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ABSTRACT This paper presents an integrated and scalable precision health service for health promotion
and chronic disease prevention. Continuous real-time monitoring of lifestyle and environmental factors is
implemented by integrating wearable devices, open environmental data, indoor air quality sensing devices,
a location-based smartphone app, and an AI-assisted telecare platform. The AI-assisted telecare platform pro-
vided comprehensive insight into patients’ clinical, lifestyle, and environmental data, and generated reliable
predictions of future acute exacerbation events. All data from 1,667 patients were collected prospectively
during a 24-month follow-up period, resulting in the detection of 386 abnormal episodes. Machine learning
algorithms and deep learning algorithms were used to train modular chronic disease models. The modular
chronic disease prediction models that have passed external validation include obesity, panic disorder,
and chronic obstructive pulmonary disease, with an average accuracy of 88.46%, a sensitivity of 75.6%,
a specificity of 93.0%, and an F1 score of 79.8%. Compared with previous studies, we establish an effective
way to collect lifestyle, life trajectory, and symptom records, as well as environmental factors, and improve
the performance of the prediction model by adding objective comprehensive data and feature selection. Our
results also demonstrate that lifestyle and environmental factors are highly correlated with patient health and
have the potential to predict future abnormal events better than using only questionnaire data. Furthermore,
we have constructed a cost-effective model that needs only a few features to support the prediction task,
which is helpful for deploying real-world modular prediction models.

18

19

20

21

22

23

24

25

26

INDEX TERMS Precision health, artificial intelligence, wearable device, chronic obstructive pulmonary
disease, panic disorder.
Clinical translation statement: The proposed service can be utilized for the precision health manage-
ment of chronic diseases after patients are discharged from hospital. All chronic disease related data are
uploaded automatically, including continuous lifestyle factors, environmental factors, and medical records.
The patient’s health risk value would be computed through modular prediction models, reminding patients
and medical personnel in advance to improve their health outcome. The comprehensive view of patient data
could help physicians and patients to formulate personalized health promotion plans and achieve precision
health management.

I. INTRODUCTION27

With the rapid progress of precision medicine, patients have28

the additional option of advanced and personalized medical29

treatment in hospitals. From a treatment point of view, this30

facilitates the selection of drugs that minimize side effects 31

and produce the best results. However, from the perspective 32

of prevention, many studies claim that numerous challenges 33

remain in the field of precision medicine [1], [2]. Since 34

2700414
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-5612-8607
https://orcid.org/0000-0003-3939-0424
https://orcid.org/0000-0001-7147-8122


