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ABSTRACT This paper presents an integrated and scalable precision health service for health promotion
and chronic disease prevention. Continuous real-time monitoring of lifestyle and environmental factors is
implemented by integrating wearable devices, open environmental data, indoor air quality sensing devices,
alocation-based smartphone app, and an Al-assisted telecare platform. The Al-assisted telecare platform pro-
vided comprehensive insight into patients’ clinical, lifestyle, and environmental data, and generated reliable
predictions of future acute exacerbation events. All data from 1,667 patients were collected prospectively
during a 24-month follow-up period, resulting in the detection of 386 abnormal episodes. Machine learning
algorithms and deep learning algorithms were used to train modular chronic disease models. The modular
chronic disease prediction models that have passed external validation include obesity, panic disorder,
and chronic obstructive pulmonary disease, with an average accuracy of 88.46%, a sensitivity of 75.6%,
a specificity of 93.0%, and an F1 score of 79.8%. Compared with previous studies, we establish an effective
way to collect lifestyle, life trajectory, and symptom records, as well as environmental factors, and improve
the performance of the prediction model by adding objective comprehensive data and feature selection. Our
results also demonstrate that lifestyle and environmental factors are highly correlated with patient health and
have the potential to predict future abnormal events better than using only questionnaire data. Furthermore,
we have constructed a cost-effective model that needs only a few features to support the prediction task,
which is helpful for deploying real-world modular prediction models.

INDEX TERMS Precision health, artificial intelligence, wearable device, chronic obstructive pulmonary
disease, panic disorder.

Clinical translation statement. The proposed service can be utilized for the precision health manage-
ment of chronic diseases after patients are discharged from hospital. All chronic disease related data are
uploaded automatically, including continuous lifestyle factors, environmental factors, and medical records.
The patient’s health risk value would be computed through modular prediction models, reminding patients
and medical personnel in advance to improve their health outcome. The comprehensive view of patient data
could help physicians and patients to formulate personalized health promotion plans and achieve precision
health management.

I. INTRODUCTION facilitates the selection of drugs that minimize side effects
With the rapid progress of precision medicine, patients have and produce the best results. However, from the perspective
the additional option of advanced and personalized medical of prevention, many studies claim that numerous challenges
treatment in hospitals. From a treatment point of view, this remain in the field of precision medicine [1], [2]. Since
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precision medicine applications are developed based on his-
torical electronic medical records, most treatments can be
obtained only when the patient is hospitalized. The problem
is that most people do not stay in the hospital for an extended
period of time. Once a patient has been discharged from
the hospital, there is a risk that lifestyle and environment
will affect disease control and prevention. Hence, the broader
concept of precision health has been proposed and continues
to grow.

Precision health is defined as a holistic approach to help
people stay healthy through personalized prevention and
treatment, which focuses on the prevention of disease. This
includes precision medicine, but with a greater emphasis
on daily monitoring, health promotion, and disease preven-
tion [3]. Several studies demonstrate the great potential of
advancements in precision health to reshape human health
and improve the treatment outcomes of breast, lung, and
colorectal cancer [4] by providing daily critical data to reduce
mortality in patients of all ages and sexes who are afflicted by
the current epidemic of chronic diseases related to lifestyle
habits [5], [6]. In the real world, lifestyle and environmental
factors are difficult to collect for use in analysis because they
must be immediately connected and annotated with disease
control situations to make the data meaningful [7].

In 2019, the coronavirus (COVID-19) outbreak over-
whelmed the healthcare system and caused dramatic loss of
life [8]. COVID-19 caused many to have a higher awareness
of their own health status and thus pursue self-health manage-
ment, seeking effective and real-time health management and
service platforms. Increasing evidence shows that long-term
continuous remote health management can help reduce the
health risks caused by the COVID-19 epidemic [9], [10].
The mortality risk of COVID-19 has also been revealed to
be related to underlying health conditions, including obesity,
panic disorder, and chronic obstructive pulmonary disease
(COPD) [11], [12], [13]. These are common chronic diseases
in our daily lives, and are the leading cause of disability and
death in the world. According to a report from the National
Centers for Disease Control and Prevention, 90% of the
3.8 trillion USD annual healthcare expenditure in the United
States comes from patients with chronic and mental illnesses
[14]. Given the aging population structure worldwide, the
management of chronic diseases is bound to become a global
health challenge and an economic burden in the foreseeable
future [15].

Based on the above points, there is no efficient way to
(1) integrate lifestyle, environmental factors, and medical
records to provide personalized health recommendation and
(2) support multiple chronic disease groups simultaneously.
Hence, the purposes of this research were (1) to develop
an Al-assisted telecare platform that enables physicians
to remotely monitor the situation of patients with chronic
diseases and support the data collection of lifestyle and
environmental factors from different sources; (2) to develop
scalable modular chronic disease prediction models for early
prediction of acute exacerbations of chronic diseases using
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personal lifestyle factors, environmental factors, and medical
questionnaires to help patients improve disease control; (3) to
construct an appropriate location-based smartphone applica-
tion to deliver personalized health promotion for patients and
achieve the goal of precision health management.

