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ABSTRACT Virtual reality (VR) has been widely adopted by therapists to provide rich motor training tasks.
Time series data of motion trajectory accompanied with the interaction of VR system may contain important
clues in regard to the assessment of motor function, however, clinical evaluation scales such as Fugl-Meyer
Assessment (FMA), Wolf Motor Function Test (WMFT), and Test D’évaluation Des Membres Supérieurs
Des Personnes Agées (TEMPA) are highly depended in clinic. Further, there is not yet an assessment method
that simultaneously consider motion trajectory and clinical evaluation scales. The objective of this study is to
establish an evidence-based assessment model by machine-learning method that integrated motion trajectory
of a VR task with clinical evaluation scales. In this study, a VR system for upper-limb motor training was
proposed for stroke rehabilitation. Clinical trials with 20 stroke patients were performed. A variety of motor
indicators that derived via motion trajectory were proposed. The correlations between motor indicators and
clinical evaluation scales were examined. Further, motor indicators were integrated with evaluation scales
to develop a machine-learning based model that represents an evidence-based motor assessment approach.
Clinical evaluation scales, FMA, TEMPA and WMFT, were significantly progressed. A few motor indicators
were found significantly correlated with clinical evaluation scales. The accuracy of machine-learning based
assessment model was up to 86%. The proposed VR system is validated to be effective in motor rehabilitation.
Motor indicators derived from motor trajectory were with potential for clinical motor assessment. Machine
learning could be a promising tool to perform automatic assessment.

INDEX TERMS  Stroke rehabilitation, motor training, virtual reality, machine learning.

Clinical and Translational Impact Statement—A VR task for motor rehabilitation was exanimated via
clinical trials. Integrating motor indices with clinical assessment, a machine-learning model with accuracy
of 86% was developed to evaluate motor function.

I. INTRODUCTION
Stroke is a leading cause of death in low- and middle- income
countries. Globally, 70% of strokes and 87% of both stroke-
related deaths and disability-adjusted life years occur in these
developing countries [1]. Stroke causes brain death due to
poor blood flow into cells inside the brain [2].

In traditional stroke rehabilitation, relevant nerve tissue is
stimulated via continuous motor training to restore as much
motor function as possible [3], [4], [5]. However, long-term

traditional physical rehabilitation tasks become routine and
monotonous, leading to a lack of motivation in patients.
To assess motor function, doctors and therapists often use
traditional evaluation scales like Fugl-Meyer Assessment
(FMA) [6], Wolf Motor Function Test (WMFT) [7], and
Test D’évaluation Des Membres Supérieurs Des Personnes
Age’es (TEMPA) [8]. However, traditional evaluation scales
are subjective and a therapist is required for each assessment.
This would become an issue if therapists were limited [9].
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The goal of interactive training tasks is to increase moti-
vation and concentration in patients. We could achieve this
goal through VR. Virtual reality is a computer-based tech-
nology that allows users to interact with simulated environ-
ments [10]. Virtual reality is more accessible and affordable
in motor rehabilitation, increasing patient motivation to per-
form repetitive rehabilitation tasks [11]. Therefore, much
research has focused on VR-based motor rehabilitation
[12], [13], [14]. There is also much research demonstrating
that VR could lead to significant improvement in stroke reha-
bilitation [15], [16], [17], [18]. Furthermore, VR could help
patients who are un- willing to perform stroke rehabilitation
tasks [19]. Moreover, the patient’s training goals could be
adjusted according to their physical conditions [20].

Virtual-reality stroke-rehabilitation systems are also able
to collect a huge amount of sensing data (motion trajectory,
electromyography) via sensors [21], [22], [23], [24]. In most
research, VR stroke-rehabilitation systems are only used for
motor training, and patient skeleton and electromyography
data are collected by the sensors. However, because therapists
mainly score evaluation scales, this research did not utilize
the physiological data to evaluate the patient’s condition.
Although, some research [25], [26], [27] has analyzed the
patient’s physiological data collected from sensors in order
to implement motor assessment functions and help patients
to understand their rehabilitation progress. However, research
has not discussed the correlation between proposed motor
indicators and traditional evaluation scales.

Artificial intelligence and machine learning have devel-
oped rapidly in recent years and are widely used in data
mining, computer vision, natural language processing, speech
recognition, etc. In the medical domain, some researchers
use the clustering method (K-means) to cluster impair-
ment levels [28]. Some researchers use supervised machine
learning algorithms to classify a patient’s status [29], [30].
However, due to a lack of correlation with traditional evalua-
tion scales and clinical references, therapists are unconvinced
of its effectiveness and capabilities.