C.-T. Wu et al.: Precision Health Service for Chronic Diseases

precision medicine applications are developed based on his-35

torical electronic medical records, most treatments can be36

obtained only when the patient is hospitalized. The problem37

is that most people do not stay in the hospital for an extended38

period of time. Once a patient has been discharged from39

the hospital, there is a risk that lifestyle and environment40

will affect disease control and prevention. Hence, the broader41

concept of precision health has been proposed and continues42

to grow.43

Precision health is defined as a holistic approach to help44

people stay healthy through personalized prevention and45

treatment, which focuses on the prevention of disease. This46

includes precision medicine, but with a greater emphasis47

on daily monitoring, health promotion, and disease preven-48

tion [3]. Several studies demonstrate the great potential of49

advancements in precision health to reshape human health50

and improve the treatment outcomes of breast, lung, and51

colorectal cancer [4] by providing daily critical data to reduce52

mortality in patients of all ages and sexes who are afflicted by53

the current epidemic of chronic diseases related to lifestyle54

habits [5], [6]. In the real world, lifestyle and environmental55

factors are difficult to collect for use in analysis because they56

must be immediately connected and annotated with disease57

control situations to make the data meaningful [7].58

In 2019, the coronavirus (COVID-19) outbreak over-59

whelmed the healthcare system and caused dramatic loss of60

life [8]. COVID-19 caused many to have a higher awareness61

of their own health status and thus pursue self-health manage-62

ment, seeking effective and real-time health management and63

service platforms. Increasing evidence shows that long-term64

continuous remote health management can help reduce the65

health risks caused by the COVID-19 epidemic [9], [10].66

The mortality risk of COVID-19 has also been revealed to67

be related to underlying health conditions, including obesity,68

panic disorder, and chronic obstructive pulmonary disease69

(COPD) [11], [12], [13]. These are common chronic diseases70

in our daily lives, and are the leading cause of disability and71

death in the world. According to a report from the National72

Centers for Disease Control and Prevention, 90% of the73

3.8 trillion USD annual healthcare expenditure in the United74

States comes from patients with chronic and mental illnesses75

[14]. Given the aging population structure worldwide, the76

management of chronic diseases is bound to become a global77

health challenge and an economic burden in the foreseeable78

future [15].79

Based on the above points, there is no efficient way to80

(1) integrate lifestyle, environmental factors, and medical81

records to provide personalized health recommendation and82

(2) support multiple chronic disease groups simultaneously.83

Hence, the purposes of this research were (1) to develop84

an AI-assisted telecare platform that enables physicians85

to remotely monitor the situation of patients with chronic86

diseases and support the data collection of lifestyle and87

environmental factors from different sources; (2) to develop88

scalable modular chronic disease prediction models for early89

prediction of acute exacerbations of chronic diseases using90

personal lifestyle factors, environmental factors, and medical 91

questionnaires to help patients improve disease control; (3) to 92

construct an appropriate location-based smartphone applica- 93

tion to deliver personalized health promotion for patients and 94

achieve the goal of precision health management. 95

II. RELATED WORK 96

A. CHRONIC DISEASE PREDICTION MODELS 97

Several chronic disease prediction models have been devel- 98

oped in recent years. Goto et al. proposed an AECOPD 99

(acute exacerbations of chronic obstructive pulmonary dis- 100

ease) model using demographic features, vital signs, and 101

electronic medical records in the emergency department [16]. 102

They found that the use of machine learning improves the 103

ability to predict critical care and hospitalization among 104

emergency patients with COPD exacerbation over the tra- 105

ditional statistical approach with emergency severity index 106

information. Likewise, Peng et al. developed amachine learn- 107

ing approach to predict the prognosis of AECOPD hospital- 108

ized patients with clinical indicators. They used vital signs, 109

medical history, inflammatory indicators, and decision trees 110

to help respiratory physicians assess the severity of the patient 111

early and improve patient prognosis [17]. Lueken et al. col- 112

lected 59 panic disorder patients and compared brain activa- 113

tion areas before and after specific treatment. Comorbidity 114

status has been predicted using a random undersampling 115

tree and MRI images [18]. Butler et al. proposed an early 116

childhood obesity prediction model for predicting obesity 117

in 4- to 5-year-old children, using parental and infant data 118

from the Growing Up in New Zealand (GUiNZ) cohort [19]. 119

Despite the good performance of these prediction models 120

using machine learning algorithms and medical records, they 121

are difficult to implement in real-world situations because 122

patients with chronic disease are not always in the hospi- 123

tal and have real-time medical records. Lifestyle and living 124

environment also affect disease control after a patient is 125

discharged from hospital. Nevertheless, there is no predictive 126

models incorporating lifestyle, living environment and medi- 127

cal questionnaires. Comprehensive data collection may have 128

the potential to achieve better predictive power and provide 129

personalized health promotions to help patients improve their 130

health outcomes. 131

B. E-HEALTH AND M-HEALTH SYSTEMS 132

Recently, various e-health and m-health applications have 133

been proposed for telemedicine, vital sign monitoring, and 134

health management. In 2017, Clarke et al. proposed a remote 135

monitoring platform based on the IEEE 11073 standards 136

for personal health devices. The platform was flexible and 137

extensible, allowing the addition of newmedical devices with 138

ZigBee/6LoWPAN modules. They provided a gateway to 139

collect blood pressure, SpO2, blood glucose, and bodyweight 140

data [20]. In 2018, Yang et al. designed an IoT-enabled stroke 141

rehabilitation system to enable telemedicine, which consists 142

of a smart wearable armband, machine learning algorithms, 143
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FIGURE 1. Architecture of precision health service.

and a 3D printed robot hand [21]. The authors demon-144

strated the real-time assistance from the system help users to145

strengthen their motion patterns after stroke. The availability146

of continuous and real-time data will be a key factor in the147

development of smart healthcare systems, because stakehold-148

ers can use these data to make well-informed decisions [22].149

McPadden et al. demonstrate that a scalable data science150

platform can offer the opportunity to access comprehensive151

health care data for computational health care and precision152

medicine research [23]. Aida et al. develop an m-health153

application to improve the lifestyle behaviors and health154

literacy of patients with metabolic syndromes. By visualiz-155

ing conventional health checkup data and enhancing health156

education materials, they significantly improve self-efficacy157

and health outcomes, and maintain weight loss and smoking158

cessation [24]. In sum, e-health and m-health systems must159

be flexible and scalable to support various vital signs input160

and meet different disease care needs and expansion needs.161

Real-time data visualization would help physicians to quickly162

understand the patient’s situation and formulate appropriate163

personalized treatment.164

III. METHODS AND SERVICE ARCHITECTURE165

The study protocol was approved by the Institutional166

Review Board of National Taiwan University Hospital167

(201710066RINB; date of approval: April 19, 2018). 168

Figure 1 shows the architecture of the precision health 169

service. The service consists of the NTU Medical Genie 170

iOS/Android smartphone app, wearable devices, an air qual- 171

ity sensing device, the open environmental data API, the NTU 172

Medical Genie platform, and modular prediction models. 173

After patients are discharged from hospital, all lifestyle and 174

environmental key information would be effectively collected 175

from a wearable device, an air quality sensing device, and a 176

smartphone App. Then, real-time data would be displayed on 177

the platform for medical staff to assist in decision-making. 178

Modular prediction models would be triggered on some very 179

important abnormal vital signs immediately and daily at 2am, 180

ensuring emergency safety and cost-effectiveness. In addi- 181

tion, to achieve high scalability and flexibility, all dataflow 182

nodes such as the number of disease groups, vital signs 183

monitoring devices, or prediction models are designed to run 184

in parallel. So, the nodes could easily be added from platform 185

side or APP side when the load increasing. The corresponding 186

computer resources can be added for stable operation. The 187

following is the detailed description of each component. 188

A. NTU MEDICAL GENIE SMARTPHONE APP 189

The location-based personal health advice app was devel- 190

oped using Java SE 8 in Android Studio 4.0.1 and Swift 191
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5 in Xcode 12.4. This allowed the measurement of real-time192