Il. RELATED WORK

A. CHRONIC DISEASE PREDICTION MODELS

Several chronic disease prediction models have been devel-
oped in recent years. Goto et al. proposed an AECOPD
(acute exacerbations of chronic obstructive pulmonary dis-
ease) model using demographic features, vital signs, and
electronic medical records in the emergency department [16].
They found that the use of machine learning improves the
ability to predict critical care and hospitalization among
emergency patients with COPD exacerbation over the tra-
ditional statistical approach with emergency severity index
information. Likewise, Peng et al. developed a machine learn-
ing approach to predict the prognosis of AECOPD hospital-
ized patients with clinical indicators. They used vital signs,
medical history, inflammatory indicators, and decision trees
to help respiratory physicians assess the severity of the patient
early and improve patient prognosis [17]. Lueken et al. col-
lected 59 panic disorder patients and compared brain activa-
tion areas before and after specific treatment. Comorbidity
status has been predicted using a random undersampling
tree and MRI images [18]. Butler er al. proposed an early
childhood obesity prediction model for predicting obesity
in 4- to 5-year-old children, using parental and infant data
from the Growing Up in New Zealand (GUiNZ) cohort [19].
Despite the good performance of these prediction models
using machine learning algorithms and medical records, they
are difficult to implement in real-world situations because
patients with chronic disease are not always in the hospi-
tal and have real-time medical records. Lifestyle and living
environment also affect disease control after a patient is
discharged from hospital. Nevertheless, there is no predictive
models incorporating lifestyle, living environment and medi-
cal questionnaires. Comprehensive data collection may have
the potential to achieve better predictive power and provide
personalized health promotions to help patients improve their
health outcomes.

B. E-HEALTH AND M-HEALTH SYSTEMS

Recently, various e-health and m-health applications have
been proposed for telemedicine, vital sign monitoring, and
health management. In 2017, Clarke et al. proposed a remote
monitoring platform based on the IEEE 11073 standards
for personal health devices. The platform was flexible and
extensible, allowing the addition of new medical devices with
ZigBee/6LoWPAN modules. They provided a gateway to
collect blood pressure, SpO2, blood glucose, and body weight
data [20]. In 2018, Yang et al. designed an IoT-enabled stroke
rehabilitation system to enable telemedicine, which consists
of a smart wearable armband, machine learning algorithms,
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FIGURE 1. Architecture of precision health service.

and a 3D printed robot hand [21]. The authors demon-
strated the real-time assistance from the system help users to
strengthen their motion patterns after stroke. The availability
of continuous and real-time data will be a key factor in the
development of smart healthcare systems, because stakehold-
ers can use these data to make well-informed decisions [22].
McPadden et al. demonstrate that a scalable data science
platform can offer the opportunity to access comprehensive
health care data for computational health care and precision
medicine research [23]. Aida et al. develop an m-health
application to improve the lifestyle behaviors and health
literacy of patients with metabolic syndromes. By visualiz-
ing conventional health checkup data and enhancing health
education materials, they significantly improve self-efficacy
and health outcomes, and maintain weight loss and smoking
cessation [24]. In sum, e-health and m-health systems must
be flexible and scalable to support various vital signs input
and meet different disease care needs and expansion needs.
Real-time data visualization would help physicians to quickly
understand the patient’s situation and formulate appropriate
personalized treatment.

lIl. METHODS AND SERVICE ARCHITECTURE
The study protocol was approved by the Institutional
Review Board of National Taiwan University Hospital
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(201710066RINB; date of approval: April 19, 2018).
Figure 1 shows the architecture of the precision health
service. The service consists of the NTU Medical Genie
i0S/Android smartphone app, wearable devices, an air qual-
ity sensing device, the open environmental data API, the NTU
Medical Genie platform, and modular prediction models.
After patients are discharged from hospital, all lifestyle and
environmental key information would be effectively collected
from a wearable device, an air quality sensing device, and a
smartphone App. Then, real-time data would be displayed on
the platform for medical staff to assist in decision-making.
Modular prediction models would be triggered on some very
important abnormal vital signs immediately and daily at 2am,
ensuring emergency safety and cost-effectiveness. In addi-
tion, to achieve high scalability and flexibility, all dataflow
nodes such as the number of disease groups, vital signs
monitoring devices, or prediction models are designed to run
in parallel. So, the nodes could easily be added from platform
side or APP side when the load increasing. The corresponding
computer resources can be added for stable operation. The
following is the detailed description of each component.

A. NTU MEDICAL GENIE SMARTPHONE APP
The location-based personal health advice app was devel-
oped using Java SE 8 in Android Studio 4.0.1 and Swift
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5 in Xcode 12.4. This allowed the measurement of real-time
streaming data such as heart rate, heart rate variability, accel-
eration, SpO2, respiration rate, steps, calorie consumption,
and floors climbed via connection with wearable devices.
A background location tracking feature and video chat were
activated after obtaining user data authorization. For chronic
disease management, regular assessment and daily symp-
tom records help physicians understand the patient’s disease
condition. As a consequence, this app provided a variety of
chronic disease clinical questionnaires and symptom diary
functions. These data were automatically uploaded to the
server, after which physicians provided personalized health
promotion advice in real time through the data visualization
platform.

B. WEARABLE DEVICES

To increase the hardware compatibility of this service,
wearable devices such as those from Fitbit, Garmin,
Apple, Oura Ring, and Asus were included in this
study. Real-time lifestyle data (physical activities, heart
rate, SpO2, and sleep patterns) were collected and auto-
matically uploaded to a health data lake through the
Bluetooth protocol, the open application programming
interface, and the software development kit. Time series
data were synchronized with the server on average every
15 minutes to ensure that subtle changes were not
neglected.

C. AIR QUALITY SENSING DEVICE

Environmental risks may affect chronic disease control.
Patients with chronic respiratory diseases such as chronic
obstructive pulmonary disease and asthma are particularly
susceptible to air pollution. With the rapid progress of the
Internet of Things, home environmental information can be
detected by air quality sensors. In this study, an Edimax
Airbox was used to collect fine particulate matter (PM2.5)
levels, temperature, and humidity at home; these data
were uploaded automatically via a wireless network every
15 minutes.