To address the issues mentioned above, we wanted to build
an evidence-based motor assessment. Our research designed
motor indicators with upper-limb data collected by sensors
and analyzed the correlation between motor indicators and
evaluation scales. Furthermore, we applied machine learning
methods to establish an assessment model based on evidence-
based motor indicators.

Il. RELATED WORK

In recent years, many researchers have adopted VR training
tasks in stroke rehabilitation. Some research has proved the
efficiency of VR rehabilitation by comparing pretest and
posttest data. Sheehy et al. [31] verified the feasibility of
using home-based VR post stroke via a parallel randomized
feasibility trial. Aramaki et al. [32] verified that VR is a
viable tool for rehabilitating stroke patients with the Canadian
Occupational Performance Measure (COPM) and the Partic-
ipation Scale. Lee et al. [33] verified game-based VR canoe
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paddling training as an effective rehabilitation therapy using a
modified functional reach test (mFRT) and a manual function
test (MFT). Choi and Paik [34] proposed a mobile VR upper-
extremity rehabilitation program and verified its effects using
FMA-UE, B-stage, and manual muscle testing. Although this
research has shown the efficiency of VR rehabilitation tasks,
physiological data collected from the sensors was not sed to
assess the stroke patient’s status. Therefore, therapists were
unable to assess a stroke patient after using VR rehabilitation
tasks.

Recently, some research has extracted features from sen-
sor data during rehabilitation tasks to assess stroke patients.
Phienphanich et al. [25], Lu et al. [26], Lee et al. [27]
and Kashi et al. [35] extracted movement features based
on biomechanical metrics, including velocity, jerk, index of
curvature, and angles of the joints. These movement features
considered range of motion, smoothness, and compensa-
tion [27]. However, this research did not consider the correla-
tion with traditional evaluation scales (such as FMA, WMFT,
or TEMPA). Lee et al. [36] extracted features based on the
linguistic guideline of the FMA. However, many other tradi-
tional evaluation scales are used to assess a stroke patient’s
impairment level. Considering features from the FMA only
might not be enough to assess a stroke patient.

Some research has proposed a classification method
according to movement features to classify a patient’s
impairment level. Biswas et al. [37] used the regularized
Mahalonobis distance-based K-means clustering to classify
elementary arm movements to different levels of impairment.
Miao et al. [28] presented a DTW-KNN joint algorithm to
classify multiple training completion levels. Kashi et al. [35]
used the RAndom k-labELsets (RAKEL) algorithm via a
random forest as the base classifier to establish a multi-label
classification model based on stroke patient data. Each of
these studies use movement features to implement clustering.
However, their clustering methods did not consider tradi-
tional evaluation scales. Evaluation scales could provide a
reliable, convincible analysis aspect to doctors, therapists,
and patients. Our re- search proposes a classification method
based on traditional evaluation scales.

Based on the movement data of VR rehabilitation tasks,
some research proposed motor assessment methods to pro-
vide therapists and patients with a quantitative result to verify
improvements of the stroke patient. Wang et al. [38] proposed
a system where the patient can complete treatment during
a rehabilitation game. Nevertheless, the quantitative results
of this paper’s rehabilitation system were not validated using
traditional evaluation scales. Liao et al. [39] proposed scoring
functions for the automated assessment of the quality of phys-
ical rehabilitation tasks. However, these scoring functions
also lacked correlation with traditional evaluation scales.

Our study presents VR stroke-rehabilitation tasks con-
taining a Kinect sensor to collect upper-limb movement
data. A bi-lateral VR task, including the ball-throwing and
ball-catching with two arms back and forth, is designed to
train weight-shifting and eye-hand coordination. We propose
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an evidence-based analysis approach that contains upper-
limb movement features, a multi-classification method, and
a machine learning approach. We extracted features from
upper-limb movement data collected from Kinect and used
statistics analysis to verify the correlation between upper-
limb movement features and traditional evaluation scales.
For the multi-classification method, we utilized the K-means
clustering algorithm [37] to divide patient impairment lev-
els into three categories based on the traditional evaluation
scales. In comparison to previous studies, our VR stroke-
rehabilitation tasks have higher reliability and interpretable
ability.

lll. METHOD

A. VIRTUAL REALITY SYSTEM DESIGN

1) SYSTEM INTRODUCTION

Our VR stroke-rehabilitation system combines Kinect [40],
3D VISION stereo glasses, a 3D display projector, a 3D
display card, and other hardware devices. It aims to pro-
vide patients with rehabilitation tasks for their upper limbs.
It includes a bi-lateral VR task for upper-limb extension,
balance, and hand-eye coordination with the Unity 3D engine.
The physical setting of our VR stroke-rehabilitation system is
shown in Fig. 1.

