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ABSTRACT  Electrocardiogram (ECG) signals are often used to diagnose cardiac status. However, most
of the existing ECG diagnostic methods only use the time-domain information, resulting in some obviously
lesion information in frequency-domain of ECG signals are not being fully utilized. Therefore, we propose a
method to fuse the time and frequency domain information in ECG signals by convolutional neural network
(CNN). First, we adapt multi-scale wavelet decomposition to filter the ECG signal; Then, R-wave localization
is used to segment each individual heartbeat cycle; And then, the frequency domain information of this
heartbeat cycle is extracted via fast Fourier transform. Finally, the temporal information is spliced with the
frequency domain information and input to the neural network for classification. The experimental results
show that the proposed method has the highest recognition accuracy (99.43%) of ECG singles compared with
state-of-the-art methods.

INDEX TERMS Time—frequency domain fusion, convolutional neural networks, ECG diagnosis.

Clinical and Translational Impact Statement— The proposed ECG classification method provides an
effective solution for ECG interrogation to quickly diagnose the presence of arrhythmia in a patient from
the ECG signal. It can increase the efficiency of the interrogating physician by aiding diagnosis.

Arrhythmia, a cardiovascular disease (CVD), threat to human
life and health [1], [2], [3], [4], [5], and it is the leading
cause of death and disability occurrence worldwide, along
with cerebrovascular disease [6]. CVD tops the list of causes
of premature human death in more than seventy countries
worldwide [7], [8]. Early detection of patients with critical
arrhythmia symptoms can be of great help in treating patients
with cardiovascular disease and avoiding more serious conse-
quences [9], therefore, the diagnosis, prevention, ambulance
and treatment of cardiac diseases are crucial issues in the field
of cardiology.

The ECG signal has a more intuitive regularity. It rep-
resents the electrical activity of the heart [10]. The signal

contains a great deal of biological health information [11].
The ECG signal can be used to diagnose whether the test sub-
ject has ventricular atrial hypertrophy, myocardial ischemia
and arrhythmias [12], while the ECG signal is easier to be
detected than other bioelectrical signals. Therefore, ECG
signals became one of the first biological signals studied by
humans and applied in medical clinics [13]. Many studies
have been conducted on the recognition of heart health status
based on ECG signals [14], [15], [16], [17], [18]. The waves
in the ECG wave cluster are named in alphabetical order
and are P, Q, R, S, T, and U. The shape, amplitude, and
duration of these waves indicate different information about
the state of the heart. The P wave is generated by depolar-
ization of the atria, and the QRS wave group is generated
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by depolarization of the ventricles. The T and U waves arise
from repolarization of the ventricles. Traditionally, the ECG
diagnosis is made by the specialist by observing the infor-
mation of wave clusters in the patient’s ECG. For example,
when the duration of the QRS wave cluster is too long, the
patient may have a bundle branch conduction block [19].
When abnormal changes are produced in the ST wave cluster,
it may indicate the presence of diseases such as myocardial
infarction or angina in the patient [20]. However, traditional
ECG diagnosis methods rely on physician expertise and
require a complex feature extraction process [21]. Therefore,
more deep learning methods are used for the classification
of ECG signals. Cui et al. [22] used convolutional neural
network (CNN) and support vector machine (SVM) to clas-
sify ECG signals, thereby to diagnosis the status of heart.
Zeng et al. [23] performed variational pattern decomposi-
tion (VMD) of the ECG signal and fed it into an artificial
neural network (ANN) to achieve the identification of five
heartbeat types. Jikuo et al. [24] proposed a novel convolu-
tional neural network with a non-local convolutional block
attention module (NCBAM) for ECG signal classification of
single heartbeat cycles. Subasi et al. [25] used an iterative
relief and neighborhood component analysis (NCA) based
feature selection approach for ECG signals. The final features
were fed into a deep neural network (DNN) to obtain good
diagnostic results. Sinha et al. [26] extracted spectral coher-
ence index (SCI) and phase coherence index (PCI) from the
spectrum of 12-lead ECG signals, then fed the features into
a framework integrated with SVM classifier for myocardial
infarction diagnosis of the heart. Amrani et al. [27] used
very deep convolutional neural network (VDCNN) for feature
extraction of ECG signals and reduced the model computa-
tion by feature fusion and finally classified the ECG signals
with better results and generalization ability.

