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ABSTRACT When dealing with clinical text classification on a small dataset, recent studies have confirmed
that a well-tuned multilayer perceptron outperforms other generative classifiers, including deep learning
ones. To increase the performance of the neural network classifier, feature selection for the learning
representation can effectively be used. However, most feature selection methods only estimate the degree
of linear dependency between variables and select the best features based on univariate statistical tests.
Furthermore, the sparsity of the feature space involved in the learning representation is ignored. Goal:
Our aim is, therefore, to access an alternative approach to tackle the sparsity by compressing the clinical
representation feature space, where limited French clinical notes can also be dealt with effectively.Methods:
This study proposed an autoencoder learning algorithm to take advantage of sparsity reduction in clinical
note representation. The motivation was to determine how to compress sparse, high-dimensional data by
reducing the dimension of the clinical note representation feature space. The classification performance of
the classifierswas then evaluated in the trained and compressed feature space. Results: The proposed approach
provided overall performance gains of up to 3% for each test set evaluation. Finally, the classifier achieved
92% accuracy, 91% recall, 91% precision, and 91% f1-score in detecting the patient’s condition. Furthermore,
the compression working mechanism and the autoencoder prediction process were demonstrated by applying
the theoretic information bottleneck framework.
Clinical and Translational Impact Statement— An autoencoder learning algorithm effectively tackles the
problem of sparsity in the representation feature space from a small clinical narrative dataset. Significantly,
it can learn the best representation of the training data because of its lossless compression capacity compared
to other approaches. Consequently, its downstream classification ability can be significantly improved, which
cannot be done using deep learning models.

INDEX TERMS Clinical natural language processing, cardiac failure, autoencoder, sparsity.

I. INTRODUCTION
Clinical decision support systems (CDSS) are continuously
being developed and play a crucial role in promoting a
personalized healthcare system, as more and more data are
collected and stored continuously [1]. These data represent
decisive points in advancing and enhancing the efficiency and
effectiveness of CDSS operations. Predictive models have
been developed based on the latter for preventive treatment
and patient diagnosis, culminating in intelligent, precise, and
timely healthcare improvement [2]. In one notable example,

a recent study [3] analyzed the effect of CDSS on cardiovas-
cular risk in 18,578 patients in 70 community health centers.
In that case, CDSS significantly reduced the risk of cardio-
vascular disease among vulnerable high-risk patients.

Following the above successes, a CDSS was developed at
CHU Sainte-Justine Research Center (CHUSJ). The system
monitors pediatric intensive care management for all patients
ranging in age from 0 to 18 years old. Fig. 1 illustrates two
fundamental processes in the CDSS workflow at CHUSJ,
which involve collecting and processing critical care data.
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FIGURE 1. Workflow demonstration of a clinical decision-support system at CHUSJ hospital.

First, clinical data are collected and stored in a clinical
data warehouse. The data processing unit is then system-
atically aggregated and processed to convert raw data to a
machine-readable form in the data processing unit. This pro-
cess helps analyze the unknown data interpretation and pre-
sentation. The CDSS can thus integrate the advanced analytic
result of the data processing unit and learning algorithms;
then, clinicians can adequately use the CDSS to guide early
intervention and prevention for healthcare management.

One of the goals of the CDSS system in CHUSJ is auto-
matically screening the data from electronic medical records,
chest X-rays, and other data sources, which can increase
the diagnosis rate and improve the management of acute
respiratory distress syndromes (ARDS) in real time. Usually,
the diagnosis of ARDS was delayed or missed in two-thirds
of patients, and the diagnosis was missed completely in 40%
of patients [4]. Three main conditions need to be detected
to diagnose ARDS: hypoxemia (low blood oxygenation),
presence of infiltrates on chest X-Ray and absence of cardiac
failure [5]. Our research team has developed algorithms for
hypoxemia [6], chest X-ray analysis [7], [8], and identifica-
tion of the absence of cardiac failure [9], [10]. Technically,
it successfully carried out extensive analyzes of machine
learning algorithms (ML) aimed at detecting cardiac failure
from clinical narratives using natural language processing
(NLP) based on such algorithms [9]. The study’s design was
to detect a cardiac failure in a patient’s first 24 hours of admis-
sion using admission notes and evolution notes within the first
24 h. As summarized in Fig. 2, the study included the clinical
notes of 1386 patients classified by two independent physi-
cians using a standardized approach. Then, a comparative