streaming data such as heart rate, heart rate variability, accel-193

eration, SpO2, respiration rate, steps, calorie consumption,194

and floors climbed via connection with wearable devices.195

A background location tracking feature and video chat were196

activated after obtaining user data authorization. For chronic197

disease management, regular assessment and daily symp-198

tom records help physicians understand the patient’s disease199

condition. As a consequence, this app provided a variety of200

chronic disease clinical questionnaires and symptom diary201

functions. These data were automatically uploaded to the202

server, after which physicians provided personalized health203

promotion advice in real time through the data visualization204

platform.205

B. WEARABLE DEVICES206

To increase the hardware compatibility of this service,207

wearable devices such as those from Fitbit, Garmin,208

Apple, Oura Ring, and Asus were included in this209

study. Real-time lifestyle data (physical activities, heart210

rate, SpO2, and sleep patterns) were collected and auto-211

matically uploaded to a health data lake through the212

Bluetooth protocol, the open application programming213

interface, and the software development kit. Time series214

data were synchronized with the server on average every215

15 minutes to ensure that subtle changes were not216

neglected.217

C. AIR QUALITY SENSING DEVICE218

Environmental risks may affect chronic disease control.219

Patients with chronic respiratory diseases such as chronic220

obstructive pulmonary disease and asthma are particularly221

susceptible to air pollution. With the rapid progress of the222

Internet of Things, home environmental information can be223

detected by air quality sensors. In this study, an Edimax224

Airbox was used to collect fine particulate matter (PM2.5)225

levels, temperature, and humidity at home; these data226

were uploaded automatically via a wireless network every227

15 minutes.228

D. OPEN ENVIRONMENTAL DATA API229

To better understand the patient’s environmental risks,230

we used the real-time positioning information obtained by231

the app and our algorithm to capture the open data from232

the nearest environmental monitoring station. Data features233

such as fine particulate matter (PM2.5) levels, air qual-234

ity index (AQI), sulfur dioxide concentration (SO2), tem-235

perature, humidity, UV exposure level, carbon monoxide236

concentration (CO), water quality, and nitric oxide concen-237

tration (NO2) were collected hourly by calling the open data238

application programming interface from the Environmen-239

tal Protection Administration, the Central Weather Bureau,240

and the Water Resources Agency. Historical data was also241

retrieved by a web crawler, including environmental data242

from 2011 to 2022.243

E. NTU MEDICAL GENIE PLATFORM (SCALABLE 244

AI-ASSISTED TELECARE PLATFORM) 245

Through these four information and communication tech- 246

nology methods, comprehensive patient data were collected. 247

To establish an effective connection between patients and 248

physicians, the data platform was designed to provide key 249

information and trend charts to physicians and case man- 250

agers, facilitating a rapid understanding of the patient’s cur- 251

rent condition on one interface and providing patients with 252

personalized health promotion suggestions. In addition to 253

data visualization, this platform provides real-time warning 254

function to assist physicians and case managers in decision 255

making. Physicians and case managers set thresholds for 256

abnormal vital sign warnings according to the patient’s status. 257

When the vital signs exceeded the thresholds, the platform 258

actively triggered the health risks computation process and 259

notified medical staff to intervene if necessary. Regarding 260

the precision health management and prevention of chronic 261

diseases, the platform calculated personal health risks based 262

on modular chronic disease prediction models and the vari- 263

ous collected data. Chronic disease prediction models were 264

deployed in online case groups, providing medical staff with 265

optional triggers. 266

F. MODULAR CHRONIC DISEASE PREDICTION MODELS 267

FOR EARLY PREDICTION OF ACUTE EXACERBATION OF 268

CHRONIC DISEASES 269

Asmentioned, the health risk value was computed by a robust 270

prediction model and provided as decision support for physi- 271

cians. The results of chronic diseases such as COPD, panic 272

disorder, and obesity are closely related to the improvement 273

of daily life behavior. Therefore, we implemented these three 274

chronic disease prediction models to demonstrate the scala- 275

bility of our services. The comprehensive dataset (sections 276

A-D) are pre-processed to extract the key features, followed 277

by the training process. The data pre-processing consists of 278

the last observation carried forward (LOCF) interpolation for 279

inconsistent frequency or null point and re-sampling to deal 280

with the disparate ratio of abnormal event. The normalized 281

data would be trained with a kinds of models and passed an 282

external validation to ensure that models were reliable and 283

applicable to different case groups in the real world. The 284

detailed implementation process of these three models is as 285

follows. 286

1) ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE 287

PULMONARY DISEASE PREDICTION MODEL 288

According to World Health Organization estimates, chronic 289

obstructive pulmonary disease (COPD) will be the 290

third-leading cause of mortality worldwide in 2030 [25]. 291

Acute exacerbations of chronic obstructive pulmonary dis- 292

ease (AECOPD) are associated with substantial morbid- 293

ity and mortality. Early AECOPD detection will help to 294

reduce mortality. Increasing evidence shows that lifestyle 295
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modifications improve efficiency in the self-management and296

prevention of COPD. Therefore, the aim with our AECOPD297

prediction model was to use lifestyle data, living environ-298

mental data, and clinical questionnaires to predict whether299

a patient with COPD will experience acute exacerbations of300

their condition within the next 7 days. The modified Medical301

Research Council dyspnea scale and the COPD assessment302

test were used to assess functional impairment and the impact303

of COPD (cough, sputum, dyspnea, and chest tightness) on304

health status. All input data features are shown in Textbox 1.305

Environmental features
Fine particulate matter (PM2.5) levels, air quality

index (AQI), sulfur dioxide concentration (SO2),
carbon monoxide concentration (CO), and nitric oxide
concentration (NO2)