D. OPEN ENVIRONMENTAL DATA API

To better understand the patient’s environmental risks,
we used the real-time positioning information obtained by
the app and our algorithm to capture the open data from
the nearest environmental monitoring station. Data features
such as fine particulate matter (PM2.5) levels, air qual-
ity index (AQI), sulfur dioxide concentration (SO2), tem-
perature, humidity, UV exposure level, carbon monoxide
concentration (CO), water quality, and nitric oxide concen-
tration (NO2) were collected hourly by calling the open data
application programming interface from the Environmen-
tal Protection Administration, the Central Weather Bureau,
and the Water Resources Agency. Historical data was also
retrieved by a web crawler, including environmental data
from 2011 to 2022.
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E. NTU MEDICAL GENIE PLATFORM (SCALABLE
AI-ASSISTED TELECARE PLATFORM)

Through these four information and communication tech-
nology methods, comprehensive patient data were collected.
To establish an effective connection between patients and
physicians, the data platform was designed to provide key
information and trend charts to physicians and case man-
agers, facilitating a rapid understanding of the patient’s cur-
rent condition on one interface and providing patients with
personalized health promotion suggestions. In addition to
data visualization, this platform provides real-time warning
function to assist physicians and case managers in decision
making. Physicians and case managers set thresholds for
abnormal vital sign warnings according to the patient’s status.
When the vital signs exceeded the thresholds, the platform
actively triggered the health risks computation process and
notified medical staff to intervene if necessary. Regarding
the precision health management and prevention of chronic
diseases, the platform calculated personal health risks based
on modular chronic disease prediction models and the vari-
ous collected data. Chronic disease prediction models were
deployed in online case groups, providing medical staff with
optional triggers.

F. MODULAR CHRONIC DISEASE PREDICTION MODELS
FOR EARLY PREDICTION OF ACUTE EXACERBATION OF
CHRONIC DISEASES

As mentioned, the health risk value was computed by a robust
prediction model and provided as decision support for physi-
cians. The results of chronic diseases such as COPD, panic
disorder, and obesity are closely related to the improvement
of daily life behavior. Therefore, we implemented these three
chronic disease prediction models to demonstrate the scala-
bility of our services. The comprehensive dataset (sections
A-D) are pre-processed to extract the key features, followed
by the training process. The data pre-processing consists of
the last observation carried forward (LOCF) interpolation for
inconsistent frequency or null point and re-sampling to deal
with the disparate ratio of abnormal event. The normalized
data would be trained with a kinds of models and passed an
external validation to ensure that models were reliable and
applicable to different case groups in the real world. The
detailed implementation process of these three models is as
follows.

1) ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE
PULMONARY DISEASE PREDICTION MODEL

According to World Health Organization estimates, chronic
obstructive pulmonary disease (COPD) will be the
third-leading cause of mortality worldwide in 2030 [25].
Acute exacerbations of chronic obstructive pulmonary dis-
ease (AECOPD) are associated with substantial morbid-
ity and mortality. Early AECOPD detection will help to
reduce mortality. Increasing evidence shows that lifestyle
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modifications improve efficiency in the self-management and
prevention of COPD. Therefore, the aim with our AECOPD
prediction model was to use lifestyle data, living environ-
mental data, and clinical questionnaires to predict whether
a patient with COPD will experience acute exacerbations of
their condition within the next 7 days. The modified Medical
Research Council dyspnea scale and the COPD assessment
test were used to assess functional impairment and the impact
of COPD (cough, sputum, dyspnea, and chest tightness) on
health status. All input data features are shown in Textbox 1.

Environmental features

Fine particulate matter (PM2.5) levels, air quality
index (AQI), sulfur dioxide concentration (SO2),
carbon monoxide concentration (CO), and nitric oxide
concentration (NO2)

Lifestyle features

Heart rate, walking steps, calorie consumption, deep
sleep time, light sleep time, rapid eye movement time,
awake time

Clinical questionnaire features

Chronic obstructive pulmonary disease (COPD)
assessment test (9 answers), modified Medical Research
Council (mMRC) dyspnea scale (1 answer), life quality
questionnaire (5 answers)

Textbox 1. Input data features of AECOPD prediction
model

Hyperparameters for machine learning and the deep learn-
ing algorithm are presented in Table 1. Decision trees, random
forests, linear discriminant analysis, and adaptive boosting
were used to implement the AECOPD prediction model.
We also propose a deep neural network for comparison with
machine learning methods. This was constructed using fully
connected layers, which connect each neuron in one layer to
every neuron in another layer, mapping feature representa-
tions to the target vector space. For the activation function,
we used rectified linear units (ReLU) with the introduction
of a slope «, finishing with the sigmoid function to ensure
a probability between 0 and 1. For the optimizer for updat-
ing parameters, adaptive momentum estimation (Adam) with
quick parameter tuning and rapid convergence was suitable
for many parameters. Although Adam used an adaptive learn-
ing rate, instead of using its decay function, for this model
we used an adaptive learning rate multiplied by 0.1 every
60 epochs. To account for the imbalanced data, we used
the class_weights technique from Keras to penalize loss for
categorizing data points as the wrong class. The complete
deep neural network architecture of the AECOPD model is
shown in Fig. 2.

2) PANIC ATTACK PREDICTION MODEL
Panic disorder is a kind of anxiety disorder, with a life preva-
lence of around 2-6% worldwide [26]. A typical panic attack
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TABLE 1. Hyperparameters of AECOPD models.

Model Parameter Value

Random forest n_estimators 300
min_samples_split 4
max_depth 30

Decision tree min_samples_leaf 1
min_samples_split 2

Linear discriminant solver Lsqr

analysis shrinkage auto

AdaBoost n_estimators 45
learning_rate 1

Deep neural network hidden layers (45, 45, 45)
class_weights 0:10, 1:50
Adam betal, beta2 0.7,0.8

Hidden Layer
Input Layer Output layer ~ Sigmoid  Output
Batch normalization J J
[ !