Virtual Hand

FIGURE 1. Physical setting of our VR stroke-rehabilitation system which
combines Kinect [40], 3D VISION stereo glasses, a 3D display projector,

a 3D display card, and other hardware devices. A bi-lateral VR task for
upper-limb extension, balance, and hand-eye coordination with the Unity
3D engine were included in this system.

2) TASK CONTENT

To train the extension and muscle function of the patient’s
arms, the VR task in our system include both throwing and
catching a ball with both arms. The participate is asked to
stretch both arms to catch the ball continuously, which is
moving in a parabola. Kinect was applied to perform motion
capture. Before starting the task, therapists set the difficulty
of the task that includes the speed of the ball, the range of the
flying, and the number of balls to catch. Further description
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for the difficulty of the task would be illustrated in the com-
ing section. At the beginning of the task, a ball appeared
at starting location which was at the left side or right side
upon the setting, as shown in Fig. 2. The user had to touch
the ball with the hand closer to it, triggering the ball to
move along the parabola to the other side, and catch the
ball with another hand back and forth. Meanwhile, the user
can see his/her current performance including the number
of successful ball-catching movements, the number of failed
ball-catching movements, and the number of consecutive
successful ball-catching movements.

= S |
. P
lghestl.m:a!lon -~ -:-’ o

Catching Location
(1

FIGURE 2. lllustration of bi-lateral VR task. At the beginning of the task,
a ball appeared at Starting Location which was at the left side or right
side upon the setting. The user had to touch the ball with the hand closer
to it, triggering the ball to move along the parabola to the other side, and
catch the ball with another hand back and forth.

3) DIFFICULTY DESIGN MECHANISM
The difficulty of the bi-lateral VR task can be set using the
following parameters.

o The horizontal distance of the sphere falling: the dis-
tance can be set according to the patient’s range of upper-
limb extension. The bi-lateral VR task provides various
range options to suit the patient’s upper-limb abilities:
30% to 50%, 30% to 75% and 30% to 100% of the
patient’s arm when his/her arm was totally strengthened.

o The number of successful catches: therapists can adjust
the number to test how long the patient could continue
exercising.

o The speed of the sphere falling: speed is in units of
gravitational acceleration (G). Therapists could set this
to 1/9G, 2/9G, and 3/9G so that patients could train their
reaction time and hand-eye coordination according to
their impairment level.

B. FINAL STAGE

After many discussions with therapists, we determined what
therapists want most in regards to patients’ movement qual-
ity: reaction time, hand-eye coordination quality, range of
upper limb movement, a comparison between the affected
arm and the normal arm, and the ball’s speed difference
between front and rear at the highest point. Note that the
range of upper limb movement for the affected and the normal
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arm might be different. Evaluating their difference would be
critical. The importance of ball speed is the patient’s prepara-
tion time and reaction time. When a patient’s arm is injured,
his/her muscle would have difficulty controlling which could
be evaluated by different ball speeds. In other words, different
ball speeds would affect how long patients take to raise their
hands and prepare. Assume that after the right hand touches
the ball, the left hand must be raised to the target position
before landing. It is not an easy task for the patients whose
arm is injured. We designed motor indicators in accordance
with therapists’ needs, and the schematic diagram is shown
in Fig. 2. Features 1 through 6 are related to horizontal and
vertical motor ability based on different axes in the upper-
limb’s skeleton data. Features 7 through 19 are related to
the motor ability of the whole body. The major reason for
differentiating the velocity before of the arm when the ball is
at the highest location or after was that when the ball is at the
highest point, the user should know that the landing point of
the ball, and then moves his/her arm. Hence, evaluating the
spending time could estimate the patient’s reaction ability.

1) FIRST TIME ENTERING THE CATCHING RANGE
Record the time when the patient first moves their arm in the
catching range

2) LAST TIME ENTERING THE CATCHING RANGE
Record the time when the patient last moves their arm in the
catching range.

3) CATCHING TIME
Record the time the patient successfully catches each ball.

4) AIMING TIME

Record the time when the patient’s hand moves into the scope
of the ball-catching range after the ball arrives at its highest
location. A lower value means the patient has a faster reaction
time.

5) AMOUNT OF TIME BETWEEN STABILIZATION

AND CATCHING BALL

If a patient receives a higher difference in time than before,
this means the patient has a higher degree of control, and the
hand tremor is improving. Stabilization indicates the degree
of stability of the muscle, which means that whether this
movement of the hand trajectory is smooth.

6) NUMBER OF TIMES THE PATIENT GETS IN AND

OUT OF CATCHING RANGE

If the number of times decreases, then the patient’s upper-
limb function is recovering.