analysis was performed to discover the effective combination
of various representation learning techniques with different
machine learning classifiers. Consequently, it confirmed that
the framework proposed herein outperforms other combi-
nations with an overall classification performance of 89%
accuracy, 88% recall, and 89% precision by applying a multi-
layer perceptron neural network (MLP-NN) classifier in com-
bination with a term frequency x inverse document frequency
(TF-IDF) learning representation.

These results were made possible by the contributions of
the feature selection process, also known as SelectKBest. The
advantage of the process was proven for supervised models
as the classifier performance brought overall improvements
of up to 3-4% over the case without the feature selection.
It is obvious to understand because there are fewermisleading
features; the classifier accuracy is improved after selecting
the best K features. Unfortunately, the SelectKBest feature
selection continues to have certain limitations in the proposed
framework. One reason is that the feature selection method
is based on a statistical test that estimates the degree of lin-
ear dependency between random variables. Then, it removes
irrelevant features and ignores the correlation between data
elements. As a result, more samples are required for an
accurate estimation and avoidance of overfitting, which is not
possible in our case [11]. Furthermore, SelectKBest does not
deal mainly with the sparsity of the feature space in the note
representation matrix [12]. Consequently, the sparsity that
characterizes the learning representation space is ignored.

In healthcare, the autoencoder algorithm (AE) has lived up
to its promises and has shown its effectiveness in improv-
ing outcomes for efficient clinical decision-making. AE can
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FIGURE 2. The clinical NLP based on machine learning for patients’ condition prediction at CHUSJ hospital [9].

find informative transformed feature vectors through the
compressed latent representation. For example, a study [13]
demonstrates an efficient framework for automatically learn-
ing compact representations from heterogeneous raw data
sources from patient health data. In addition, AE can improve
the predictability of the six different learning models to detect
Parkinson’s classification [14]. Another study [15] shows that
AE improved the performance of a novel outlier detection
mechanism by retrofitting word vectors for the biomedical
ontology matching task. In addition, having rich and accurate
clinical data is very challenging [16] because the acquisition
and sharing of medical data face a significant obstacle in the
form of privacy issues and the sensitive nature of the data.
AE can be applied for sparsity reduction in clinical repre-
sentation feature to tackle problems related to limited data
availability. It could effectively discover the low dimensional
embeddings and reveal the underlying effective manifold
structure from a sparse high dimensional document-term
matrix [17].

Therefore, the present study examines alternatives to fea-
ture selection and focuses mainly on compressing data with-
out loss of information by employing an AE algorithm.
First, the study aims to achieve a better feature space with-
out sparsity. The authors are interested in compressing the
sparse TF-IDFmatrix and reducing its dimensions to improve
the efficiency of the feature space representation. Notably,
a neural network is incorporated to learn efficient codings
of unlabeled data to address the issues caused by sparse
vectors generated from the TF-IDF representation feature
space for clinical notes. Then, the compressed vector space
from the TF-IDF matrix is fed into the classifiers as a refined
input. Finally, ML classifiers conduct the learning process to
draw comparative results, which are then used to evaluate the
classification performance.

Our study confirms that AE effectively compresses the
vector space of the TF-IDF representation for clinical nar-
ratives into a lower dimension. The proposed approach can
retain the critical feature by capturing the correlation between
attributes during the training process, hence; the downstream

classification task can generally be increased to 2-3% for each
evaluation criterion. Furthermore, the value of AE behaviors
in a limited data set is also highlighted. The working mecha-
nism of the AE is analyzed and explained how the AE works
to compress data through the encoder and decoder. Based
on the information-theoretic framework, the working mech-
anism of the AE is to optimize the information bottleneck
during the compression and prediction process, respectively.
As a result, the behavior of AE in limited data is exactly in
harmony with such cases where there is much larger data
availability.