Lifestyle features
Heart rate, walking steps, calorie consumption, deep

sleep time, light sleep time, rapid eye movement time,
awake time

Clinical questionnaire features
Chronic obstructive pulmonary disease (COPD)

assessment test (9 answers), modified Medical Research
Council (mMRC) dyspnea scale (1 answer), life quality
questionnaire (5 answers)

Textbox 1. Input data features of AECOPD prediction
model

Hyperparameters for machine learning and the deep learn-306

ing algorithm are presented in Table 1. Decision trees, random307

forests, linear discriminant analysis, and adaptive boosting308

were used to implement the AECOPD prediction model.309

We also propose a deep neural network for comparison with310

machine learning methods. This was constructed using fully311

connected layers, which connect each neuron in one layer to312

every neuron in another layer, mapping feature representa-313

tions to the target vector space. For the activation function,314

we used rectified linear units (ReLU) with the introduction315

of a slope α, finishing with the sigmoid function to ensure316

a probability between 0 and 1. For the optimizer for updat-317

ing parameters, adaptive momentum estimation (Adam) with318

quick parameter tuning and rapid convergence was suitable319

for many parameters. Although Adam used an adaptive learn-320

ing rate, instead of using its decay function, for this model321

we used an adaptive learning rate multiplied by 0.1 every322

60 epochs. To account for the imbalanced data, we used323

the class_weights technique from Keras to penalize loss for324

categorizing data points as the wrong class. The complete325

deep neural network architecture of the AECOPD model is326

shown in Fig. 2.327

2) PANIC ATTACK PREDICTION MODEL328

Panic disorder is a kind of anxiety disorder, with a life preva-329

lence of around 2–6% worldwide [26]. A typical panic attack330

TABLE 1. Hyperparameters of AECOPD models.

FIGURE 2. Deep neural network architecture of AECOPD prediction model.

is unexpected and consists of repeated, intense fear attacks, 331

appearing suddenly and reaching a peakwithin a fewminutes. 332

Patients who suffer from panic disorder tend to worry about 333

the occurrence of the next attack and actively try to prevent 334

future attacks by avoiding locations, situations, or behaviors 335

related to the panic attack. Predicting panic attacks accurately 336

may help clinicians to provide timely, appropriate treatment 337

and optimize personalized medicine. Hence, the purpose of 338

this model is to predict whether panic disorder patients will 339

have a panic attack within the next seven days. Random 340

forest, decision tree, linear discriminant analysis, adaptive 341

boosting (AdaBoost), and regularized greedy forest models 342

were implemented to predict panic attacks. The models and 343

hyperparameters are shown in Table 2. 344

A deep-learning-based model was also proposed in this 345

study with four fully connected, hidden layers. The activation 346

function in the hidden layers was the rectified linear unit 347

(ReLU), which addressed the problem of disappearing gradi- 348

ents. Batch normalization was applied on each layer after the 349

activation function to accelerate model training and prevent 350

model overfitting. After batch normalization, we also applied 351

dropout to reduce overfitting.We used sigmoid activations for 352

the output layer because we require only a true or false result. 353

The loss function and the optimizer used binary cross entropy 354

(BCE) and Adam, respectively. We selected BCE because 355

the output of the study was binary. BCELoss is defined as 356

Equation 1. 357

BCELoss(O,T ) =
1
n

∑
t

(T [i] ∗ log(O[i]) 358

+ (1− T [i]) ∗ log(1− O[i])) 359
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FIGURE 3. Deep neural network architecture of panic attack model.

Eq. 1. BCELoss equation, where O is the predicted value and360

T is the ground truth.361

We applied an adaptive learning rate (LR) with an initial362

learning rate of 1e-4. Next, every 50 epochs, we multiplied363

LR by 0.7. Finally, for increased sensitivity, we accounted364

for data imbalance using class weights. The principle behind365

this is to add weight to each category in the training set:366

low weights are used for categories with many samples.367

The complete deep neural network architecture is shown in368

Fig. 3. The input features included continuously measured369

lifestyle data collected via a wearable device, environmental370

data obtained from the government’s open data platform, and371

clinical questionnaire data, as shown in Textbox 2.372

Environmental features
Fine particulate matter (PM2.5) levels, air quality

index (AQI), sulfur dioxide concentration (SO2), carbon
monoxide concentration (CO), and nitric oxide concen-
tration (NO2)

Lifestyle features
Walking steps, distance, floors, min heart rate, max

heart rate, average heart rate, resting heart rate, total
sleep duration, deep sleep duration, light sleep duration,
REM sleep duration, awake duration

Clinical questionnaire features
Beck Depression Inventory (BDI), Beck Anxiety

Inventory (BAI), State–Trait Anxiety Inventory
(STAI), Panic Disorder Severity Scale (PDSS), Mini
International Neuropsychiatric Interview (MINI)

Textbox 2. Input data features of panic attack
prediction model

3) OBESITY PREDICTION MODEL373

Evidence indicates that obesity is a common, serious, and374

costly disease. Obesity cost the US health care system375

US$260.6 billion in 2016 [27]. The prevalence of obesity376

increased from 30.5% to 42.4% from 2010 to 2020. Body377

mass index (BMI) is a common metric used to screen378

overweight and obese patients. Increased BMI values are379

a major risk factor for noncommunicable diseases such as380

TABLE 2. Hyperparameters of panic attack models.