These studies use various methods to extract features from
ECG signals. Finally, the extracted features are used to diag-
nose the heart health status through classifiers or neural net-
works. However, these methods are basically based on the
time domain or frequency domain information of the ECG
signal, without considering the information in both time and
frequency domains of the ECG signal. Therefore, a method
based on convolutional neural network to fuse the time and
frequency domain information of ECG signals for heart status
diagnosis is proposed. Firstly, the filtering of ECG signals
is completed by wavelet decomposition. Next, the individual
heartbeat cycles are extracted by the R-wave position of each
heartbeat cycle. A fast Fourier transform is performed on
the extracted heartbeat signal to obtain its frequency domain
information. The time domain signals are spliced with the
frequency domain signals and then fed into a one-dimensional
convolutional neural network (1D-CNN) for fusion and fea-
ture extraction. Finally, the feature matrix is fed into a fully
connected neural network to complete the classification.

The main contributions of this paper are as follows:

1. A novel heartbeat cycle localization algorithm is
proposed. The algorithm can simultaneously calibrate the
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R-wave crest positions of normal ECG signals and diseased
ECG signals. This allows each heartbeat cycle in the ECG
signal to be better segmented, thus improving the accuracy of
subsequent classification.

2. The fast Fourier transform is introduced to extract the
frequency domain signal of the heartbeat cycle. The perfor-
mance of single heartbeat cycle in both time and frequency
domain perspectives is fused by CNN to classify ECG signals
in an integrated manner. The classification accuracy of single-
heartbeat cycle ECG signals is improved to exceed the latest
methods.

3. A shallow layer CNN is used to keep the size of the
model small and to classify ECG signals with limited hard-
ware resources, and we use a convolutional filter with a large
sensory field and a small step size. This results in an improved
quality of feature extraction with a guaranteed shallow layer
network. This model is suitable to be deployed in small
devices, which provides an idea for miniaturization of ECG
signal-assisted diagnostic devices.

Il. OVERVIEW

A. AUTOMATIC DIAGNOSIS OF ECG SIGNALS

Traditional diagnosis of heart disease by ECG signals
requires a large amount of ECG monitoring data and a highly
qualified physician. Automatic classification of ECG signals
can save medical resources and increase efficiency. Numer-
ous studies have been conducted on the automatic classifi-
cation of ECG signals. Such research mainly includes the
feature extraction and classification of ECG signals.

Eigenvalue extraction of the ECG signal is to extract some
of the key information of the ECG signal that contains the
heart activity, so that the ECG signal can be represented in
a lower dimension. This information can be used to diag-
nose ECG signals with high accuracy with less informa-
tion. The traditional feature extraction methods are pattern
recognition methods, among which the main methods are
wavelet transform [28], frequency analysis, principal compo-
nent analysis [29], independent component analysis [30], etc.
In recent years, with the development of artificial intelligence
technology, a large number of deep learning methods have
been used for feature information extraction of ECG signals,
and the main methods include CNN [31], multilayer percep-
tron (MLP), recurrent neural network (RNN), deep belief
network (DBN) [32], long and short term memory network
(LSTM) [33], gated recurrent unit (GRU) and bidirectional
recurrent neural network (BRNN), etc [34].