7) TIME DIFFERENCE CATCHING THE BALL FROM THE
NORMAL ARM TO THE AFFECTED ARM

Observing the patient’s arm reactions before the ball arrives
at its highest location.
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8) BALL-CATCHING TIME COST BY AFFECTED ARM

The total time spent touching (catching) the ball with the
affected arm during the game. A longer time cost means the
patient has a better reaction ability.

9) THE TOTAL LENGTH THAT THE AFFECTED ARM JOINT
POINTS MOVED DURING TASK
Observe the patient’s extension ability of the affected arm.

10) MOVEMENT DIFFERENCE BETWEEN THE AFFECTED
ARM AND THE NORMAL ARM
the calculation formula is as shown in

The movement distance by normal arm

1
The movement distance by affected arm M
11) MAXIMUM SPEED BY THE AFFECTED ARM BEFORE
THE BALL ARRIVES AT THE HIGHEST LOCATION
the calculation formula is as shown in
AD;
Viax = MAX [V, = — 2)
At;

where Vj4x is the maximum instantaneous speed; AD; is the
instantaneous displacement distance; A¢; is the instantaneous
time difference.

12) AVERAGE SPEED BY AFFECTED ARM BEFORE BALL
ARRIVES AT THE HIGHEST LOCATION
the calculation formula is as shown in

-1 N
V= (Zizl v,-> @3)

where v is the average speed; v; is the instantaneous speed;
N is the total number of seconds of training.

13) V -VARIATION BY AFFECTED ARM BEFORE BALL
ARRIVES AT THE HIGHEST LOCATION

the calculation formula is as shown in

1
o= \/ K (ZL vi - vﬂ) )

where o is the V-variation; V; is the instantaneous speed;
v is the average speed; The V-variation reflects the degree of
speed dispersion.

14) MAXIMUM SPEED BY THE AFFECTED ARM AFTER THE
BALL ARRIVED AT THE HIGHEST LOCATION

Observe the patient’s maximum movement ability. The cal-
culation formula is the same as in (2).

15) AVERAGE SPEED OF THE AFFECTED ARM AFTER THE
BALL ARRIVES AT THE HIGHEST LOCATION

Observe the patient’s movement variance trend. The calcula-
tion formula is the same as in (3).
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16) V -VARIATION BY AFFECTED ARM AFTER THE BALL
ARRIVES AT THE HIGHEST LOCATION

Observe the patient’s motor ability. If the V-variation is higher
after the ball arrives at the highest location, then the patient

has better motor ability. The calculation formula is the same
as in (4).

17) MAXIMUM HORIZONTAL EXTENSION DISTANCE
OF ARM MOVEMENT

Observe the maximum horizontal range of the patient’s arm
movement.

18) MAXIMUM VERTICAL EXTENSION DISTANCE
OF ARM MOVEMENT

Observe the maximum vertical range of the patient’s arm
movement.

19) MAXIMUM EXTENSION DISTANCE FROM ARM
MOVEMENT IN THE FRONT-VIEW DIRECTION
Observe the maximum range of patient’s arm movement.

C. CLINICAL TRIALS
1) PARTICIPANTS

Twenty subjects were enrolled in the experiment. The demo-
graphic information of participants is shown in Table 1.

TABLE 1. Demographic.

Gender Number Average Age (SD)
Male 12 68.25 (4.12)
Female 8 71.63 (5.34)

The enrollment criteria were:

a) It was a unilateral stroke.

b) The stroke took place within the last year.

c) The stroke diagnosis was based on an MRI, Computed
Tomography, and neurological examination.

d) The proximal movement of the upper stroke limb
reached the Browns fourth stage (inclusive) with
dyskinesia.

e) No obvious cognitive deficit (short intelligence test
score < 20 points).

f) Capable of following simple instructions and under-
standing the experimental process and rehabilitation.

g) Willing to join and sign the consent form. The exper-
imental site was at the rehabilitation department of
Taipei Veterans General Hospital.

2) PROCEDURES
Participants were informed of the experimental procedure and
the purpose of the research. Participants were required to sign
a consent form. In addition, participants were required not to
participate in other rehabilitation training activities.

The participants attended 60 min stroke-rehabilitation ses-
sions three times per week for eight weeks, and all partici-
pants completed the 24 training sessions. To avoid extreme

VOLUME 10, 2022

fatigue from continuous training, at least one day off was
provided between each session. Therapists could adjust the
degree of difficulty according to the participants’ evaluation.
The degree of difficulty of each training was set to satisfy
the motor ability limit of the participant. Clinical assessments
were conducted three days before training (0 week), within
three days after training (eight-week endpoint).

