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ABSTRACT Deep learning facilitates complex medical data analysis and is increasingly being explored
in colorectal cancer diagnostics. However, the training cost of the deep learning model limits its real-world
medical utility. In this study, we present a composite network that combines deep learning and unsupervised
K-means clustering algorithm (RK-net) for automatic processing of medical images. RK-net was more
efficient in image refinement compared withmanual screening and annotation. The training of a deep learning
model for colorectal cancer diagnosis was accelerated by two times with utilization of RK-net-processed
images. Better performance was observed in training loss and accuracy achievement as well. RK-net could
be useful to refine medical images of the ever-expanding quantity and assist in subsequent construction of
the artificial intelligence model.

INDEX TERMS Artificial intelligence, computer aided diagnosis, deep learning, image filtering, oncology,
unsupervised learning.
Clinical and Translational Impact Statement RK-net could be useful to refine medical images of the ever-
expanding quantity and assist in subsequent construction of the artificial intelligence model.

I. INTRODUCTION
Colorectal cancer (CRC) is the third most common malig-
nancy worldwide and the second most common cause of
cancer-specific death [1]. CRC is a heterogeneous disease
wherein accurate determination of biological characteristics
for different patients is the key to precision therapy [2], [3].
Artificial intelligence (AI) is a computer technology that
mimics human intelligence in learning and problem solv-
ing [4]. Machine learning (ML) and deep learning (DL)
are AI methods increasingly used to analyze medical data
and build predictive models. Substantial progress has been
made in these techniques and their applications to CRC diag-
nostics [5]. Convolutional neural networks (CNNs) are DL
methods characterized by consecutive node layers to process
structured arrays of data. CNNs are widely utilized for digital
image classification and have achieved good performances
in the prediction, staging, and prognosis of CRC [6], [7].

Moreover, DL may facilitate the utilization of large data pro-
duced by radiologic examinations, such as computed tomog-
raphy (CT) and magnetic resonance imaging (MRI) [8].

However, developing DL models is difficult and expen-
sive [9]. Obstacles to model construction include powerful
hardware, vast data, the time cost and the complexity of train-
ing methods [10], [11]. As for medical image analysis, data
processing is necessary but laborious. Clinically, target delin-
eation is a crucial step to provide information on the organ
shape and volume. Manual separation is the routine approach
that is limited by the time consumption and intra/inter-rater
variations. Automatic segmentation by networks is challeng-
ing, considering the balance of efficiency and reliability.
Although supervised learning tasks require abundant data of
high-quality, excessive variables at the model input level may
complicate the algorithm training and interpretation. Other-
wise, variables of interest are hidden behind all available
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information, where a full model outperforms the subgroups
with limited features, especially in the validation of new
datasets. In addition, it may take days to weeks to train a
neural network for large-scale datasets from scratch, leading
to high costs in the research programme.

The accuracy of deep neural networks largely depends
on the quality and amount of data. Standardized annotation
and reliable data sources are also critical [12]. In general,
manual screening and annotation for region of interest (ROI)
are fundamental steps for supervised learning in computer
vision [13]. However, the procedures are usually time-
consuming and cost-intensive [14]. It is reported that some
algorithms can assist in clinical images annotation, but the
automatic method is particularly challenging in the context
of the complicated abdominal anatomy [15]. Furthermore, the
annotation of pixel-level for medical images requires profes-
sional expertise by experienced radiologists, thus it is labori-
ous to obtain a large-scale labeled dataset of high-quality.

Unsupervised learning is an efficient ML method to iden-
tify subgroups within brand-new datasets. It is often used as
a preparation step for subsequent tasks to improve the overall
feasibility [16]. K-means clustering is an elegant unsuper-
vised learning algorithm. It is suitable for large-scale medical
data with advantages in computing speed, cost savings, and
minimal disturbance by data outliers [17].