In the classification stage of ECG signal classification is
mainly done by various classifiers, such as conditional ran-
dom field (CRF), support vector machine, dynamic Bayesian
network (DBN), neural network and decision tree (DT). The
increasing popularity of deep learning approaches in recent
years, along with the existence of several authoritative ECG
signal datasets online, has led a large number of scholars and
research teams to try to build various neural network models
to solve the automatic ECG signal classification problem.
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B. ECG FREQUENCY DOMAIN INFORMATION
EXTRACTION

The ECG signal is a time-series signal, which is essentially
a voltage signal that changes over time. In the past, the tradi-
tional ECG diagnosis in hospitals was made by observing the
ECG drawn from the time-series ECG signal, and the diagno-
sis was based on whether the ECG drawn from the ECG signal
was a typical shape of a healthy ECG. If the shape deviates
significantly from a healthy ECG, the ECG is considered to be
diseased. However, there are many frequency domain features
in medicine that are associated with certain diseases. When
arrhythmias occur, QRS wave groups change significantly,
leading to abnormal changes in the high-frequency compo-
nents [35]. It follows that the frequency domain features of the
ECG signal can also contain a portion of information about
the pathology that may be difficult to be observed in the time
domain. Therefore, the extraction of frequency-domain infor-
mation from ECG signals can be of great help in discovering
lesion information that is difficult to be observed in the time
domain. Among the methods for frequency domain feature
extraction of ECG signals, the most famous ones are fast
Fourier transform (FFT) and wavelet transform (WT) [36].
The fast Fourier transform turns the time-series signal into
the distribution of each frequency in the frequency domain
by means of an infinitely long trigonometric basis. Its trans-
form represents the maximum amplitude of the signal in
each frequency, but it is not possible to determine the gen-
eration time of the signal in these frequencies. In contrast,
the wavelet transform uses a finite-length wavelet basis, and
the corresponding frequencies and corresponding times are
controlled by the scale and translation of the wavelets, and
the time-frequency spectrum of the signal can be obtained.
The spectrum contains the distribution of each frequency
on the time axis. In addition to extracting the time-frequency
domain information of the signal, the wavelet transform can
also be used for R-wave localization of ECG signals [37].
In this paper, the wavelet transform is used to filter the
original ECG signal and R-wave localization, and the fast
Fourier transform is used to extract the frequency domain
information of the ECG signal.

C. CONVOLUTIONAL NEURAL NETWORKS

A convolutional neural network (CNN) is a deep learning
algorithm generally used for feature extraction of informa-
tion. It is widely used in image processing. Amrani et al.
[38], [39], [40], [41] used CNN with other algorithms for
the processing of Synthetic aperture radar images. A CNN
generally consists of three elements: a convolutional layer,
a pooling layer and a fully connected layer, each layer takes
input from the previous layer and outputs the processed result
to the next layer. The convolutional and pooling layers in
the network are generally combined before and after to com-
plete feature extraction and data dimensionality reduction.
The data is convolved and pooled several times to obtain a
feature matrix. The final result is obtained by feeding it to the
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fully connected layer. Through training, the parameters in the
network are continuously optimized so that the error between
the prediction result and the label is as small as possible.

ill. METHODOLOGY

In this study, the frequency domain information of the ECG
signal is extracted via FFT. The time and frequency domain
information of ECG signal is fused by CNN to classify.
In practical applications, the ECG signals collected in real
time are not calibrated for the R-wave wave crest position.
Therefore, R-wave localization needs to be performed after
the human ECG signal is acquired. Subsequently, the local-
ization information is used to input each complete heartbeat
cycle into the model for diagnosis. Therefore, the research
route is divided into four parts: signal preprocessing, R-wave
localization, frequency domain information extraction, and
ECG diagnostic model construction.

A. SIGNAL PRE-PROCESSING

The ECG signal is a relatively weak signal, with low fre-
quency and amplitude. These characteristics make the ECG
signal to be easily disturbed by various noises during the
acquisition process. Such as the acquisition process, the patch
electrode on the body sliding electrode position changes and
the body’s breathing caused by the movement. Both of these
will cause the ECG signal to produce a certain baseline drift,
so that the regularity of the ECG signal with time related
changes. The variation pattern is very similar to that of a low
frequency sinusoidal function. The involuntary fibrillation of
the body’s muscles can also have an effect on the ECG signal.
This interference is known as myoelectric interference, and
it is often high frequency and irregular. The environment
where the acquisition device is powered can produce electro-
magnetic interference to the device, which is hard to avoid.
Myoelectric and electromagnetic interference tend to mask
small but critical information in the ECG signal.