45 neurons

FIGURE 2. Deep neural network architecture of AECOPD prediction model.

is unexpected and consists of repeated, intense fear attacks,
appearing suddenly and reaching a peak within a few minutes.
Patients who suffer from panic disorder tend to worry about
the occurrence of the next attack and actively try to prevent
future attacks by avoiding locations, situations, or behaviors
related to the panic attack. Predicting panic attacks accurately
may help clinicians to provide timely, appropriate treatment
and optimize personalized medicine. Hence, the purpose of
this model is to predict whether panic disorder patients will
have a panic attack within the next seven days. Random
forest, decision tree, linear discriminant analysis, adaptive
boosting (AdaBoost), and regularized greedy forest models
were implemented to predict panic attacks. The models and
hyperparameters are shown in Table 2.

A deep-learning-based model was also proposed in this
study with four fully connected, hidden layers. The activation
function in the hidden layers was the rectified linear unit
(ReLU), which addressed the problem of disappearing gradi-
ents. Batch normalization was applied on each layer after the
activation function to accelerate model training and prevent
model overfitting. After batch normalization, we also applied
dropout to reduce overfitting. We used sigmoid activations for
the output layer because we require only a true or false result.
The loss function and the optimizer used binary cross entropy
(BCE) and Adam, respectively. We selected BCE because
the output of the study was binary. BCELoss is defined as
Equation 1.

1 ) )
BCELoss(0, T) = — > (T1i) * log(Oli])
t

+ A = T[i) * log(1 — O[il))

VOLUME 10, 2022



C.-T. Wu et al.: Precision Health Service for Chronic Diseases

|EEE Journal of Translational

Engineering in
Health and Medicine

N\ BTN

,‘/ W

Betoh Nomalzaton

Dropout

FIGURE 3. Deep neural network architecture of panic attack model.

Eq. 1. BCELoss equation, where O is the predicted value and
T is the ground truth.

We applied an adaptive learning rate (LR) with an initial
learning rate of le-4. Next, every 50 epochs, we multiplied
LR by 0.7. Finally, for increased sensitivity, we accounted
for data imbalance using class weights. The principle behind
this is to add weight to each category in the training set:
low weights are used for categories with many samples.
The complete deep neural network architecture is shown in
Fig. 3. The input features included continuously measured
lifestyle data collected via a wearable device, environmental
data obtained from the government’s open data platform, and
clinical questionnaire data, as shown in Textbox 2.

Environmental features

Fine particulate matter (PM2.5) levels, air quality
index (AQI), sulfur dioxide concentration (SO2), carbon
monoxide concentration (CO), and nitric oxide concen-
tration (NO2)

Lifestyle features

Walking steps, distance, floors, min heart rate, max
heart rate, average heart rate, resting heart rate, total
sleep duration, deep sleep duration, light sleep duration,
REM sleep duration, awake duration

Clinical questionnaire features

Beck Depression Inventory (BDI), Beck Anxiety
Inventory (BAI), State—Trait Anxiety Inventory
(STAI), Panic Disorder Severity Scale (PDSS), Mini
International Neuropsychiatric Interview (MINI)

Textbox 2. Input data features of panic attack
prediction model

3) OBESITY PREDICTION MODEL

Evidence indicates that obesity is a common, serious, and
costly disease. Obesity cost the US health care system
US$260.6 billion in 2016 [27]. The prevalence of obesity
increased from 30.5% to 42.4% from 2010 to 2020. Body
mass index (BMI) is a common metric used to screen
overweight and obese patients. Increased BMI values are
a major risk factor for noncommunicable diseases such as
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TABLE 2. Hyperparameters of panic attack models.

Model Parameter Value
Random forest n_estimators 100
min_samples_split 2
max_depth 1
Decision tree min_samples_leaf 1
min_samples_split 2
Linear discriminant solver Lsqr
analysis shrinkage auto
Regularized greedy max_leaf 1000
forest algorithm RGF_Sib
test_interval 100
AdaBoost n_estimators 50
learning_rate 1
Deep neural network | fully-connected layer 1 128
fully-connected layer 2 256
fully-connected layer 3 128
fully-connected layer 4 64
dropout gradient 0.2
class_weight for negative 1.0
class_weight for positive 1.5

TABLE 3. Hyperparameters of obesity prediction models.

Model Parameter Value
Random forest n_estimators 100
min_samples_split 2
max_depth 1
Decision tree min_samples_leaf 1
min_samples_split 2
Linear discriminant solver Lsqr
analysis shrinkage auto
AdaBoost n_estimators 45
learning_rate 1
Deep neural network | fully-connected layer 1 128
fully-connected layer 2 256

cardiovascular diseases, diabetes, musculoskeletal disorders,
and certain cancers. Lifestyle modification and low health
literacy are associated with obesity [28], [29]. Hence, the pur-
pose of the obesity model is to predict whether the patient’s
BMI will rise within the upcoming 7 days using lifestyle data,
environmental data, and health literacy assessment. Machine
learning and a deep neural network algorithm were applied
to implement the prediction model. The model hyperparam-
eters are presented in Table 3. The deep neural network was
constructed using two fully connected layers. Batch normal-
ization and parametric rectified linear units were applied in
the process. Figure 4 shows the structure of the DNN model.