In the present study, we proposed a composite network that
combines deep learning and K-means clustering algorithms
called RK-net. This network was designed to automatically
remove irrelevant images and preserve imaging slices at
tumor-level. We aimed to validate the RK-net in processing
complex medical images with comparisons to the method of
manual screening and annotation, and to test its efficacy in
optimizing a DL model for CRC diagnosis.

The manuscript is structured as follows: Section I intro-
duces the AI techniques and their applications in CRC
diagnostics; Section II describes the structure of the compos-
ite network, data settings, and training method; Section III
demonstrates the effect of RK-net on the DL model;
Section IV concludes and takes a translational outlook on the
results of this study.

II. METHOD
A. ORIGINAL MATERIAL
We identified a cohort of 360 consecutive patients from
the prospective database of colorectal cancer at the Sixth
Affiliated Hospital of Sun Yat-sen University (SAH-SYSU),
Guangzhou, China, a national high-volume colorectal cancer
institution. Imaging data were retrospectively extracted and
reviewed. All patients were divided into two equal groups
based on pathological diagnosis, corresponding to different
molecular pathological types. We refer to the patients as
Class1 and Class2 for convenience of research. All patients
met the following requirements: (1) pathologically diag-
nosed as colorectal adenocarcinoma; (2) aged ranged from
18-80 years; (3) possessing complete demographic, treat-
ment, and imaging data. The patients who had concurrent

malignancy other than colorectal cancer were excluded.
Imaging examination data (stored in DICOM format) and
clinical data of all enrolled patients were collected. Quality
control of the research data was carried out by two experi-
enced clinicians with senior professional titles.

B. DATASETS
We randomly divided the study population to 300 patients
as the training dataset and 60 patients as the testing dataset.
All data were divided into two categories based on the label.
Three processing methods were compared. The proposed
RK-net automatically removed irrelevant images and pre-
served imaging slices at tumour-level. Manual annotation
provided segmented images corresponding to the regions of
interest (ROIs) as the classification basis. The ROIs of tumour
were manually delineated using the ITK-SNAP tool. Manual
screening streamlined images at the discretion of experi-
enced radiologists, excluding irrelevant slices from datasets.
CT images were converted into DICOM standard format and
stored as NII files. Python-OpenCV packages were intro-
duced to split NII files axially.

C. PLATFORM BUILDING
We constructed a server for data processing and model train-
ing. The platform was based on a Standard GPU Server
with Xeon E5 2678V3, 32GB DDR4-memory and NVIDIA
RTX2070S. According to the NVIDIA’s advice, we selected
NVIDIA CUDA Toolkit 10.1 and cuDNN 7.5 to build the
compiling environment, and used Anaconda to build the
training and testing environment (TensorFlow-GPU 1.14.0,
Python 3.6.12). The NVIDIA system management interface
was deployed to facilitate the processing.

D. RK-NET ARCHITECTURE
The composite network RK-net consists of several parts as
follows:

The first part of the composite network is a specially
designed medical image processor that performs the batch
processing of raw data and converts images into readable
forms. Programme components separate individual informa-
tion and erase personal privacy data.

The second part of the composite network is a pre-trained
neural network MobileNetV2 that differentiates the trans-
formed images. This neural network is based on an inverted
residual structure, in which the shortcut connections are
located between the thin bottleneck layers (Fig. 1).

After input of the image information, the matrix is mapped
to the higher dimension and then restored to the lower dimen-
sion through the convolution layer. The structure finally
ensures the correct feature extractions while reducing the
computation [18]. MobileNetV2 has been pre-trained and
adjusted with parameters on complex public datasets. It per-
forms well in the image classification tasks, achieving a
certain level of accuracy with limited model parameters and
computation. Moreover, this design of the second part brings
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FIGURE 1. MobileNetV2 special network bottleneck layer structure.

in a custom module that can switch between multiple models
in accordance with the actual data forms.