The ECG signal is mixed with high-frequency, low-
amplitude noise. These noises mask some waveforms of
smaller amplitude in the ECG signal. Such noise interference
can have a significant impact on the subsequent R-wave
localization and frequency domain analysis, and also affect
the final classification accuracy of the model. Therefore, the
original ECG signal should be filtered before the subsequent
work is performed.

Since the noise and signal are mixed together, but they have
large differences in the frequency domain, the information
of different frequencies in the signal can be decomposed
by multi-scale wavelet decomposition. At the same time,
wavelet transform has the feature of considering both time
domain and frequency domain information of the signal,
so it is suitable for processing ECG signals which are non-
stationary signals. The mathematical expression of contin-
uous wavelet transform (CWT) is shown by the following
equation (1).

I -
W r) = 2 / FOv (%) dt (1)
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where, WT («, 7) is the result after wavelet transform, f(z)
is the signal for wavelet transform, ¢ is the time, 1 (t) is the
wavelet mother function, « is the scale of wavelet, and 7 is the
amount of wavelet translation. However, in CWT, the scale
and translation of wavelets are continuously varied. Continu-
ous wavelet transform of ECG signals can lead to results with
excessive redundant information. This has a negative impact
on the denoising and signal reconstruction of ECG signals.
In contrast, the discrete wavelet transform(DWT) is more
suitable to be used for the processing of ECG signals [42].

The discrete wavelet transform needs to discrete transform
the scale a of the wavelet with the translation 7, so that
o = o™, T = nay™,m,n € Z. The DWT is calculated by
the following equation (2).

DWT (m, n) = _/ f@o* w(

If f(n) is a discrete signal, the wavelet transform of it is
given by equation (3)

f(n) =Alf(m] + DI[f (n)] 3

where A is the low frequency component of f (n) decomposed
by the wavelet transform and D is the high frequency compo-
nent of the decomposition. In the decomposition of the signal
using wavelet transform only the low frequency components
of the signal are decomposed, while wavelet decomposition
has excellent performance in the decomposition of the low
frequency part [43].

In this study, we refer to the filtering method in the
paper [44] and use wavelet bases to decompose the signal at
N scales whose process is shown in Figure 1.

A2
A3

FIGURE 1. N-scale wavelet decomposition schematic.

— no

) a (2

The original signal is decomposed and the two highest
frequency components are zeroed to filter out the high fre-
quency interference in the original signal. The low amplitude
portion of the decomposed other high frequency components
is derived from high frequency low amplitude noise, and the
wavelet coefficients in the other high frequency components
that are smaller than the threshold can be set to zero by
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setting a threshold A using soft threshold filtering. Wavelet
reconstruction of the processed DI to DN with AN result in a
noise-removed ECG signal. The threshold A for soft threshold
filtering is calculated as in equation (4).

_ median|D)|
"~ 0.6745 % /2 Tog(C)

where D is the processed wavelet coefficient and C is the
signal length.

“

B. R-WAVE LOCALIZATION

The classification of the ECG signal in this study is done
based on each independent heartbeat cycle. Each QRS fluc-
tuation on the ECG represents one heartbeat, as shown in
Figure 2, and one heartbeat can be located by capturing the
peaks of the R waves. The labeled data from the MIT-BIH
arrhythmia dataset was used in the model training process,
and the location information of the R-wave crest in the ECG
signal was directly obtained, and each heartbeat cycle of
the ECG signal was segmented by this location information.
However, in practical applications, the R-wave positions of
the ECG signal are not labeled, so the R-wave positions in
the ECG signal need to be located before using the model in
this study to classify the ECG signal in order to segment each
individual heartbeat cycle.

R

FIGURE 2. ECG waveform.

