
tion is also performed to check the ability of the model to
predict the cell elements correctly. The object-wise results
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TABLE 6. Object-wise evaluation results.

and the biomarker status prediction performance are shown in
Table 6. The proposed model shows a fair trade-off between
Precision and Recall while detecting the most significant
cell elements in all biomarkers. Correctly estimating the cell
elements leads to a reliable prediction of biomarker status
for each slide and eventually leads to a molecular subtyping
accuracy of 93.3% across all patients.

The encouraging results obtained for the proposed sys-
tem point to the possibility of its further development and
fine-tuning towards routine clinical application. Implementa-
tion of the proposed system in routine clinical practice can be
done via integration with software systems currently in use
with microscopes for slide image acquisition and analysis,
or as an independent application. This system can run on
the same computer system associated with the microscope
in small clinics, or it can be deployed in an intranet or
cloud environment to cater to the needs of large clinics and
distributed chain of clinics. Amendments are required in the
existing pathology procedures to enable the use of such sys-
tems in clinical practice. Regulatory agencies like the USA’s
Food and Drug Agency (FDA) [37] and the UK’s Medicines
and Healthcare Products Regulatory Agency (MHRA) [38]
are already in the forefront of driving such regulatory changes
and clinical process definitions. Generally, AI based mod-
els have the characteristics of incremental and continuous
improvement since such models continue to learn on expo-
sure to more and more labeled samples. Hence, in situ evalu-
ation and fine tuning of the model can go hand-in-hand until
the desired performance is achieved for the system before it
is actually deployed in clinical practice.

V. CONCLUSION
Automatic molecular subtyping of breast cancer leads to bet-
ter prognostication and targeted therapy by avoiding several
issues with the manual procedure. This article proposes a
deep learning-based system for molecular subtyping of breast
cancer using IHC biomarker images. A CNN architecture
is proposed to segment various cell elements from digitized
IHC images of the breast tissues that express the presence
of molecular biomarkers ER, PR, Ki67, and HER2. After
segmentation, post-processing based on connected compo-
nent analysis is performed to count the cell elements that
belong to different classes, followed by the biomarker score

computation. By individually analyzing all four biomarkers
from the same patient, the proposed method emulates the
routine procedure followed by a pathologist while eliminating
the inherent problems in manual analysis. The segmentation
performance of the proposed model is compared with state-
of-the-art approaches and demonstrates the improvement in
the segmentation performance. Being one of the pioneering
attempts to automate molecular subtyping using IHC image
analysis, we see tremendous potential for future enhance-
ments in this task. With more data, it is possible to improve
the segmentation performance further to develop automated
assistive technologies for clinical trials.
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