The third part of the composite network is the unsupervised
classifier with the K-means clustering algorithm, where pre-
classification results are introduced for discrimination. The
classification principle of the K-means algorithm is based on
‘‘(1)’’, ‘‘(2)’’:

E =
∑k

i=1

∑
x∈Ci

||x − µi||
2
2 (1)

µi =
1
|Ci|

∑
x∈Ci

x (2)

In ‘‘(1)’’ and ‘‘(2)’’ equations, x is the sample value. k is
the number of clustering sample clusters. Ci is the division of
sample clusters. µi is the mean vector of cluster Ci. E is the
algorithm to minimize the square error of clustering. While
the smaller the value of E is, the higher sample similarity
exists in the cluster [19], [20]. The number of clusters is set
to k=2 to remove irrelevant images in the native dataset.
The final results of classification are saved as CSV files.

Images are imported to the corresponding folders by the
custom setting rules. The last part of RK-net is the image
processing module to convert images to the required format.
This module is developed based on the OpenCV programme
package. The conversion process is documented and indexed
by classification results.

FIGURE 2. The architecture of RK-net.

The whole architecture of RK-net is shown in Fig 2.

E. CRC DIAGNOSTIC MODEL
We built a CRC diagnostic model to test the image opti-
mization by the RK-net composite network. The model was
based on the pre-trained ResNet-101 network. We used the
stochastic gradient descent (SGD) optimizer with a learning
rate of 0.1, cross-entropy loss function, and a batch size of 32.
Being trained with original CT images, the diagnostic model
was able to classify different types of colorectal cancer with
an accuracy over 90%.

F. EVALUATION INDEXES
To evaluate the performance of the model trained with differ-
ent datasets, five indexes were used.

1) TRUE POSITIVE RATE (TPR)
TPR refers to the probability of a positive test, conditioned
on truly being positive, as shown in (3).

TPR =
TP

TP+ FN
(3)

TP : True Positive FN : False Negative
In this study, we defined it as the probability of correct

diagnosis for all Class1 patients.

2) SPECIFICITY (Spe)
Spe refers to the probability of a negative test, conditioned on
truly being negative, as shown in (4).

Spe =
TN

TN + FP
(4)

TN : True Negative FP : False Positive
In this study, we defined it as the probability of correct

diagnosis for all Class2 patients.

3) FALSE POSITIVE RATE (FPR)
FPR is the proportion of all negatives that still yield positive
test outcomes, as shown in (5).

FPR =
FP

FP+ TN
(5)

In this study, we defined it as the probability of actually being
Class2 but diagnosed as Class1 patients.

56 VOLUME 11, 2023



J. Guo et al.: Unsupervised Learning Composite Network to Reduce Training Cost of Deep Learning Model

FIGURE 3. The workflow of study. (A) Image conversion. (B) RK-net process. (C) Manual annotation process. (D) Manual screening process.
(E) Training and testing of CRC diagnostic model.

4) FALSE NEGATIVE RATE (FNR)
FNR is the proportion of positives which yield negative test
outcomes with the test, as shown in (6).

FNR =
FN

TP+ FN
(6)

In this study, we defined it as the probability of actually being
Class1 but diagnosed as Class2 patients.

5) ACCURACY
Accuracy is the proportion of correct predictions (both true
positives and true negatives) among the total number of cases
examined, as shown in (7).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

In this study, we defined it as the probability of correct
diagnosis for all patients.

G. WORKFLOW
There were three groups of data imported to the CRC diag-
nostic model on the same platform as described above.
CT images were converted to readable formats by programme
packages and saved as PNG files. The time costs of data
processing and model training were recorded, and the CRC
model performances were verified. The workflow of model
training and testing is presented in Fig. 3.

III. RESULTS AND DISCUSIONS
RK-net economized in the time cost for data processing as
well as the diagnostic model training (Fig 4). Manual annota-
tion consumed over 100 times the time-cost of the RK-net

FIGURE 4. Time cost for data processing and CRC diagnostic model
training.

method for data processing. Moreover, compared with the
other methods, it was two times faster to train the diagnostic
model with RK-net-processed images.