The traditional R-wave identification method takes advan-
tage of this property by setting a threshold to identify the first-
order differential data of ECG signals, but this method is only
accurate for typical healthy ECG signals, but the accuracy of
this method is significantly reduced for diseased signals. This
is due to the fact that the slope of the R-wave decreases in
some pathological signals, while many wavelets with slopes
greater than the R-wave are generated elsewhere.

It was found that the energy of the QRS wave is mainly
concentrated in the third scale when the wavelet transform of
the ECG signal is performed, and the R-wave transform on
this scale produces a pair of mode maxima, i.e., a positive
maxima-negative minima pair, and the moment of R-wave
peak taking corresponds to the over-zero point between the
maxima and minima on this scale [45]. At the same time, the
characteristics of the QRS wave positions of the lesion signal
after wavelet transform at this scale are more similar to those
of a typical healthy ECG signal, and most of the interference
of the lesion waveform is filtered out. Using such a method
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has a better performance for segmenting the heartbeat cycle
of the lesioned signal.

In this paper, three scales of decomposition of ECG sig-
nals are performed using db3 wavelet basis. Then the high
frequency component of the third scale, D3, is reconstructed
to obtain fd3. fd3 is used for subsequent R-wave localization.
The process is shown in Figure 3.

FIGURE 3. Wavelet third scale decomposition reconstruction.

However, it has been found experimentally that the R-wave
crest points do not always strictly correspond to the over-zero
points of the maxima and minima at that scale, and there is
often some offset. In this study, the extreme values generated
by the QRS wave group in fd3 are located by sliding window
and setting a threshold. Let the location of the extreme value
be point A. Set the interval width to 2K. Find the value
of the ECG signal f(n) with the largest difference from the
signal mean in the interval around the position of point A.
Set it as Asl, set it as As2 as the previous As/ value, set
the position of this value as point B/, and set B2 as the
position of the previous B/ point. The reason for looking for
the value with the greatest difference from the mean value
of the signal instead of the maximum value is that in some
lesions the R-wave is downward, and it is the trough that
should be looked for instead of the peak. By looking for the
absolute value, it is possible to find the corresponding point
in both cases. Considering the time difference between two
heartbeats, the distance between the position located this time
and the previous position is calculated. When the distance
is less than L, the point that has a larger value in the ECG
signal than the mean value of the signal is taken, and vice
versa, a new heartbeat is considered, and the algorithm flow
is shown in Figure 4.

C. FREQUENCY DOMAIN INFORMATION EXTRACTION
Since some cardiovascular lesions are difficult to be identified
in the time domain representation of the ECG signal, but are
easily detected in the high-frequency part of the frequency
domain. Therefore, the frequency domain information of the
ECG signal is extracted and its time series signal is spliced,
and then fed into a one-dimensional convolutional network
for recognition and classification to improve the accuracy of
recognition.
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FIGURE 4. R-wave localization algorithm flow.
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ConvlD <MaxPool

Input Conv1D

FIGURE 5. Model structure.

Based on the results of R-wave localization, the R-wave
position with the first n-1 and the next 2n data, a total of 3n
data, is extracted into a heartbeat cycle signal to be identified.
The frequency domain information of this heartbeat signal is
obtained by performing FFT of this signal with a frequency of
sampling frequency F using the FFT. Since the transformed
spectrum is centrosymmetric, generally only the first half is
taken to obtain the maximum amplitude of each frequency
from OHz to F/2Hz. The ECG signal is stitched back and forth
with the frequency domain information to form the data to be
identified with a length of 3n+F/2

D. ECG DIAGNOSTIC MODEL BUILDING

With the development of artificial intelligence technology,
more and more scholars have used deep learning techniques
for feature recognition of ECG signals [46], [47], [48],
[49], [50]. CNN generally have both feature extraction and
classification functions. The data is input through the input
layer, then the feature extraction is performed through the
convolutional and pooling layers, and finally the classifica-
tion results are output using the fully connected neural net-
work. The training process of the network model is to update
the values in the convolutional kernel of the convolutional
layer and the weights in the neurons of the hidden layer of
the fully-connected neural network to obtain a model with
high classification accuracy.