4) VALIDATION AND MODEL ASSESSMENT

We used 3-fold cross-validation to evaluate the stability of
the prediction models. Accuracy, precision, sensitivity, and
specificity were used as assessment metrics to evaluate the
overall performance, including the closeness and the devia-
tion of the prediction, and the performance on negative and
positive cases of the identification models separately based
on the validation and test sets. To tune the models for the
best performance on the test set, the F1 score was chosen
to adjust and evaluate the performance of our multi-feature
prediction tasks by varying the outcome thresholds using the
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FIGURE 4. Deep neural network architecture of obesity model.

validation dataset. Applying the above metrics, our models
were well-tuned and evaluated from multiple aspects, yield-
ing high-confidence modular prediction function

5) FEATURE ENGINEERING AND MODEL DEPLOYMENT
Incomplete data is a common issue in real-world apps.
To deploy the prediction model in the real world, we imple-
mented the SHAP module (Shapely Additive exPlanations)
and a feature selection process to reduce number of variables
and the computational cost. The SHAP module was designed
to explain the output of prediction models based on coopera-
tive game theory. SHAP module determines the most impor-
tant features and their influence on the model prediction. The
formula of the SHAP value is defined in Equation 2. ¢i is the
Shapley value for feature i. S is a coalition of features. p(S) is
the payoft for this coalition. N is the total number of features.
N /iis all the possible coalitions not containing i. In this study,
a summary plot was applied to describe the distribution and
relationship of each feature. Furthermore, feature selection
was used to address overfitting and to find the best feature
set for a useful, real-world prediction model. We adopted
the wrappers method and backward feature elimination to
observe the performance change in precision, specificity, and
F1 score. We started the model with all features and then
removed insignificant features one by one until all features
were processed, as shown in Fig. 5. The resulting prediction
model with the most cost-effective feature set was deployed
on our developed platform.

ISI'(n — IS = D! .
$i(p)= Y x="————(p(S Ui)—p(S))
n!
SCN/i
Eq. 2. Shapley value calculation
IV. RESULTS
As of May 25, 2022, the precision health service had

served 1,667 patients and 32 medical personnel, derived and
monitored 186,986,625 physical data, and performed 6,869
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FIGURE 6. Visualization of lifestyle and environmental data.

interviews to offer total care to patients. Comprehensive
patient information including lifestyle, living environment,
life trajectory, disease control, and data on vital signs were
collected by a location-based personal health app, open envi-
ronmental data API, air quality sensing device, and wearable
devices that were provided to all participants. All derived data
were displayed on the Al-assisted platform and used to train
modular prediction models to predict whether a patient with
chronic disease would experience acute exacerbation of their
condition within the next 7 days.

A. NTU MEDICAL GENIE PLATFORM (SCALABLE
AI-ASSISTED TELECARE PLATFORM)

An Al-assisted platform for medical staff was developed
using the ReactJS frontend framework and the Node.js back-
end framework. This platform displays the patient’s lifestyle
and environmental data trends on a single user interface to
help doctors quickly grasp the key information. Fig. 6 shows
the overview of our data collection, including both personal
lifestyle and environment data.

Detailed real-time information such as heart rate and
SpO2 changes within a few minutes and daily sleep status
are viewed by switching to different pages, as shown in
Figures 7 and 8. Figure 9 shows that daily sleep status can
be divided into four stages: awake, rapid eye movement,
light sleep, and deep sleep. This information was collected
mainly via wearable devices. To simultaneously support mul-
tiple chronic disease healthcare tasks, the platform provides
group management functions; modular prediction models
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July 3rd

FIGURE 8. SpO2 trend chart.

were deployed in each group. Physicians created groups to
classify patients of different levels, as shown in Fig. 10. Per-
sonal health risks were computed by the deployed prediction
model. Figure 11 shows an AECOPD health risk scenario: the
platform automatically generates today’s health risk based on
past data. When the health risk exceeds 0.75, a red icon is
displayed to notify the case manager to intervene and care
for the patient. Furthermore, the platform allows medical
staff to add thresholds for vital signs corresponding to the
different patient situations. Patients who exceed a threshold
are highlighted by an exclamation mark. After applying this
platform in a hospital setting, we found that incomplete data is
quite common and critical in the real world. Hence, modular
chronic disease prediction models were designed to support
prediction of acute exacerbations of chronic diseases via
optional features. Figure 12 demonstrates the computation
of daily health risk. Even the server receives only lifestyle
and environmental data, the health risk is still computed to
predict whether abnormal events will occur within the next
seven days.

B. MODULAR CHRONIC DISEASE PREDICTION MODELS
FOR EARLY PREDICTION OF ACUTE EXACERBATION OF
CHRONIC DISEASES

In this section, we present the proposed modular chronic
disease prediction models for generating health risk alerts.
Machine and deep learning algorithms were applied to train
the prediction model to compute the health risk value by pro-
cessing lifestyle data, environmental data, and the patient’s
medical records. Below are three validated chronic disease
prediction models.
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FIGURE 11. Health risks check list for vital signs.

1) ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE
PULMONARY DISEASE PREDICTION MODEL
During the study period, we recruited 177 patients diagnosed
with COPD according to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD) criteria and adult COPD
patients who were not implanted with a pacemaker and were
not pregnant. To prevent AECOPD earlier and fit diverse
scenarios, we implemented multiple models using various
combinations of data features to predict acute exacerbations
in the next seven days. Table 4 shows the performance of
the implemented models on the validation dataset. Compared
with the other algorithms, the random forest and deep neural
network algorithms yielded the best performance in most
indicators.

For 7-day AECOPD prediction, the original AECOPD
predictive model achieved an accuracy of 91.4%, a precision
of 95.5%, and an F1 score of 91.4% on the validation dataset.
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TABLE 4. Performance of each model with all features (AECOPD).