3) MEASUREMENT

Traditional evaluation scales such as FMA, TEMPA, and
WMFT have strict assessment methods, procedures and stan-
dards. If a participant scores higher on the scale, then the
participant has a better recovery status. If a participant’s score
lower on the scale, then the participant has a worse recovery
status. Because our research focuses on the upper limbs, not
all items on the traditional evaluation scale were used. The
FMA score range is 0 to 22 points, the TEMPA score range
is 0 to 27 points, and the WMFT score range is 0 to 5 points.

4) ANALYSIS METHOD

Because the number of samples was small, data distribution
was unclear and the evaluation values of the same patient’s
pretest and posttest data were related variables, we employed
the Wilcoxon rank-4sum test, a nonparametric test used to
analyze whether the pretest and posttest data were signif-
icantly different, thereby testing the effectiveness of the
bi-lateral VR task. We also used Spearman correlation analy-
sis and a double-tailed test to evaluate the correlation between
the motor indicators and the traditional evaluation scales [41].

D. DEVELOPMENT OF EVIDENCE-BASED

ASSESSMENT MODEL

Based on development of an evidence-based, convincible
assessment model for stroke rehabilitation, we followed
the flow diagram in Fig. 3. First, we performed clustering
(K-means) based on evaluation scales to cluster participants’
data. Next, we collected skeleton data which were collected
when a participant was performing the VR task via Kinect and
extracted features by motor indicators. Finally, we fit multi-
classifiers (MLP, RBFNN, SVM) based on evaluation scales,
thereby developing an evidence-based assessment model.

1) CLUSTERING OF MULTI-DIMENSIONAL

EVALUATION SCALES

Clustering of multi-dimensional evaluation scales Traditional
evaluation scales are reliable, convincible and highly recog-
nized by therapists. To further evaluate the patients’ recov-
ery status, we used clustering analysis based on traditional
evaluation scales’ scores to place each patient into the three
impairment levels. Each level could be seen as one patient’s
recovery status.

The K-means algorithm was used in clustering analysis.
The K-means algorithm repeatedly minimized the squared
error between the empirical mean of a cluster and the indi-
vidual data points [37]. Traditional evaluation scale results
of 20 participants were mapped into three dimensional
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FIGURE 3. Flow diagram of the assessment model for our VR
stroke-rehabilitation system. First, K-means clustering based on
evaluation scales was used to cluster participants’ data. Next, the
skeleton data were collected when a participant was performing the VR
task via Kinect, and the features were extracted as motor indicators.
Finally, multi-classifiers (MLP, RBFNN, SVM) based on evaluation scales
were adopted to develop an evidence-based assessment model.

coordinates (x; y; z) in the form of (FMA, TEMPA, WMFT).
Different K values were taken to classify the data with the
K-means algorithm. The clustering effect of each K value was
validated by the silhouette coefficient [42], thereby determin-
ing the appropriate K value.

2) ASSESSMENT MODEL BY MACHINE LEARNING
Based on the K-means clustering algorithm with traditional
evaluation scales’ scores, we classified the participants’
evaluation scales’ scores into different clusters. Therefore,
we were able to establish a classification model based on
these labels. We used a machine learning-based classification
algorithm to build an assessment model that could automati-
cally classify stroke patients into different impairment levels.
The machine learning-based classification algorithms used
in this study are composed of neural networks and support
vector machines. Neural network is an artificial neural net-
work formed by the interconnection of neurons for solv-
ing artificial intelligence problems. Neural networks have
many different architectures. In this paper, a MLP (Multilayer
Perceptron) and a RBFN (Radial Basis Function Network)
were used. A Support Vector Machine (SVM) is a supervised
machine learning method. It is widely used when there is a
small number of samples and nonlinear and high-dimensional
pattern recognition is needed. However, SVM might be
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incapable of multivariate data. In this case, LibSVM is often
used to analyze multivariate experimental data [43].

To validate the effectiveness of the assessment model,
we used the impairment level classified by K-means with tra-
ditional evaluation scales as the expected value. Some of the
motor indicators chosen as input features for the assessment
model have been validated for correlation between motor
indicators and traditional evaluation scales. To evaluate the
assessment model, we tested the accuracy and the mean
absolute percentage error (MAPE) for MLP, RBFN and SVM
classifiers. The MAPE’s calculation formula is shown in
equation (5).

T

1
MAPE = — ];

d —
"d Yk | % 100% (5)

where, dy is the actual value of the k" data; yy is the predicted
output value of the k™ data; T is the total amount of data. The
relationship between MAPE and prediction effect is defined
as when MAPE < 10, the prediction effect is accurate; when
50 < MAPE, the prediction effect is inaccurate.