Among CNN techniques, 1D-CNN has good feature
extraction for one-dimensional sequential data [51]. This
makes 1D-CNN very suitable and being used for feature
extraction of ECG signals. The 1D-CNN in this paper consists
of an input layer, four convolutional layers, three pooling
layers, a Flatten layer, a fully connected layer, and an output
layer. The wider perceptual field can make the features of
the response more holistic and global, and at the same time
can optimize the feature extraction effect of 1D-CNN [52].
Therefore, this work sets a wider perceptual field in 1D-CNN.
For the model input 300 temporal ECG signal data combined
with 180 corresponding frequency domain information data
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16@2X1

c>c>

MaxPool

32025 X 1 64@27 X 1 3840X1 1928% 1
5X1
3202X 1
ConvlD AvgPool ConvlD Flatten Dense Output

into 480 data, and finally the classified results are output. The
model structure is shown in Figure 5.

The first layer of the model is the input layer, which
consists of 480 input nodes. The second layer is a one-
dimensional convolutional layer, consisting of 4 channels of
21 x 1 convolutional kernels with a move step of 1 and a fill
method of SAME to keep the dimensionality of the convolved
data constant. The third layer is a maximum pooling layer
with a pooling range of 2 x 1 and a move step of 2. The fourth
layer is a one-dimensional convolutional layer consisting of
16 channels of 23 x 1 convolutional kernels with a move step
of 1 and a fill method of SAME. The fifth layer is a maximum
pooling layer with a pooling range of 2 x 1 and a move
step of 2. The fourth layer is a one-dimensional convolutional
layer consisting of 32 channels of 25 x 1 convolutional
kernels with a move step of 1 and a fill method of SAME.
The seventh layer is an average pooling layer with a pooling
range of 2 x 1 and a shift step of 2. The eighth layer is a one-
dimensional convolutional layer consisting of 64 channels of
27 x 1 convolutional kernels with a shift step of 1 and a
fill step of SAME. The ninth layer is a Flatten layer, which
stitches the convolutional results of the previous layer into a
3840 x 1 feature vector. The tenth layer is the Fully connected
layer, which consists of 128 fully connected neurons, and the
activation function of the neurons is RELU. the eleventh layer
is the output layer, in which the function is softmax, which
can output five kinds of results. The model properties of this
study are shown in Table 1.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
The time complexity of performing FFT on the ECG signal
is O(N - log N). The computational complexity of the con-

9]
volutional layer is O(>_ M; - K; - Ci—1 - C;). Where Q is

the number of convollit_ii)nal layers. M; is the length of the
feature vector output from the i-th layer convolutional kernel.
K; is the length of the convolution kernel of the i-th layer.
C; is the number of channels of the i-th layer convolution.
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FIGURE 6. Filtering effect.
TABLE 1. Model structure. identification phase, the heartbeat can be localized according
to the peak position of the heartbeat R-wave, and then a
Layer Size Strides Output Shape cor.nplete.h.eartbeat cycle can be read into the model according
to 1ts position.
Input (480,1) (480,1) . L . i
ConviD @21.1) | 4.480.1) . The experiments begin with f}lterm.g the ECG signal pro
MaxPooling “.2,1) 2 (4,240,1) vided by the dataset. The ECG signal is decomposed on nine
ConvlD (16,23,1) 1 (16,240,1) scales using a fifth-order Daubechies wavelet (db5) as the
MaxPooling (16,2,1) 2 (16,120,1) wavelet basis of the wavelet transform. After decomposition,
ConviD (32,25,1) 1 (32,120,1) . ; . .
AveragePooling (322.1) 2 (32.60.1) the hlgh-freq}lency components are mainly distributed in the
ConvlD (64,27,1) 1 (64,60,1) D1 and D2 high-frequency components, and these two high-
Flatten (3840,1) (3840,1) frequency components are set to zero to filter out this part of
Dense (128,1) D high-frequency noise. The other high-frequency components
Output 5,1 (5,1)

The computational complexity of the fully connected layer is

O - D - U), 1is the number of inputs, D is the number of

intermediate layer neurons, and U is the number of outputs.