Model Accuracy | Sensitivity | Specificity | Precision Fl1
Random 0.914 0.877 0.955 0.955 0.914
forest
Detcr‘;"“ 0.792 0.712 0.881 0.867 0.782
LDA 0.829 0.781 0.881 0.877 0.826
AdaBoost | 0.886 0.822 0.955 0.952 0.882
DNN 0.921 0.904 0.940 0.943 0.923

TABLE 5. Performance given different feature sets (AECOPD).

Feature Model Accuracy | Sensitivity | Precision Fl1
All features Random 0.921 0.904 0.943 0.923
forest
Environmental | Decision 0.835 0.794 0.878 0.834
& lifestyle tree
features
Clinical LDA 0.695 0.714 0.769 0.740
questionnaire
features

To ensure the model applies to the real world, we trained the
model with different feature sets and extracted the best perfor-
mance model for deployment on the platform. Table 5 shows
the model performance given different feature sets. Predic-
tion with all features yielded the best performance. Note
that the model with only automatically uploaded features
also achieved good predictive performance. This model may
directly help patients in their daily life. The results further
confirm that lifestyle and environmental data features are
more important for AECOPD prediction than clinical ques-
tionnaire evaluation.

We conducted an external validation to ensure that the
model could be applied to other regions. The training
dataset and validation datasets were composed of data for
140 patients from National Taiwan University Hospital, and
the testing dataset came from 39 patients in Cardinal Tien
Hospital. Table 6 demonstrates the model performance on
the validation and testing datasets. Random forest, decision
tree, and deep neural network were selected as candidates due
to their superior results on the validation dataset. Although
performance of the AECOPD model declines on the testing
dataset, it still achieves an accuracy of 72.4%, a precision of
68.6%, and an F1 score of 68.0%. However, the prediction
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TABLE 6. Model performance on validation and testing datasets
(AECOPD).

Validation Accuracy  Sensitivity  Specificity  Precision F1
DNN 0.921 0.904 0.940 0.943 0.923
Random 0.914 0.877 0.955 0.955 0914
forest
Decision 0.792 0.712 0.881 0.867 0.782
tree
Testing Accuracy  Sensitivity ~ Specificity  Precision Fl1
Deep neural 7, 0.625 0.783 0633 0.629
network
Random 0.804 0.689 0.811 0.686  0.680
forest
De;‘ese“’n 0.705 0.524 0.814 0.628  0.571

task requires 27 features to complete the calculation, which
is difficult for real-world apps. To reduce the computational
costs and number of variables, feature selection and the
SHAP module were applied to further analyze the impact
of each feature on the prediction model. First, we identi-
fied important features affecting the prediction of AECOPD
through the feature importance map and SHAP module,
as shown in Figures 13 and 14. Then, we implemented back-
ward elimination to compare the performance differences
between models without specific features. Figure 15 shows
that serious declines in performance occur only when the
model does not contain deep sleep time, carbon monoxide
concentration (CO), suspended particulate matter (PM10),
and total score of COPD assessment test (CAT_total). Hence,
we performed the same testing process on the combination
of these features to realize the most cost effective prediction
model. Table 7 illustrates that the proposed model with the
most cost effective feature set achieved superior performance
due to the removal of unimportant features. The area under the
receiver operating characteristic curve of this model reached
94.7%. In addition, the summary plot also indicated that
higher values for features such as the total score of COPD
assessment test (CAT_total), air quality index (AQI), and
ozone (03) increase the risk of AECOPD events. Regular
exercise (average_step) reduces the risk of AECOPD events.

2) PANIC ATTACK PREDICTION MODEL

We enrolled 70 participants with panic disorder at the
En Chu Kong Hospital and MacKay Memorial Hospi-
tal. To accurately predict panic attacks, we experimented
with deep neural networks and machine-learning classifiers
including random forests, decision trees, linear discriminant
analysis, adaptive boosting, and regularized greedy forests.
Tables 8 and 9 show the model performance on the validation
testing dataset. The first 50 patients were included in the
training and validation dataset; others were regarded as the
testing dataset. The experimental results show the random
forest achieved the best performance. However, the sensitiv-
ity is worse on the testing dataset. This may reflect data imbal-
ance because the number of panic attacks decreased among
patients who were recruited later. To reflect the diversity
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FIGURE 14. Summary plot of AECOPD model.

of real-world scenarios, we trained with different combi-
nations of feature sets, including the all-feature model, the
lifestyle-environment model, and the clinical questionnaire
model alone, as shown in Table 10. The prediction perfor-
mance of the all-feature model is better than that of the
lifestyle-environment model and the clinical-questionnaire
model. However, the all-feature model requires 61 variables
to produce predictions, which is difficult to collect in real-
world implementations. Therefore, we used the same feature
engineering and modules as the AECOPD model to reduce
the number of variables and prevent model overfitting. After
the feature selection and SHAP process, the feature impor-
tance scores and SHAP value are shown in Figures 16 and 17.
In the summary plot, data dots to the left of the baseline
are prone to panic attack consequences. Data dots to the
right of the baseline may serve as health promotion advice
to keep patients away from panic attacks. Color represents
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TABLE 7. Model performance after feature selection process (AECOPD).

Feature Accuracy | Sensitivity | Specificity | Precision F1
All features 0.804 0.689 0.811 0.686 0.680
Costeffective | g6 0.778 0.949 0.897 | 0.833
features

TABLE 8. Validation dataset performance with all features (panic attack).