The DL model for CRC diagnosis performed well in
the training process with RK-net refined data, as shown
in Fig 5. The training loss decreased rapidly to 0.15 after
400 steps with RK-net, while model training with data
from manual screening had a similar trend but a slightly
higher loss in the end. The accuracy increased simultaneously
with the decrease of training loss, achieving over 0.9 after
500 steps with RK-net or manual screening. However, using
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FIGURE 5. Training loss and accuracy of CRC diagnostic model with
different datasets. (A) Model training loss. (B) Model training accuracy.

TABLE 1. The performance of CRC diagnostic model with different
datasets.

the annotated data, the loss fluctuated between 0.6 and 0.8,
when the accuracy persisted at a level of 0.6 throughout the
training.

The performance of the DL model for CRC diagnosis
on testing datasets corresponded to the training process
(TABLE 1). The DL model established by the RK-net pro-
cessed data achieved an accuracy of 0.95 on the testing
dataset, while the accuracy of the DL model with manual
screening and manual annotation was found to be 0.93 and
0.72, respectively.

RM, model with RK-net-processed data. AM, model with
manually annotated data. SM, model with manually screened
data.

The present study showed the efficacy of RK-net in the
optimization of a deep neural network. The proposed method
streamlined the original data with the elimination of irrelevant
images. The preserved computing resources accelerated the
subsequent model training with a high accuracy achievement.
Target labeling is often used to outline the ROIs for explicit
data input [21]. Manual delineation is usually painstaking
and subjective, and useful information could be lost after the
deletion of surrounding components [22]. Being trained with
incomplete imaging data, a deep neural network may extract
incorrect features under certain steps and maintain a low level
of accuracy [23].

Considering the development of big data and founda-
tion techniques, advanced models are encouraged to achieve
a general recognition of medical images with decreased
computing costs [24]. RK-net showed superiority to the
existing methods in two aspects. First, it achieved high
efficacy in data filtering for complex medical images. The
proposed network automatically removed irrelevant images
and preserved imaging slices at tumour-level. It avoided the

tedious labor of manual screening and annotation. Second,
RK-net contributed to the optimization of the subsequent DL
model, bringing about lower training costs and better overall
performance.

RK-net utilizes the MobileNetV2 network as the low-
cost pre-classifier. Owing to the inverted residual with linear
bottleneck structure, MobileNetV2 reduces the amount of
calculation through lightweight depthwise convolution. This
special CNN module achieves memory-efficient inference.
It could be readily implemented in Python framework [18].
Combined with the K-means unsupervised classifier, the net-
work could be deployed on a normal server platform without
GPU acceleration. The network is also easy to package as a
user-friendly tool.

Despite these advantages, RK-net has several limitations as
well. First, the composite network relies on pre-trained mod-
els with mixed medical images from a wide spectrum of dis-
eases. It is noted that some newly designed algorithms excel
in the image classification [25]. Therefore, it is necessary
to update the functional modules to enhance the network’s
capability. Second, the composite network can only process
radiologic images, which could be flawed in the constitution
of a complicated model. Future improvements in the general-
ity may realize multimodal data fusion and processing. Last
but not least, RK-net needs further validations in different
datasets and algorithms.

IV. CONCLUSION
In this study, we presented a composite network RK-net
that combined deep learning and unsupervised learning algo-
rithms to refine radiological images. RK-net showed effi-
ciency in the elimination of confusing images unrelated
to colorectal cancer. The quality control of imaging data
was therefore simplified by averting uncontrollable influence
associated with human factors. Moreover, RK-net not only
decreased the intensive workload of manual screening and
annotation, but also improved the performance of deep neural
networks from the foundation. This novel algorithm could
be a promising method for automatic refinement of medical
images in large scale, and assist in the further construction of
deep neural networks.
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