TABLE 3. Hyperparameters of obesity prediction models.

cardiovascular diseases, diabetes, musculoskeletal disorders, 381

and certain cancers. Lifestyle modification and low health 382

literacy are associated with obesity [28], [29]. Hence, the pur- 383

pose of the obesity model is to predict whether the patient’s 384

BMIwill rise within the upcoming 7 days using lifestyle data, 385

environmental data, and health literacy assessment. Machine 386

learning and a deep neural network algorithm were applied 387

to implement the prediction model. The model hyperparam- 388

eters are presented in Table 3. The deep neural network was 389

constructed using two fully connected layers. Batch normal- 390

ization and parametric rectified linear units were applied in 391

the process. Figure 4 shows the structure of the DNN model. 392

4) VALIDATION AND MODEL ASSESSMENT 393

We used 3-fold cross-validation to evaluate the stability of 394

the prediction models. Accuracy, precision, sensitivity, and 395

specificity were used as assessment metrics to evaluate the 396

overall performance, including the closeness and the devia- 397

tion of the prediction, and the performance on negative and 398

positive cases of the identification models separately based 399

on the validation and test sets. To tune the models for the 400

best performance on the test set, the F1 score was chosen 401

to adjust and evaluate the performance of our multi-feature 402

prediction tasks by varying the outcome thresholds using the 403
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FIGURE 4. Deep neural network architecture of obesity model.

validation dataset. Applying the above metrics, our models404

were well-tuned and evaluated from multiple aspects, yield-405

ing high-confidence modular prediction function406

5) FEATURE ENGINEERING AND MODEL DEPLOYMENT407

Incomplete data is a common issue in real-world apps.408

To deploy the prediction model in the real world, we imple-409

mented the SHAP module (Shapely Additive exPlanations)410

and a feature selection process to reduce number of variables411

and the computational cost. The SHAP module was designed412

to explain the output of prediction models based on coopera-413

tive game theory. SHAP module determines the most impor-414

tant features and their influence on the model prediction. The415

formula of the SHAP value is defined in Equation 2. φi is the416

Shapley value for feature i. S is a coalition of features. p(S) is417

the payoff for this coalition. N is the total number of features.418

N/i is all the possible coalitions not containing i. In this study,419

a summary plot was applied to describe the distribution and420

relationship of each feature. Furthermore, feature selection421

was used to address overfitting and to find the best feature422

set for a useful, real-world prediction model. We adopted423

the wrappers method and backward feature elimination to424

observe the performance change in precision, specificity, and425

F1 score. We started the model with all features and then426

removed insignificant features one by one until all features427

were processed, as shown in Fig. 5. The resulting prediction428

model with the most cost-effective feature set was deployed429

on our developed platform.430

φi(p) =
∑
S⊆N/i

x =
|S|!(n− |S| − 1)!

n!
(p(S ∪ i)− p(S))431

Eq. 2. Shapley value calculation432

IV. RESULTS433

As of May 25, 2022, the precision health service had434

served 1,667 patients and 32 medical personnel, derived and435

monitored 186,986,625 physical data, and performed 6,869436

FIGURE 5. Backward elimination.

FIGURE 6. Visualization of lifestyle and environmental data.

interviews to offer total care to patients. Comprehensive 437

patient information including lifestyle, living environment, 438

life trajectory, disease control, and data on vital signs were 439

collected by a location-based personal health app, open envi- 440

ronmental data API, air quality sensing device, and wearable 441

devices that were provided to all participants. All derived data 442

were displayed on the AI-assisted platform and used to train 443

modular prediction models to predict whether a patient with 444

chronic disease would experience acute exacerbation of their 445

condition within the next 7 days. 446

A. NTU MEDICAL GENIE PLATFORM (SCALABLE 447

AI-ASSISTED TELECARE PLATFORM) 448

An AI-assisted platform for medical staff was developed 449

using the ReactJS frontend framework and the Node.js back- 450

end framework. This platform displays the patient’s lifestyle 451

and environmental data trends on a single user interface to 452

help doctors quickly grasp the key information. Fig. 6 shows 453

the overview of our data collection, including both personal 454

lifestyle and environment data. 455

Detailed real-time information such as heart rate and 456

SpO2 changes within a few minutes and daily sleep status 457

are viewed by switching to different pages, as shown in 458

Figures 7 and 8. Figure 9 shows that daily sleep status can 459

be divided into four stages: awake, rapid eye movement, 460

light sleep, and deep sleep. This information was collected 461

mainly via wearable devices. To simultaneously support mul- 462

tiple chronic disease healthcare tasks, the platform provides 463

group management functions; modular prediction models 464
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FIGURE 7. Heart rate graph.