Model Accuracy | Sensitivity | Specificity | Precision F1
Random 0.975 0.946 0.955 0.992 0.968
forest
De;‘:;"“ 0.949 0.931 0.962 0.941 0.936
RGF 0.945 0.896 0.977 0.963 0.928
LDA 0.746 0.583 0.854 0.726 0.647
AdaBoost | 0.838 0.772 0.882 0.952 0.792
DNN 0.694 0.602 0.752 0.618 0.612

the data distribution of feature value in our dataset. Raising
the values of physical activity features, such as stairs climbed,
heart rate, and total sleep time help patients reduce the pos-
sibility of panic attacks. Moreover, Fig. 18 shows a severe
drop in performance when the model does not include Beck
Depression Inventory (BDI_total), Beck Anxiety Inventory
(BAI_total), Mini International Neuropsychiatric Interview
(MINI_value), and total sleep time. The combination of these
features was imported into the same experimental config-
uration for model training. In Table 11, the cost-effective
model achieved an accuracy of 83.1%, a sensitivity of 78.1%,
a specificity of 86.1%. and an F1 score of 77.5%. The model
requires only four features to yield reliable predictions, which
facilitates the real-world deployment of the service.

3) OBESITY PREDICTION MODEL

We enrolled 120 obese participants. The main prediction
target was whether BMI would worsen within the next seven
days. Following the above two methods, we experimented
with machine learning methods to train multiple models.
Table 12 shows the performance of the proposed models on
the validation dataset. The random forest and decision tree
achieved better performance. When training the all-feature
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TABLE 9. Model performance on validation and testing datasets (panic
attack).

Validation ~ Accuracy  Sensitivity — Specificity =~ Precision F1
Deep neural 6o, 0.602 0.752 0618  0.612
network
Random 0.975 0.946 0.955 0992  0.968
forest
RGF 0.945 0.896 0.977 0963  0.928
Testing Accuracy  Sensitivity ~ Specificity ~ Precision Fl1
Deep neural ;) 0.706 0.730 0.576  0.634
network
Random 0.813 0.574 0.938 0872  0.677
forest
RGF 0.800 0.568 0.920 0.788  0.660

TABLE 10. Performance given different feature sets (panic attack).

Feature Model Accuracy | Sensitivity | Precision Fl1
All features Random
0.975 0.946 0.992 0.968
forest
Environmental | Regularized
& lifestyle greedy 0.712 0.483 0.675 0.564
features forests
Clinical Regularized
questionnaire greedy 0.748 0.587 0.750 0.659
features forests
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aaLTOTAL
BDI_TOTAL
MINI_Value
max_heart_rate
total_sleep_duration
resting_heart_rate
distance
deep_sleep_duration
light_sleep
sops
min_heart_rate
avg_heart_rate
rem_sleep
floors._climbed
PM25_Sublndex
AQl
NO2_Subindex
awake_duration
PM10_Subindex
502_Subindex
CO_Subindex
0.00 0.02 0.04 0.06 0.08 0.10

FIGURE 16. Feature importance scores of panic attack model.

TABLE 11. Model performance after feature selection process (PANIC).

Feature Accuracy | Sensitivity | Specificity | Precision F1
All features | 0.813 0.574 0.938 0872 | 0.677
Costeeffective | o3, 0.781 0.861 0.769 | 0.775
features

prediction model, most of the data came from 80 obese
patients in central and southern Taiwan. Table 13 shows
the performance given different feature sets. As lifestyle
and living environment may be very similar, we used the
data of 40 obesity patients from northern Taiwan for model-
external validation. Table 14 shows that the decision tree
achieved the best performance on the testing dataset, albeit
with low sensitivity, perhaps due to the significant differ-
ence between patients from the north and those from the
south. Therefore, we applied the above SHAP module and
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FIGURE 18. Model performance under feature selection process (panic
attack).

feature selection to identify the most cost-effective model.
Figures 19 and 20 show the distribution of lifestyle factors,
living environment, and health literacy data. The results
demonstrate that lower values for features such as health
literacy, consumption in calories, average heart rate, and rapid
eye movement time increase the risk of becoming overweight
and obese. Figure 21 shows that serious declines in perfor-
mance occur only when the model does not contain con-
sumption in calories, health literacy total score, average heart
rate, and minimum heart rate. Therefore, the combination
of these four features may be the most influential and cost-
effective feature set. We executed the same model training
and testing process on this feature set. Table 15 illustrates that
the proposed model achieved good performance even with a
large reduction in features. Moreover, the sensitivity is signif-
icantly improved due to the removal of unimportant features.
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TABLE 12. Model performance with all features (obesity).

Model Accuracy | Sensitivity | Specificity | Precision F1
Random 0.967 0.906 0.992 0.978 | 0.941
forest
De&g"” 0.953 0.908 0.971 0.927 | 0918
LDA 0.834 0.572 0.940 0.793 | 0.665
AdaBoost | 0.867 0.707 0.931 0.806 | 0.753
DNN 0.886 0.734 0.942 0.823 | 0.776

TABLE 13. Performance given different feature sets (obesity).

Feature Model | Accuracy | Sensitivity | Precision Fl1
Allfeatures | Random | o, 0.906 0978 | 0.941
forest
Environmental | Decision
& lifestyle tree 0.940 0.882 0.882 0.882
features
Clinical Decision
questionnaire tree 0.666 0.357 0.416 0.384
features

TABLE 14. Model performance on validation and testing datasets
(Obesity).

Validation ~ Accuracy Sensitivity ~ Specificity ~ Precision F1
DNN 0.886 0.734 0.942 0.823 0.776
Random 0.967 0.906 0.992 0.978 0.941
forest
Decision 0.953 0.908 0.971 0.927 0918
tree
Testing Accuracy  Sensitivity  Specificity ~ Precision Fl1
DNN 0.910 0.471 0.978 0.772 0.585
Random 0.931 0.503 0.998 0.978 0.665
forest
Decision 0.917 0.697 0.951 0.689 0.693
tree

TABLE 15. Model performance after feature selection (obesity).