The time complexity of this algorithm is O(N -logN +1-D-
0

U+ XiMi -Ki-Ci—1 - Cy).

i=
IV. RESULTS AND ANALYSIS
The experimental hardware platform is a laptop computer
configured with Intel Core i7-4720HQ 2.60GHz CPU, 16GB
RAM memory and NVIDIA GeForce GTX 980M GPU.
The experiments are curried on Windows 8.1 operating sys-
tem using TensorFlow deep learning tool in Python 3.6
environment.

The study used five types of ECG data from the MIT-BIH
arrhythmia dataset to train the model for the classifica-
tion [53]. Those five types of heartbeat types are normal
heartbeat (N), atrial premature beats (A), premature ven-
tricular beats (V), left bundle branch block (L), and right
bundle branch block (R). The database is from the Harvard-
MIT Division of Health Sciences and Technology Biomedical
Engineering Center. It contains 48 ECG signal data of about
30 minutes, and each heartbeat cycle is annotated in the
annotation file of each data by a cardiologist The R-wave
peak position and diagnostic category are marked in the
annotation file of each data. During the model training and
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D3 to D9 are subjected to a soft threshold filtering opera-
tion. Finally, signal reconstruction of the processed individual
classification is performed to complete the filtering of the
ECG signal. The effect is shown in Figure 6, in which (A) is
the ECG signal before filtering and (B) is the ECG signal after
filtering.

In the model training process, the labeled data from the
MIT-BIH arrhythmia dataset are used to directly obtain the
location information of the R-wave peaks in the ECG signal,
and each heartbeat cycle of the ECG signal is segmented by
this location information. However, in practical applications,
the R-wave positions of the ECG signal are not labeled, so the
R-wave positions in the ECG signal need to be located before
using the model in this study to classify the ECG signal in
order to segment each individual heartbeat cycle.

The R-wave localization experiment uses the localization
algorithm described above in this paper, in which the sliding
window size J is set to 80, the sliding step size S is set to 30,
the threshold of the difference between the maximum and
minimum values within the reconstructed signal window is
set to 0.15, the one-sided interval width K is set to 20, and the
distance L is set to 50. Since the MIT-BIH arrhythmia dataset
has a few small deviations from the R-wave peak position
labeling, when the localization results are compared with
the labeling results, the point is considered to be accurately
localized as long as the difference between the two positions
does not exceed 3. The accuracy of this method on normal
ECG signals is extremely high, reaching 99.64% accuracy
for R-wave localization on the healthy data set #100 of the
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FIGURE 7. R-wave positioning effect.

MIT-BIH arrhythmia data set and 87.75% accuracy for
R-wave localization on the diseased data #106. Although
the localization results on the diseased data still need to be
improved, the accuracy has been greatly improved compared
to that of localization by first-order difference threshold. The
R-wave localization effect is shown in Figure 7, where (A) is
the R-wave localization effect of the normal ECG signal and
(B) is the R-wave localization effect of the lesioned signal.

The positions of R-wave peaks of ECG signals are marked
with red dots, which shows that the method is effective in
locating the positions of R-wave peaks of various types of
ECG signals.

Since the sampling frequency of the data set used in this
experiment is 360 Hz, the sampling length n is set to 100.
Based on the R-wave localization results, the R-wave position
with the first 99 and the next 200 data, a total of 300 data,
is extracted as a heartbeat cycle signal to be identified. A fast
Fourier transform with frequency set to 360Hz is performed
on this signal to obtain the amplitude distribution of the
signal in the frequency band from OHz to 180Hz, as shown
in Figure 8.