Section II will discuss the materials and methods. The
experimental results and discussion then will be discussed
in section III, IV. Finally, section V provides concluding
remarks.

II. MATERIALS AND METHODS
A. DATA SPARSITY CHALLENGES
In numerical analysis, a sparse matrix or array is a matrix
in which most elements are zero [18]. The number of
zero-valued elements divided by the total number of elements
(e.g., m × n for a m × n matrix) is called the matrix sparsity
(equal to 1 minus the density of the matrix). Using these def-
initions, a matrix will be sparse when its sparsity is more sig-
nificant than 0.5. In our case, after the research ethics board
approved the research protocol from the Research Center
of the Sainte-Justine Hospital, the data were retrospectively
extracted from the electronic medical record. There are more
than 580000 (unigrams) word count from 5444 single lines of
notes with 1941 positive cases (36% of total) and 3503 neg-
ative cases. All the notes are short narratives, and detailed
description characteristics can be found in the Supplementary
Materials from [9]. The longest n-gram is over 400 words, but
most n-gram length distribution is between 50 and 125 words.
The average length of the number of characters is 601 and
704. And the average size of the number of digits is 25 and
26 for the positive and negative cases, respectively. Then, the
data was pre-processed by applying the stop-word removal
to exclude the minor information. In addition, the negation

VOLUME 11, 2023 471



T.-D. Le et al.: Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes Representation Learning

in medical expression was used to add the negative meaning
from French notes. For the vital numeric values (heart rate,
blood pressure, etc.), all numeric values for vital sign values
were kept (nearly 4% of the notes), and the decoding for
those number values was used to decode the numeric values.
Finally, the feature selection, SelectKBest, was used to select
the top best ‘k=20000’ of the vectorized features for the
TF-IDF representation learning feature space. Hence, there
is a matrix of features of (5444 × 20000). It is calculated by
the Eq. 1, and the sparsity of the matrix is greater than 0.9.

It confirms that the representation matrix from the TF-IDF
is sparse because every word is treated separately. Hence, the
semantic relationship between separated entities is ignored,
which would cause information loss. Although the combi-
nation of TF-IDF and MLP-NN consistently outperformed
other combinations with overall performance and was the
most stable under all circumstances [9], the sparsity remains.
Therefore, the motivation is to compress the sparse, high-
dimensional data by reducing the dimension from the TF-IDF
feature space of clinical notes representation

sparsity = 1 −
count_nonzero(TF-IDF)

total_elements_of_(TF-IDF)
(1)

B. AUTOENCODER LEARNING ALGORITHM
An AE was originated by [19] to solve a nonlinear dimen-
sional reduction; later, AE was famously promoted by
training an MLP-NN with a small central layer to recon-
struct high-dimensional input vectors [20], [21]. Technically,
AE takes an input X ∈ RN×D and maps it to a latent
representation Z ∈ RN×M via a nonlinear mapping. Let us
call x ∈ X , and z ∈ Z , then it will be as:

z = g(Wx + b) (2)

W is a weight matrix during training, b is a bias vector, and
g(·) stands for a nonlinear function, such as the logistic sig-
moid function or a hyperbolic tangent function. The encoded
feature representation x is then used to reconstruct the input
x by reverse mapping, leading to the reconstructed input x ′:

x ′
= f (W ′z+ b′) (3)

where W ′ is usually limited to the form of W ′
= W T , i.e.,

the same weight is used to encode the input and decode the
latent representation. f (·) is also a non-linear function. The
AE tries to learn a function fW ′,b′ (x) ≈ x ′. In other words, it is
trying to learn an approximation of the identity function for
the output x ′ that is similar to x. Still, by placing constraints
on the network, such as limiting the number of hidden units,
interesting data structures can be discovered. Then, the recon-
struction error is defined as the Euclidean distance between
x and x ′ that is constrained to approximate the input data x
(that is, minimizing ||x − x ′

||
2).