FIGURE 8. SpO2 trend chart.

were deployed in each group. Physicians created groups to465

classify patients of different levels, as shown in Fig. 10. Per-466

sonal health risks were computed by the deployed prediction467

model. Figure 11 shows an AECOPD health risk scenario: the468

platform automatically generates today’s health risk based on469

past data. When the health risk exceeds 0.75, a red icon is470

displayed to notify the case manager to intervene and care471

for the patient. Furthermore, the platform allows medical472

staff to add thresholds for vital signs corresponding to the473

different patient situations. Patients who exceed a threshold474

are highlighted by an exclamation mark. After applying this475

platform in a hospital setting, we found that incomplete data is476

quite common and critical in the real world. Hence, modular477

chronic disease prediction models were designed to support478

prediction of acute exacerbations of chronic diseases via479

optional features. Figure 12 demonstrates the computation480

of daily health risk. Even the server receives only lifestyle481

and environmental data, the health risk is still computed to482

predict whether abnormal events will occur within the next483

seven days.484

B. MODULAR CHRONIC DISEASE PREDICTION MODELS485

FOR EARLY PREDICTION OF ACUTE EXACERBATION OF486

CHRONIC DISEASES487

In this section, we present the proposed modular chronic488

disease prediction models for generating health risk alerts.489

Machine and deep learning algorithms were applied to train490

the prediction model to compute the health risk value by pro-491

cessing lifestyle data, environmental data, and the patient’s492

medical records. Below are three validated chronic disease493

prediction models.494

FIGURE 9. Sleep hypnogram.

FIGURE 10. Serve over 30 different chronic disease studies.

FIGURE 11. Health risks check list for vital signs.

1) ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE 495

PULMONARY DISEASE PREDICTION MODEL 496

During the study period, we recruited 177 patients diagnosed 497

with COPD according to the Global Initiative for Chronic 498

Obstructive Lung Disease (GOLD) criteria and adult COPD 499

patients who were not implanted with a pacemaker and were 500

not pregnant. To prevent AECOPD earlier and fit diverse 501

scenarios, we implemented multiple models using various 502

combinations of data features to predict acute exacerbations 503

in the next seven days. Table 4 shows the performance of 504

the implemented models on the validation dataset. Compared 505

with the other algorithms, the random forest and deep neural 506

network algorithms yielded the best performance in most 507

indicators. 508

For 7-day AECOPD prediction, the original AECOPD 509

predictive model achieved an accuracy of 91.4%, a precision 510

of 95.5%, and an F1 score of 91.4% on the validation dataset. 511
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FIGURE 12. Health risk generation.

TABLE 4. Performance of each model with all features (AECOPD).

TABLE 5. Performance given different feature sets (AECOPD).

To ensure the model applies to the real world, we trained the512

model with different feature sets and extracted the best perfor-513

mance model for deployment on the platform. Table 5 shows514

the model performance given different feature sets. Predic-515

tion with all features yielded the best performance. Note516

that the model with only automatically uploaded features517

also achieved good predictive performance. This model may518

directly help patients in their daily life. The results further519

confirm that lifestyle and environmental data features are520

more important for AECOPD prediction than clinical ques-521

tionnaire evaluation.522

We conducted an external validation to ensure that the523

model could be applied to other regions. The training524

dataset and validation datasets were composed of data for525

140 patients from National Taiwan University Hospital, and526

the testing dataset came from 39 patients in Cardinal Tien527

Hospital. Table 6 demonstrates the model performance on528

the validation and testing datasets. Random forest, decision529

tree, and deep neural network were selected as candidates due530

to their superior results on the validation dataset. Although531

performance of the AECOPD model declines on the testing532

dataset, it still achieves an accuracy of 72.4%, a precision of533

68.6%, and an F1 score of 68.0%. However, the prediction534

TABLE 6. Model performance on validation and testing datasets
(AECOPD).

task requires 27 features to complete the calculation, which 535

is difficult for real-world apps. To reduce the computational 536

costs and number of variables, feature selection and the 537

SHAP module were applied to further analyze the impact 538

of each feature on the prediction model. First, we identi- 539

fied important features affecting the prediction of AECOPD 540

through the feature importance map and SHAP module, 541

as shown in Figures 13 and 14. Then, we implemented back- 542

ward elimination to compare the performance differences 543

between models without specific features. Figure 15 shows 544

that serious declines in performance occur only when the 545

model does not contain deep sleep time, carbon monoxide 546

concentration (CO), suspended particulate matter (PM10), 547

and total score of COPD assessment test (CAT_total). Hence, 548

we performed the same testing process on the combination 549

of these features to realize the most cost effective prediction 550

model. Table 7 illustrates that the proposed model with the 551

most cost effective feature set achieved superior performance 552

due to the removal of unimportant features. The area under the 553

receiver operating characteristic curve of this model reached 554

94.7%. In addition, the summary plot also indicated that 555

higher values for features such as the total score of COPD 556

assessment test (CAT_total), air quality index (AQI), and 557

ozone (O3) increase the risk of AECOPD events. Regular 558

exercise (average_step) reduces the risk of AECOPD events. 559

2) PANIC ATTACK PREDICTION MODEL 560

We enrolled 70 participants with panic disorder at the 561

En Chu Kong Hospital and MacKay Memorial Hospi- 562

tal. To accurately predict panic attacks, we experimented 563

with deep neural networks and machine-learning classifiers 564

including random forests, decision trees, linear discriminant 565

analysis, adaptive boosting, and regularized greedy forests. 566

Tables 8 and 9 show the model performance on the validation 567

testing dataset. The first 50 patients were included in the 568

training and validation dataset; others were regarded as the 569

testing dataset. The experimental results show the random 570

forest achieved the best performance. However, the sensitiv- 571

ity is worse on the testing dataset. Thismay reflect data imbal- 572

ance because the number of panic attacks decreased among 573

patients who were recruited later. To reflect the diversity 574
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FIGURE 13. Feature importance scores of AECOPD model.