IV. RESULTS

A. COMPARISON OF PRETEST AND POSTTEST DATA IN
TRADITIONAL EVALUATION SCALES

The comparison of pretest and posttest data in three tradi-
tional evaluation scales is shown in Table 2. The scores of
all evaluation scales were significantly improved (P < 0:05),
indicating the bi-lateral VR task has significant efficacy for
the rehabilitation of stroke patients.

TABLE 2. Traditional evaluation scale statistical results.

Scales Pretest Posttest P-value
FMA 14.60 (4.39) 17.15 (3.60) 0.001%*
TEMPA -12.60 (7.93) -10.35 (6.63) 0.005%*
WMFT 3.66 (0.77) 3.84 (0.67) 0.020*

Significance Level = 0.05; *P < 0.05; ** P <0.01.

B. CORRELATION ANALYSIS OF MOTOR INDICATORS
AND TRADITIONAL EVALUATION SCALES
The correlation between horizontal motor indicators, vertical
motor indicators and traditional evaluation scales in pretest
and posttest data are shown in Fig. 4 (A) and Fig. 4 (B).
Aiming time and the amount of time between stabilization
and catching correlate significantly with FMA, TEMPA, and
WMEFT in pretest and posttest. However, the results were not
as expected. Aiming time showed positive correlation but the
amount of time between stabilization and catching showed
negative correlation. We expected that if aiming time was
shorter, the amount of time between stabilization and catching
would be longer if participants had better motor ability. This
result might be due to the degree of difficulty setting for the
bi-lateral VR task.

The correlation between full body motor indicators and
traditional evaluation scales in pretest and posttest data
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FIGURE 4. Correlation coefficients between motor indicators including horizontal motor indicator (HMI), vertical motor indicator (VMI), and full body’s
motor indicator (FBMI), and traditional valuations scales which were FMA, TEMPA, and WMFT in Pretest and Posttest, respectively. Note that * means

P < 0.05 and ** means P < 0.01. H(V)MI_1 = first time entering the catching range evaluated by horizontal(vertical) motor indicator; H(V)MI_2 = last time
entering the catching range evaluated by horizontal(vertical) motor indicator; H(V)MI_3 = catching time evaluated by horizontal(vertical) motor indicator;
H(V)MI_4 = aiming time evaluated by horizontal(vertical) motor indicator; H(V)MI_5 = amount of time between stabilization and catching ball evaluated
by horizontal(vertical) motor indicator; H(V)MI_6 = number of times getting in and out of catching range evaluated by horizontal(vertical) motor
indicator; FBMI_1 = catching ball time difference between normal arm and affected arm; FBMI_2 = catching ball time cost by affected arm; FBMI_3 =
movement distance by affected arm; FBMI_4 = movement difference between affected arm and normal arm; FBMI_5 = maximum speed by affected arm
before ball arrives at the highest location; FBMI_6 = average speed by affected arm before ball arrives at the highest location; FBMI_7 = V -variation by
affected arm before ball arrives at the highest location; FBMI_8 = maximum speed by affected arm after ball arrives at the highest location; FBMI_9 =
average speed by affected arm after ball arrives at the highest location; FBMI_10 = V -variation by affected arm after ball arrives at highest location;
FBMI_11 = maximum extension distance from arm movement in the horizontal direction; FBMI_12 = Maximum extension distance from arm movement

in the vertical direction; FBMI_13 = maximum extension distance from arm movement in the front-view direction.

are shown in Fig. 4 (C). Maximum speed, average speed,
V-variation by the affected arm before the ball arrives at the
highest location and maximum extension distance from arm
movement in the vertical direction correlates significantly
with FMA, TEMPA, and WMFT in pretest and posttest data.
Each of these motor indicators are related to muscle control
ability. In addition, we expected that a faster upper-limb
movement speed would mean the participant has better motor
ability. However, according to Fig. 4 (C), many motor indica-
tors have no correlation with traditional evaluation scales in
pretest and posttest data. This result might be due to the small
number of samples and need further investigation.

C. CLUSTER ANALYSIS BASED ON MULTI-DIMENSIONAL
EVALUATION SCALES

The clustering analysis based on the K-means algorithm is
used to determine the most proper K value. By fitting the
clustering model by the silhouette coefficient, we got the
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highest silhouette value when K = 3. Therefore, the patient’s
impairment level was divided into three categories based
on the multidimensional evaluation scales, with a total of
40 points (20 patients’ evaluation scale data in pretest and
posttest data). The spatial clustering result when K = 3 is
shown in Fig. 5. As shown, the number of data in Clusterl,
Cluster2, and Cluster3 are 15, 18, and 7 respectively.