L
(
x, x ′

)
=

∥∥x − x ′
∥∥2

=
∥∥x − f (W ′ (g(Wx + b)) + b′)

∥∥2 (4)

For the reconstruction evaluation between the original data
x, and the reconstructed output x ′, the statistical measure R2i
will be applied for the ith variable of xi, and it can be computed
as:

R2i = 1 −

∑m
j=1(xj,i − x ′

j,i)
2∑m

j=1 x
2
j,i

(5)

Since R2 = 1 will be a perfect reconstruction. Consequently,
the reconstruction will be evaluated by how much the value
of R2 is close to 1.

Ideally, an effective AE can be designed and trained based
on the minimization of reconstruction error from Eq. 4 and
maximization of the reconstructed effectiveness from Eq. 5;
however, it is substantially based on its width (number of
neuron units or latent representation dimension M ) and its
depth (number of hidden layers). First, conventional AE relies
on the dimension of the latent representation z being smaller
than that of the input x (M < D), which means that it tends
to learn a low-dimensional compressed representation. The
study [22] presents methods to learn the decoder function
f (·) as a learnable function through the reconstruction error
in Eq. 4 in several representation learning approaches. It is
concluded that the compression depends on dimensionM but
less on dimension D. Second, it has been shown that training
a neural network-based by increasing the number of hidden
layers (in combination with an increase in the number of
neuron units per layer) achieves less consistent results [23].
Therefore, a small and simple AE will be used in our case.
An AE with three layers (one input layer, one hidden layer,
and one output layer) is employed. Mainly, to reduce the
parameters from the latent space of the AE, the regularization
technique is applied from study [24] to remove redundant
parameters.

After training, the weight matrix from the hidden layer as
a pre-trained tool is used. A classifier subsequently uses this
pre-train latent space representation to perform the binary
classification, as shown in Fig. 3. For the classifiers, it is
essential to have consistency in evaluating the proposed
approach’s performance. Then, six different ML classifiers,
including Random Forest (RF), Multinomial Naive Bayes
(MultinomialNB), Logistic Regression (LR), Support Vector
Machine (SVC), Gaussian Naive Bayes (GaussianNB), and
Multilayer Perceptron Neural Network (MLP-NN) are used.

Furthermore, to understand the dynamics of learning and
the behavior of AE, particularly in our case with limited
data, the behavior of AE during the training process from the
encoder and decoder is analyzed. Technically, it is captured to
understand how the AE can retain the information during the
compression process. To do that, the information-theoretic
quantities and their estimators are applied. The technique is
based on information-theoretic learning, which computes and
optimizes information-theoretic descriptors named mutual
information. The information-theoretic framework [25], [26],
[27] has been utilized for a detailed theoretical explana-
tion of an AE. These studies rely on the ‘‘information
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FIGURE 3. Schematic structure of an AE-based for compression and
prediction.

bottleneck’’ [28], [29] to understand and estimate how the
AE works by quantifying its information plane coordinates.
The information bottleneck can be used as an optimal bound
that maximally compresses the input x, for a given mutual
information on the desired output x ′. There are comprehen-
sive overviews of recent studies [30], [31], [32]. Technically,
the output activation is firstly binned as stated in [29], and
each hidden layer i (1 ≤ i ≤ K ) is treated as a single variable
Ti. Then it will be able to estimate the mutual information
between all the hidden layers and the input/output layers by
estimating the joint distribution P(X ,Ti) and P(Ti,X ′), and
use them to calculate the mutual information of the encoder
(between the input X and the hidden layer Ti), and the mutual
information of the decoder (between the hidden layer Ti and
the desired output X ′) using the following equations Eq. 6, 7.
Finally, the good representation T (X ) can be learned, which is
characterized by its encoder and decoder distribution P(T |X ),
and P(X ′

|T ), respectively, to effectively map the input pat-
terns X to a good prediction of the desired output X ′.