FIGURE 14. Summary plot of AECOPD model.

of real-world scenarios, we trained with different combi-575

nations of feature sets, including the all-feature model, the576

lifestyle-environment model, and the clinical questionnaire577

model alone, as shown in Table 10. The prediction perfor-578

mance of the all-feature model is better than that of the579

lifestyle-environment model and the clinical-questionnaire580

model. However, the all-feature model requires 61 variables581

to produce predictions, which is difficult to collect in real-582

world implementations. Therefore, we used the same feature583

engineering and modules as the AECOPD model to reduce584

the number of variables and prevent model overfitting. After585

the feature selection and SHAP process, the feature impor-586

tance scores and SHAP value are shown in Figures 16 and 17.587

In the summary plot, data dots to the left of the baseline588

are prone to panic attack consequences. Data dots to the589

right of the baseline may serve as health promotion advice590

to keep patients away from panic attacks. Color represents591

FIGURE 15. Model performance under feature selection process
(AECOPD).

TABLE 7. Model performance after feature selection process (AECOPD).

TABLE 8. Validation dataset performance with all features (panic attack).

the data distribution of feature value in our dataset. Raising 592

the values of physical activity features, such as stairs climbed, 593

heart rate, and total sleep time help patients reduce the pos- 594

sibility of panic attacks. Moreover, Fig. 18 shows a severe 595

drop in performance when the model does not include Beck 596

Depression Inventory (BDI_total), Beck Anxiety Inventory 597

(BAI_total), Mini International Neuropsychiatric Interview 598

(MINI_value), and total sleep time. The combination of these 599

features was imported into the same experimental config- 600

uration for model training. In Table 11, the cost-effective 601

model achieved an accuracy of 83.1%, a sensitivity of 78.1%, 602

a specificity of 86.1%. and an F1 score of 77.5%. The model 603

requires only four features to yield reliable predictions, which 604

facilitates the real-world deployment of the service. 605

3) OBESITY PREDICTION MODEL 606

We enrolled 120 obese participants. The main prediction 607

target was whether BMI would worsen within the next seven 608

days. Following the above two methods, we experimented 609

with machine learning methods to train multiple models. 610

Table 12 shows the performance of the proposed models on 611

the validation dataset. The random forest and decision tree 612

achieved better performance. When training the all-feature 613
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TABLE 9. Model performance on validation and testing datasets (panic
attack).

TABLE 10. Performance given different feature sets (panic attack).

FIGURE 16. Feature importance scores of panic attack model.

TABLE 11. Model performance after feature selection process (PANIC).

prediction model, most of the data came from 80 obese614

patients in central and southern Taiwan. Table 13 shows615

the performance given different feature sets. As lifestyle616

and living environment may be very similar, we used the617

data of 40 obesity patients from northern Taiwan for model-618

external validation. Table 14 shows that the decision tree619

achieved the best performance on the testing dataset, albeit620

with low sensitivity, perhaps due to the significant differ-621

ence between patients from the north and those from the622

south. Therefore, we applied the above SHAP module and623

FIGURE 17. Summary plot of panic attack model.

FIGURE 18. Model performance under feature selection process (panic
attack).

feature selection to identify the most cost-effective model. 624

Figures 19 and 20 show the distribution of lifestyle factors, 625

living environment, and health literacy data. The results 626

demonstrate that lower values for features such as health 627

literacy, consumption in calories, average heart rate, and rapid 628

eye movement time increase the risk of becoming overweight 629

and obese. Figure 21 shows that serious declines in perfor- 630

mance occur only when the model does not contain con- 631

sumption in calories, health literacy total score, average heart 632

rate, and minimum heart rate. Therefore, the combination 633

of these four features may be the most influential and cost- 634

effective feature set. We executed the same model training 635

and testing process on this feature set. Table 15 illustrates that 636

the proposed model achieved good performance even with a 637

large reduction in features. Moreover, the sensitivity is signif- 638

icantly improved due to the removal of unimportant features. 639
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TABLE 12. Model performance with all features (obesity).

TABLE 13. Performance given different feature sets (obesity).

TABLE 14. Model performance on validation and testing datasets
(Obesity).

TABLE 15. Model performance after feature selection (obesity).

In summary, feature selection facilitated the construction of640

the most cost-effective predictive model requiring only four641

features. For 7-day BMI prediction, the proposed predictive642

model with cost-effective features achieved an accuracy of643

93.7%, a sensitivity of 71.0%, a specificity of 98.1%, and644

an F1 score of 78.6% on the testing dataset. This model is645

suitable for deployment on the platform and has the potential646

to yield reliable predictions of future obesity events.647

C. LOCATION-BASED SMARTPHONE APPLICATION TO648

DELIVER REAL-TIME PERSONALIZED HEALTH PROMOTION649

FOR PATIENTS WITH CHRONIC DISEASES650

To obtain real-time information and provide a health pro-651

motion service, we developed a location-based smartphone652

application for the Android and iOS operating systems. The653

application interface is shown in Fig. 22. First, the patient654

registered an account in the app. The information to be input655

FIGURE 19. Feature importance scores of obesity model.