Based on Fig. 4, traditional evaluation scales were replaced
with the clustering result in reanalyzing the correlation
between the motor indicators and the clustering result,
as shown in Fig. 6. A total of six motor indicators correlates
with the clustering results. These 6 indicators are the number
of times getting in and out of catching range, aiming time,
maximum speed, V-variation by affected arm before ball
arrives at the highest location, average speed by affected
arm after the ball arrives at the highest location, and maxi-
mum extension distance from arm movement in the vertical
direction.
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TABLE 3. Hyperparameter settings of machine learning models.

Motor indicators

Models Parameters All (25) Pretest - posttest (7) Posttest - pretest (7) Clustering (6)
Learning efficiency 0.5 0.5 0.5 0.5
MLP MSE 0.007 0.02 0.012 0.03
Learning times 80,000 80,000 80,000 80,000
Learning efficiency 0.5 0.5 0.5 0.5
RBFN MSE 0.07 0.08 0.06 0.04
Learning times 80,000 80,000 80,000 80,000
cost 512 32 2 32
RBFN gamma 0.08 0.5 0.5 0.008
% clustert FBMI 13 —
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FIGURE 5. 3D scatter plot for the traditional evaluation scales, HMI 6 —
Fugl-Meyer Assessment (FMA) [6], Wolf Motor Function Test (WMFT) [7], HMI 5 —
and Test D'évaluation Des Membres Supérieurs Des Personnes Agées HMI_4 —
(TEMPA) [8]. K-means clustering was based on them, and the highest gﬁi% -I
silhouette value was attained when K = 3. The blue cross, green plus, and HMI 1 —
red circle are Cluster 1, Cluster 2, and Cluster 3, respectively. The -

corresponding number of data are 15, 18, and 7 respectively.

D. MACHINE LEARNING BASED CLASSIFICATION MODEL
Based on the above correlation analysis, we found that some
motor indicators correlate with traditional evaluation scales.
These motor indicators were used to train MLP, RBFN,
and SVM classifiers. The initial hyperparameters, shown in
Table 3, are aimed to fit the classifiers based on the over-
all MAPE. In neural network analysis, we first chose all
(19) motor indicators to the fit neural network, as shown in
Table 4. The optimal number of neurons in MLP is two, and
the number of optimal neurons in RBFN is three. We also
chose subclasses of motor indicators to fit MLP, RBFN clas-
sifiers, as shown in Table 5. In SVM analysis, we also chose
all motor indicators and subclasses of motor indicators to fit
SVM classifier. The classification result of SVM is shown
in Table 6. Based on above the classification result, which
uses a two-neuron architecture with all motor indicators, has
the best performance of about 86% overall accuracy and
12.33% MAPE. In contrast, the highest accuracy of SVM is
only 61.5%.

V. DISCUSSION

According to Table 1, bi-lateral VR task could be effectively
used as rehabilitation training for stroke patients. However,
based on the clustering analysis above, some motor indicators
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FIGURE 6. Correlation coefficients between motor indicators including
horizontal motor indicator (HMI), vertical motor indicator (VMI), and full
body’s motor indicator (FBMI), and corresponding cluster. Note that

* means P < 0.05 and ** means P < 0.01.

unexpectedly have less correlation with traditional evaluation
scales.

According to Fig. 4 some of the motor indicators have
significant correlation with traditional evaluation scales in
pretest and posttest as expected. For example, maximum
speed, average, V -variation by affected arm before the ball
arrives at the highest location are all positive correlations with
traditional evaluation scales. However, some of the motor
indicators unexpectedly have less correlation with traditional
evaluation scales in pretest and posttest data. We believe
that if the number of samples increases in the future, these
motor indicators would have significant correlation with all
traditional evaluation scales.

For the assessment model’s selection of motor indicators,
we analyzed the correlation between horizontal, vertical, full
body motor indicators and clustering in Fig. 6. We discovered
that aiming time, maximum speed, V -variation by affected
arm before the ball arrives at the highest location, maxi-
mum extension distance from arm movement in the vertical
direction have both significant correlation with traditional
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TABLE 4. Classification results of neural network and all motor indicators.

Number of neurons

2 3 4
Training Test Overall Training Test Overall Training Test Overall
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Training Test Overall Training Test Overall Training Test Overall
Models MAPE MAPE MAPE MAPE MAPE MAPE MAPE MAPE MAPE
MLP 89.38% 72.5% 86% 86.25% 67.5% 82.5% 86.25% 67.5% 82.5%
10.33% 20.31% 12.33% 11.34% 22.07% 13.49% 11.07% 22.71% 13.4%
RBEN 81.25% 60% 77% 87.5% 63% 82.6% 84.38% 63% 80.1%
13.86% 29.24% 16.94% 11.06% 30.67% 14.98% 12.68% 30.73% 16.29%

TABLE 5. Classification results of neural networks and selected motor indicators.