I (X;Ti) =

∑
x∈X ,t∈Ti

P(x, t) log
( P(x, t)
P(x)P(t)

)
(6)

I (Ti;X ′) =

∑
t∈Ti,x ′∈X ′

P(t, x ′) log
( P(t, x ′)
P(t)P(x ′)

)
. (7)

III. EXPERIMENTAL IMPLEMENTATION
To assess the performance of our method, metrics including
accuracy, precision, recall (or sensitivity), and F1 score were
used [33]. These metrics are defined as follows.

Accuracy (acc) =
TP + TN

TP + TN + FP + FN

Precision (pre) =
TP

TP + FP

Recall/Sensitivity (rec) =
TP

TP + FN

F1-Score (f1) =
2⋆Precision⋆Recall
Precision + Recall

TABLE 1. Hyperparameters Summary for AE Trainning.

where TN and TP stand for true negative and true positive,
respectively, and are the number of negative and positive
patients correctly classified. FP and FN represent false posi-
tives and false negatives, respectively, and represent the num-
ber of positive and negative patients incorrectly predicted.

For implementation, the same hyperparameters are used
as from the previous study [9] for all classifiers to have a
consistent evaluation of the performance: avoiding overfitting
by applying the dropout (p=0.25) [34], and the GlorotNormal
initializer [35]; balancing the classes by using the Bayes
Imbalance Impact Index [36] to deal with the imbalanced
classes. The data was also divided into 60% training, 20%
validation, and 20% testing. The implementation was done
using Python Scikit learn [37] and Keras [38].

There is a tradeoff between the guarantee to identify the
best combination of hyper-parameters and the computation
time. And, for training a neural network, usually, only some
hyper-parameters matter. The others have little impact on the
machine learning model’s accuracy. Based on the study [39],
there are three essential hyper-parameters, including the num-
ber of hidden layers, the number of nodes on each hidden
layer, and the learning rate for the backpropagation algorithm.
With this limited range of hyper-parameters, the grid search
will quickly become feasible to optimize every parameter
simultaneously, including the cross-product of all intervals.
Then, the models can be trained quickly. Further advan-
tages of grid search include easier parallelization and flexible
resource; the equivalent does not hold for Bayesian optimiza-
tion [40]. Therefore, this study used grid search for up to three
hidden layers and 500 neurons per layer, and other hyper-
parameters are summarized in Table 1 for AE training. For
the optimizers, the Stochastic Gradient Descent (SGD) and
Adaptive Moment Estimation (ADAM) was used with small
scalar ϵ, and the forgetting factors for gradients and second
moments of gradients, β1 and β2. Then, a combination with
the highest estimations was considered the best performance.

IV. RESULTS AND DISCUSSION
To deal with sparsity, many researchers focus on dimension
reduction. There are two most popular techniques, namely
Linear Discriminant Analysis (LDA) and Principal Compo-
nent Analysis (PCA), for their simplicity among other dimen-
sion reduction techniques [41], even with a large dataset [42].
Especially when the training data set is small, and the
PCA-supervised discriminative approach can outperform,
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TABLE 2. A comparison performance of feature selection approaches.

it is also less sensitive to the variability of the training
sets [43]. The study [44] shows that PCA can increase the
performance of differentML classifiers for predicting cardiac
failure.

It can be said that the classifiers performed better after
applying LDA to the linear data set. If the classes are non-
linearly separable, the LDA cannot effectively discriminate
between these classes [45]. Otherwise, in the case of lin-
ear data, LDA can reduce the dimensionality and be used
in different classification tasks [46]. However, the TF-IDF
enhanced with the LDA approach did not allow the classifier
to score high accuracy compared to the other two methods
when smaller datasets were fed [47]. One of the reasons was
explained in [42]; the results showed that ML algorithms
with PCA produce better results when the dimensionality of
the data sets is high. When the dimensionality of datasets
is low, the ML algorithms without dimensionality reduction
yield better results. Another possible way is using an unsu-
pervised generative Latent Dirichlet allocation to estimate
the topic distribution (topics) by using observed variables
(words). Latent Dirichlet allocation shows the effectiveness
of overcoming the sparsity from the feature space matrix of
TF-IDF [48]. It can also help to make texts more semantically
focused and reduce sparseness [49]. However, its selection
of characteristics does not improve performance with small
data [50].