A total of 48 records were available in the MIT-BIH
arrhythmias database. In order to maintain lead consistency,
MLII leads are usually used in studies. 102 and 104 did not
have MLII lead data, so these two data were discarded and
only 46 data were used. The R-wave crest position of each
heartbeat in the record was labeled by the expert, and each
heartbeat could be localized according to the R-wave crest
position speak. In these 46 data, there are 99,188 heartbeat
cycles. These 99188 ECG signals were divided, and 70% of
these heartbeat cycles were used for model training, and the
remaining 30% were used for model testing.

After the extraction of the frequency domain information
of the ECG signal is completed, it is stitched with the ECG

VOLUME 11, 2023

15 2.0 2.5
time (s)

0.25 A

0.20 4

0.15 A

amplitude (mV)

o
=
S)

0.05 A

0.00 - V\V\
0 25 50 75 100 125 150 175
frequency (Hz)

FIGURE 8. Heartbeat cycle spectrogram.

timing signal to form a length of 480 data for input into
the diagnostic model for recognition. The epochs of this
experimental training model are 30, and the loss function used
is cross-entropy, whose mathematical expression is shown in
equation (5).

1 N 5
Ll=—=2> > vilog(pic) &)

i=1 c=1

where y;. denotes the true category of the sample, and y;.
takes 1 if the category of sample i is equal to ¢ and O oth-
erwise, p;. denotes the predicted probability that sample i
belongs to category ¢, N denotes the total number of samples,
and ¢ = 1, 2, 3, 4, and 5 denote the five types of heart
beats, namely normal beats (N), abnormal premature atrial
beats (A), premature ventricular beats (V), left bundle branch
block (L), and right bundle branch block (R), respectively.
The electrical signal types. Figure 9 shows the changes in
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loss and accuracy during training.During the training process
of the model, accuracy gradually rises to above 99% with
the increase of training times, and the change curve of loss
gradually converges.

The method in this study achieved an accuracy of 99.43%
for the five diagnoses of ECG signals, indicating that the
ECG diagnostic model possesses a high reliability. In Table 2,
comparing this method with some methods of ECG signal
classification in the last five years [34], [54], [55], [56], [57],
the method of this paper using time-frequency domain fusion
with 1D-CNN achieves higher accuracy.

TABLE 2. Comparison of methods.

Study Method Accuracy
. Using symbolic representation
. N[l;l 4e]t al. and multi view convolution neural 96.40%
network
Using CNN algorithm to
evaluate high-order spectrum
Alzlllr?gslil et estimation, bispectrum and 97.80 %
’ third-order cumulants of ECG
signals
A.M.Shaker Using generative adversarial 98.00%
et al. [56] networks and CNN et
Jun ?sjﬂet al- Using 2D-CNN 99.05%
Yildirim O. et Using deep bidirectional LSTM 99 399
al. [34] network model =770
Ours work Using time-frequency domain 99 43%

fusion and 1D-CNN

V. CONCLUSION
In this paper, we propose a method to extract the frequency
domain information of ECG signal and feed it into 1D-CNN
for feature extraction and classification together with the
original timing signal. The method achieves good results in
identifying and classifying the ECG signals of each heart-
beat cycle, and achieves 99.43% accuracy on the MIT-BIH
arrhythmia dataset.

Despite the better results obtained by this method, there
have some drawbacks. Since the extraction of frequency
domain information relies on the division of individual

124

heartbeat cycles. When the heartbeat in the ECG signal is
divided incorrectly, it will cause the model to misdiagnose the
heartbeat state. Moreover, the method is not able to diagnose a
segment of ECG signal directly. It is necessary to first extract
the complete heartbeat cycles from that segment of ECG
signal, so that the extracted heartbeat cycles can be classified.
Since the noise of the ECG signal affects the division of the
heartbeat cycle, this leads to the requirement of the denoising
quality of the ECG signal for this algorithm. Subsequent
research will consider deploying the ECG diagnostic classi-
fication model of this experiment on a microcontroller and
using it to make an offline ECG real-time diagnostic device.
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