FIGURE 20. Summary plot of obesity model.

included the name, birthday, phone number, attending physi- 656

cian, and so on. All relevant patient registration information 657

was stored in a firebase. A background location tracking fea- 658

ture was activated after the user authorized location data. The 659

collected real-time latitude and longitude data was converted 660

into parameters for calling the open environmental data API 661

to calculate the environmental exposure risk for the user’s 662

location. The content of the app varied depending on the 663

type of chronic disease. For example, patients with panic 664

disorder were presented with four main functions when enter- 665

ing the homepage: real-time physiological data measure- 666

ment, a self-evaluation questionnaire, symptom recording, 667

and video chat. On the physiological data measurement page, 668

real-time physiological data to be collected include heart rate, 669

SpO2, heart rate variability, and acceleration. When the user 670

successfully entered the physiological data monitoring page, 671

the data trend graph started, and the data sampling rate was 672

changed to once per second for upload to the InfluxDB time 673
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FIGURE 21. Model performance given feature selection (obesity).

FIGURE 22. Smartphone application interface.

series database. On the self-evaluation questionnaire page,674

panic attack related clinical questionnaires including PDSS,675

STAI-S, and STAI-A were provided as online surveys for676

users to fill out to reflect their own health conditions. In addi-677

tion, 21 symptom buttons were provided on the symptom678

recording page to record the exact time and accurately mark679

the significance of lifestyle and living environmental data for680

disease control. The time of discomfort and symptoms were681

then sent to the database. At the same time, the heart rate682

variability (HRV)measurement function and video chat func-683

tion both were activated, and the HRV value and symptom684

records were transmitted to the AI-assisted platform so that685

psychiatrists and case managers could offer timely and appro-686

priate personalized health promotion advice based on their687

situation. This app has been used in many hospitals (National688

Taiwan University Hospital, En Chu Kong Hospital, Fu Jen689

Catholic University Hospital, Tri-Service General Hospital,690

Cardinal Tien Hospital, MacKay Memorial Hospital, and691

Okayama University Hospital) in Taiwan and Japan. To pro-692

tect user privacy, the app was designed to transmit data via the693

https protocol, and personal information was encrypted. Case694

managers could instantly ensure the sustainability of data via695

the AI-assisted platform and provide users with appropriate696

health advice on disease control and lifestyle modification.697

V. CONCLUSION698

We designed and implemented a scalable precision health699

service for patients with chronic diseases. The results demon-700

strate that this service provides continuous monitoring of701

lifestyle and environment, instant warnings in the event of 702

abnormal vital signs, and decision support based on modular 703

predictive models. Compared with existing studies, we have 704

created an unprecedented new service and improved the per- 705

formance of chronic prediction models by applying objec- 706

tive lifestyle and environmental factors. At the same time, 707

we have used feature engineering to reduce the computa- 708

tional costs and enhance the practicality of real-world AI 709

prediction models. The proposed prediction models require 710

a small number of features to achieve excellent performance 711

in predicting whether a patient with chronic disease will 712

experience an abnormal event within the next 7 days. Fur- 713

thermore, we address the inability to quantify and extract 714

lifestyle and environmental information in past studies by 715

integrating wearable devices, open data, indoor air quality 716

sensors, smartphone applications, and a healthcare platform. 717

To the best of our knowledge, this is the first study to use 718

continuous lifestyle factors, environmental factors, clinical 719

factors, feature selection, and artificial intelligence to predict 720

abnormal events in chronic diseases and deploy to the real 721

world with external validation. 722

As ofMay 25, 2022, the precision health service had served 723

1,667 patients and 32medical personnel in Taiwan and Japan, 724

derived and monitored 186,986,625 physical data, and con- 725

ducted 6,869 interviews to offer total care to patients. The par- 726

allel operation of system dataflows can improve scalability 727

and flexibility, and is not limited by a single process or device 728

control, which can support the increase of different care 729

needs in the future. It has the potential to become the next- 730

generation e-health system to assist physicians in remote care 731

and establish an effective communication channel between 732

medical personnel and patients. Traditionally, patients with 733

chronic diseases must return to the hospital periodically for 734

numerous clinical tests to observe their health condition. 735

They may run the risk of acute exacerbation between rou- 736

tine visits. However, with the proposed service, all chronic 737

disease related data are uploaded automatically, including 738

questionnaire assessments and lifestyle and environmental 739

information. The patient’s health risk value is computed 740

through modular predictive models, reminding patients and 741

medical personnel in advance to improve their health out- 742

come. The resultant comprehensive view of patient data could 743

help physicians and patients to formulate personalized health 744

promotion plans and achieve precision health management. 745

Our results also confirm that lifestyle and environmental data 746

are highly correlated to patient health conditions, and have 747

a strong influence on the early warning of acute exacer- 748

bations. By applying the SHAP module and feature engi- 749

neering, we clearly identify the impact of physical activity, 750

sleep quality, and heart rate on chronic disease control, and 751

provide precise recommendations for health improvements 752

for physicians and patients. In the future, we will strengthen 753

the precision health service to support more data collection 754

for lifestyle factors, and implement digital twin models [30] 755

to further automatically provide concrete health promotion 756

advice for patients with chronic diseases. 757
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