The possibility of PCA for sparsity reduction was explored
because of the advantages mentioned above. The training was
tuned and performed, and the best performance was achieved
by decreasing to 2 principal dimensions. The completed test
has an accuracy of 88%, a precision of 88%, a recall of
86%, and an f1-score of 87%. Furthermore, following the
recommendation of [51], a statistical method, Neighborhood
Component Analysis (NCA) [52], was also used to reduce
the dimensions of the data set. NCA has shown that it works
well on a small dataset for the medical domain. However,
the result is slightly better than PCA; NCA only achieves an
accuracy of 89%, a precision of 88%, a recall of 89%, and an
f1-score of 88%. From Fig. 4, 5, it can be easily seen the fea-
tures overlap; hence, the classification task hardly separates
the boundary for the binary classification. Neither PCA nor
NCA can improve classification performance summarized in
Table. 2. It confirms the limitation of these approaches by
linearly approximating a feature subspace to maximize class
separability.

Furthermore, the non-linear activation function AE
performs best on compression of the sparse TF-IDF repre-
sentation space. This study compares the effectiveness of
reconstruction based on the reconstruction evaluation from
Eq. 5 between PCA, linear activation functionAE (LAE), AE,

FIGURE 4. Visualization of the representation space for 2 components
from Principle Component Analysis (PCA).

FIGURE 5. Visualization of the representation space for 2 components
from Neighborhood Component Analysis (NCA).

and stacked AE (SAE) [53]. The results confirm that the PCA
and LAE have the same performance, achieving about 80%
of the reconstruction. When the activation of AE is linear,
then PCA and LAE are identical. There is no improvement if
the SAE is used to extract the features in cases of limited
data. Besides, the effectiveness of non-linear activation in
AE is proved when it can maximally reconstruct up to 86%
compared to the original spare data. It is one of the advantages
of nonlinear transformation from AE, trained by a neural
network, which is superior to the linear transformation from
other approaches.

Overall, the downstream classification performances are
effectively improved by feeding the compressed feature space
output from the AE to ML classifiers. Fig. 6 shows the loss
during the training and validation process by optimizing the
loss function from Eq. 4 for training the AE; both training and
validation losses have quite-smooth convergence. After suc-
cessfully training the AE, there is a pre-trained compressed,
low-dimension feature space. Then, machine learning classi-
fiers are employed to perform the classification and evaluate
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FIGURE 6. Loss for training and validation for the AE algorithm.

FIGURE 7. Confusion matrix of the MLP-NN classifier, showing the
classification of positive (1) and negative (0) between predicted and
actual labels.

the performance. Instead of performing onMLP-NN, LR, and
GaussianNB, it is also tested with other classifiers such as
Random Forest (RF), Multinomial Naive Bayes, and Support
Vector Machine. The best performance from MLP-NN clas-
sifier is achieved at 92%, 91%, 91%, and 91%, respectively,
for accuracy, precision, recall, and f1 score. And the detailed
confusion matrix showing the classification of positive cases
(1) and negative cases (0) between predicted and actual labels
for the holdout set is shown in Fig. 7. The experimental results
are improved to 2-3 % for each evaluation criterion from [9],
which had a general classification performance in a sparse
TF-IDF feature space at 89% accuracy, 89% precision, 88%
recall, and 88% f1 score. It confirms that the AE method
can deal with sparsity by compressing the TF-IDF feature
space. Consequently, it improves the downstream task per-
formance of the MLP-NN classifier and is more robust than
other methods. Recent work [54] also confirmed a similar
effect, but it was applied to a different dataset type and larger
data availability. These results confirm the effectiveness of
compressing the feature representation learning space into a
low-dimensional representation using the AE algorithm. The
robust transformation can outplay the deep learning models
with limited data resources.

Cross-validation was further used to accurately estimate
the model’s predictive performance and determine the reli-
ability of ML algorithms [55]. Fig. 8 shows the accuracy
comparison, using a box plot, of the 5-fold cross-validation.

FIGURE 8. A comparison evaluation of the box plot 5-fold
cross-validation results for classifiers performance.