MLP (2 neurons)

RBFN (3 neurons)

Training Test Overall Training Test Overall
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Training Test Overall Training Test Overall
M - MAPE MAPE MAPE MAPE MAPE MAPE
otor indicator
83.13% 60% 78.5% 81.25% 60% 77%
Pretest - posttest (7)
16.68% 24.06% 18.1% 14.78% 35.49% 18.92%
83.13% 52.5% 77% 84.38% 60% 79.5%
Posttest - pretest (7)
11.18% 28.84% 14.71% 8.09% 33.66% 13.2%
. 78.75% 60% 75% 78.12% 55% 73.5%
Clustering (6)
19.94% 27.29% 21.41% 17.11% 35.98% 20.88%
TABLE 6. Classification results of SYM and motor indicators.
Training Accuracy Test Accuracy Overall Accuracy
Motor indicator

All (25) 51.88% 45% 50.5%

Pretest - posttest (7) 56.25% 42.5% 53.5%

Posttest - pretest (7) 51.88% 55% 52.5%

Clustering (6) 61.88% 60% 61.5%

evaluation scales and clustering. These motor indicators
might be more important to the assessment model.

The number of neurons was considered in constructing
a neural network classifier with all motor indicators. The
optimal MLP and RBFN neural network models with all
motor indicators were developed, as shown in Table 4. In con-
sidering the selection of motor indicators, we tried different
subclasses of motor indicators to fit MLP and RBFN neu-
ral network classifiers, as shown in Table 5. However, the
classification model with the highest overall accuracy and
highest overall MAPE was trained by all motor indicators.
We considered that although some motor indicators might not
have significant correlation with traditional evaluation scales
in a traditional statistics aspect, these motor indicators still
impact the neural network-based classification model. The
neural network models could learn implicit relations between
those motor indicators. Moreover, the number of motor
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indicators that correlate to traditional evaluation scales might
be too small for neural network models to learn well. There-
fore, our neural network model still shows great potential.

According to Table 6, the SVM classification model
trained with motor indicators considered traditional evalua-
tion scales. The motor indicators with significant correlation
to clustering show the highest overall accuracy in the SVM
classification model. However, results of overall accuracy in
Table 6 are not great.

Although several studies have devoted on developing VR
system for stroke rehabilitation, it is still lack of a sys-
tem which incorporated both sensor and traditional evalu-
ation scales. More specifically, previous research adopted
VR training tasks in stroke rehabilitation to show the effi-
ciency of VR rehabilitation by comparing pretest and posttest
data without sensor data and traditional evaluation scales
[31], [32], [33], [34]. While several studies only considered
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the sensor data to implement the evaluation [25], [26], [27],
[28], [35], [37], [38], [39]. Our system was developed by
considering both sensor data and traditional evaluation scales.
Since the VR systems lack of similarity in previous research,
comparing the results such as the performance of the pro-
posed models would have no meaning. Yet, our results have
shown that considering both sensor data and traditional eval-
uation scales is helpful to develop the VR system.

Because the number of samples is small, the results
might not necessarily be accurate. Nonetheless, an automated
motor assessment model is feasible. If we have enough sam-
ples in the future, we would consider doing the following:
(1) Increase the type of evaluation scales. (2) Increase
the number of clusters. (3) Implement additional motor
indicators.

VI. CONCLUSION

In this paper, we developed a VR-based stroke rehabilitation
system for the upper limbs. We proposed a motor assess-
ment model with 20 stroke participants’ traditional evalu-
ation scales (FMA, TEMPA and WMFT). First, we used
the K-means algorithm to cluster participants’ pretest and
posttest data. Furthermore, we designed many motor indica-
tors for a bilateral VR task and analyzed their correlation with
traditional evaluation scales. Maximum speed, average speed,
V-variation by the affected arm before the ball arrives at the
highest location and maximum extension distance from arm
movement in the vertical direction correlates significantly
with FMA, TEMPA, and WMFT in pretest and posttest data.
Each of these motor indicators are related to muscle control
ability. Moreover, we used clustering analysis and the cor-
relation between motor indicators and traditional evaluation
scales to fit the machine learning-based classification model
(MLP, RBFN, SVM). Finally, our motor assessment model
with MLP architecture achieved 86% overall accuracy. In the
future, we would perform a larger clinical trial to enhance
the accuracy of our assessment model. We would also adopt
advanced machine learning methods such as DNN, RNN, and
LSTM to exploit our Kinect-based skeleton data to implement
a higher performance motor assessment model.
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