Feature Accuracy | Sensitivity | Specificity | Precision F1
All features 0917 0.697 0.951 0.689 0.693
Costreffective | o35 0.710 0.981 0.880 | 0.786
features

In summary, feature selection facilitated the construction of
the most cost-effective predictive model requiring only four
features. For 7-day BMI prediction, the proposed predictive
model with cost-effective features achieved an accuracy of
93.7%, a sensitivity of 71.0%, a specificity of 98.1%, and
an F1 score of 78.6% on the testing dataset. This model is
suitable for deployment on the platform and has the potential
to yield reliable predictions of future obesity events.

C. LOCATION-BASED SMARTPHONE APPLICATION TO
DELIVER REAL-TIME PERSONALIZED HEALTH PROMOTION
FOR PATIENTS WITH CHRONIC DISEASES

To obtain real-time information and provide a health pro-
motion service, we developed a location-based smartphone
application for the Android and iOS operating systems. The
application interface is shown in Fig. 22. First, the patient
registered an account in the app. The information to be input
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FIGURE 20. Summary plot of obesity model.

included the name, birthday, phone number, attending physi-
cian, and so on. All relevant patient registration information
was stored in a firebase. A background location tracking fea-
ture was activated after the user authorized location data. The
collected real-time latitude and longitude data was converted
into parameters for calling the open environmental data API
to calculate the environmental exposure risk for the user’s
location. The content of the app varied depending on the
type of chronic disease. For example, patients with panic
disorder were presented with four main functions when enter-
ing the homepage: real-time physiological data measure-
ment, a self-evaluation questionnaire, symptom recording,
and video chat. On the physiological data measurement page,
real-time physiological data to be collected include heart rate,
SpO2, heart rate variability, and acceleration. When the user
successfully entered the physiological data monitoring page,
the data trend graph started, and the data sampling rate was
changed to once per second for upload to the InfluxDB time
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series database. On the self-evaluation questionnaire page,
panic attack related clinical questionnaires including PDSS,
STAI-S, and STAI-A were provided as online surveys for
users to fill out to reflect their own health conditions. In addi-
tion, 21 symptom buttons were provided on the symptom
recording page to record the exact time and accurately mark
the significance of lifestyle and living environmental data for
disease control. The time of discomfort and symptoms were
then sent to the database. At the same time, the heart rate
variability (HRV) measurement function and video chat func-
tion both were activated, and the HRV value and symptom
records were transmitted to the Al-assisted platform so that
psychiatrists and case managers could offer timely and appro-
priate personalized health promotion advice based on their
situation. This app has been used in many hospitals (National
Taiwan University Hospital, En Chu Kong Hospital, Fu Jen
Catholic University Hospital, Tri-Service General Hospital,
Cardinal Tien Hospital, MacKay Memorial Hospital, and
Okayama University Hospital) in Taiwan and Japan. To pro-
tect user privacy, the app was designed to transmit data via the
https protocol, and personal information was encrypted. Case
managers could instantly ensure the sustainability of data via
the Al-assisted platform and provide users with appropriate
health advice on disease control and lifestyle modification.

V. CONCLUSION

We designed and implemented a scalable precision health
service for patients with chronic diseases. The results demon-
strate that this service provides continuous monitoring of
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lifestyle and environment, instant warnings in the event of
abnormal vital signs, and decision support based on modular
predictive models. Compared with existing studies, we have
created an unprecedented new service and improved the per-
formance of chronic prediction models by applying objec-
tive lifestyle and environmental factors. At the same time,
we have used feature engineering to reduce the computa-
tional costs and enhance the practicality of real-world Al
prediction models. The proposed prediction models require
a small number of features to achieve excellent performance
in predicting whether a patient with chronic disease will
experience an abnormal event within the next 7 days. Fur-
thermore, we address the inability to quantify and extract
lifestyle and environmental information in past studies by
integrating wearable devices, open data, indoor air quality
sensors, smartphone applications, and a healthcare platform.
To the best of our knowledge, this is the first study to use
continuous lifestyle factors, environmental factors, clinical
factors, feature selection, and artificial intelligence to predict
abnormal events in chronic diseases and deploy to the real
world with external validation.

As of May 25, 2022, the precision health service had served
1,667 patients and 32 medical personnel in Taiwan and Japan,
derived and monitored 186,986,625 physical data, and con-
ducted 6,869 interviews to offer total care to patients. The par-
allel operation of system dataflows can improve scalability
and flexibility, and is not limited by a single process or device
control, which can support the increase of different care
needs in the future. It has the potential to become the next-
generation e-health system to assist physicians in remote care
and establish an effective communication channel between
medical personnel and patients. Traditionally, patients with
chronic diseases must return to the hospital periodically for
numerous clinical tests to observe their health condition.
They may run the risk of acute exacerbation between rou-
tine visits. However, with the proposed service, all chronic
disease related data are uploaded automatically, including
questionnaire assessments and lifestyle and environmental
information. The patient’s health risk value is computed
through modular predictive models, reminding patients and
medical personnel in advance to improve their health out-
come. The resultant comprehensive view of patient data could
help physicians and patients to formulate personalized health
promotion plans and achieve precision health management.
Our results also confirm that lifestyle and environmental data
are highly correlated to patient health conditions, and have
a strong influence on the early warning of acute exacer-
bations. By applying the SHAP module and feature engi-
neering, we clearly identify the impact of physical activity,
sleep quality, and heart rate on chronic disease control, and
provide precise recommendations for health improvements
for physicians and patients. In the future, we will strengthen
the precision health service to support more data collection
for lifestyle factors, and implement digital twin models [30]
to further automatically provide concrete health promotion
advice for patients with chronic diseases.
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