It can be seen that the best three classifiers are MLP-NN, LR,
and GaussianNB, respectively. All their median accuracy is
over 80%; mainly, the MLP-NN classifier’s median accuracy
is the highest, over 90%. While there is not much difference
between LR and GaussianNB, the median accuracy is around
82-83%. In addition, MultinominalNB, RF, and SVC follow
right after as the threemost minor performances, respectively,
with median accuracy lower than 75%. Second, although the
models’ performance is assumed that the returns of accuracy
follow a normal distribution, in reality, the returns are usually
skewed. Notably, there is two skewness of the accuracy distri-
bution for all classifiers. There is a negatively skewed distri-
bution (skewed left) from the MLP-NN, LR, and RF, which
may expect frequent smaller accuracy than their median in
practice. In contrast, it should be expected to have higher
accuracy than the median from the GaussianNB, Multinom-
inalNB, and SVC because they all have positively skewed
distribution (skewed right). Lastly, the dispersion distribu-
tion for most classifiers’ accuracy is quite similar because
the variability range contains all the smallest and largest
accuracy values at the end of the whiskers. However, there
is an exception for the LR and MultinomialNB classifiers,
which have values outside the box plot’s whiskers. It means
that the two classifiers are less stable and reliable. In short,
MLP-NN gives the best performances because of its high
and stable accuracy for the model generalization validation;
GaussianNB follows right after; LR is comparatively similar
to GaussianNB. And all other classifiers are less effective.

Furthermore, an important aspect of performance analysis
is that the proposed approach still shows its advantageous
capacity to increase data availability. The study investigated
the effectiveness of AE for compressing feature space and
studied how algorithm performance varies with the increasing
of training examples from the compressed feature space. The
performance of two classifiers, GaussianNB and MLP-NN,
was assessed to evaluate their effectiveness. When it possibly
increases data availability in the future, whether the classifier
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FIGURE 9. Performance of classifiers in case of increasing the training size: GaussianNB (left) and
MLP-NN (right).

improves performance or not. In this case, study [56] con-
firms that when the number of training examples increases,
the generative model based on Naive Bayes would expect
to perform better. However, our results are in contrast to
that confirmation. Fig. 9 shows the GaussianNB (left) and
MLP-NN (right) training and validation scores when increas-
ing the number of training examples. Technically, the Gaus-
sianNB reaches a plateau of performance after around the
2000th training examples with the same dataset size, and
the cross-validation score could not improve. It should be
expected that this is one of the limitations of GaussianNB,
namely the linear discrimination characteristic for a real-
world dataset, discussed in [57]. In contrast, the MLP-NN
shows improvement with the increasing size of the dataset.
Its cross-validation score gradually increases from the point
at 500th to the 2500th training examples; especially, the
slope shows no signs of decreasing after reaching the max-
imum number of the training example. In short, GaussianNB
shows improvement, but not as much as the MLP-NN, and
reaches a plateau more quickly. It can be confirmed that
our approach with MLP-NN is still applicable when data is
possibly increased and continually improves its classification
performance.

Moreover, the behavior of AE in limited data is in harmony
with more significant data cases based on the information-
theoretic framework. The behavior of AE was analyzed, and
the technique was based on an information-theoretic frame-
work, as mentioned in Eq. 6, and 7. It aims at understanding
how the AE behaves during the compression process by
analyzing the mutual information of each hidden layer from
the encoder and decoder. Generally, this type of analysis has
been performed for a larger data set and has mainly focused
on other data sources compared to our case; such as com-
puter vision [58], medical imaging [59], and genetics [60].
The analysis for two AE models was performed concerning
various hidden layers (three hidden layers and five hidden
layers). As shown in Fig. 10, there are two phases of the
information plane in each hidden layer of the three-layer and
five-layer cases. It is noted that from left to right, it illustrates
the behavior of each hidden layer. And in each hidden layer,
from top to bottom, it captures the mutual information for

FIGURE 10. The evolution of the layers with epochs in the information
plane for three hidden layers (top) and five hidden layers (bottom).

each training epoch. Finally, all trajectories follow a simi-
lar path during the learning process, eventually converging
and getting closer to the optimal points in the bottleneck
bound.
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Specifically, it can be divided into two phases for the
working mechanism of AE in Fig. 10. The first phase is
called the drift phase, where the AE attempts to learn the
latent representation T (X ) with a smaller dimension than
the original data X . During the compression, there will be
information loss, which is why it can be seen the trend of
decreasing the mutual information of encoder I (X;T ). At the
end of this step, there will be a compressed latent represen-
tation T (X ), and optimal mutual information I (X;T ). Then,
the second phase is named the diffusion phase. Within this
step, the AE tries to find the reconstructed data X ′, which
is optimally close to the original data X . The AE maps the
latent representation T (X ) to the reconstructed data X ′ by
maximizing the mutual information of the decoder I (T ;X ′).
By doing that, there is an increasing trend of I (T ;X ′); until
I (T ;X ′) reaches its optimal bound for each layer. And the
optimal mutual information will get smaller when AE has
more hidden layers. In the case of three hidden layers, the
optimal mutual information of the encoder I (X ,T ) is larger
by 6.0 but is maximum at 5.5 for five hidden layers. It is
the same for the optimal mutual information of the decoder
I (T ,X ′) at nearly 7.0 and 6.5 for three and five hidden
layers, respectively. These results illustrate the mechanism
of an AE is to optimize the information bottleneck trade-
off T (X ) during compression and prediction for each layer.
Remarkably, it is trained on a small and sparse dataset; still,
it proves its effectiveness by compressing andmaximizing the
mutual information from the TF-IDF feature space.

V. CONCLUSION
First, this study has shown that the participation of an AE
in training can effectively compress the feature space of
TF-IDF. The AE with a nonlinear activation function can
achieve the reconstruction capacity at 86% compared to the
original data. It outperforms other approaches such as PCA,
NCA, LAE (AE with linear activation function), and stacked
AE. It concludes that AE can learn the best representation of
the training data due to its lossless compression capacity.

Additionally, the AE also works well with a small clinical
dataset, especially in harmony with the information-theoretic
mechanism of an AE for a larger dataset and from different
data sources. It has two learning phases; the encoder’s drift
phase by trying to compress the data. The second phase
is related to the diffusion phase by maximizing the mutual
information process in the decoder. Consequently, it shows
the effectiveness of lost information in compressing the data.
By doing so, the interpretability can also be captured as com-
prehensibility and transparency of the proposed model for
decision-making in our CDSS system recommended by [61].

The second step involves using an MLP-NN to predict the
health status based on the compressed feature space. It has
been shown that the sparsity reduction for the feature space
strongly affects the classifier performance in the downstream
task. AE learning algorithm effectively leverages the sparsity
reduction. As a result, it helps the MLP-NN classifier achieve
92% accuracy, 91% recall, 91% precision, and 91% f1-score.

This efficient ensemble model can outperform all alter-
native approaches: GaussianNB, LR, RF, MultimonialNB,
and SVC.

The proposed approach is still proving successful in cases
where data availability is increased. The MLP-NN effec-
tively achieves a better performance after the GaussianNB
reaches its maximum capacity. In future work, the optimal
parameters will be chosen, and our method will be val-
idated on more datasets. The weak supervision approach
will be explored, as it recently proved its effectiveness in
4,000 cardiac magnetic resonance sequences with imperfect
labels [62]; because it can maximize unlabeled data at scale,
which is costly to annotate.

Finally, the CDSS is still under development. By combin-
ing this NLP algorithm to detect the absence of heart failure
with the two other algorithms already developed on hypox-
emia detection [6] and chest X-ray analysis [7], [8], the next
step of our study is to implement the resulting CDSS (inte-
gration of the three algorithms) within the cyberinfrastructure
of the pediatric intensive care unit (PICU) at Sainte-Justine
Hospital to diagnose ARDS early. We will then verify the
ability of the CDSS to detect ARDS prospectively once the
integration with the PICU e-Medical infrastructure will be
completed.
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