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ABSTRACT Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research,
there is an urgent need to develop a robust and effective denoising method to retain morphological features
for further texture analysis and segmentation. Conventional denoising filters and models can easily sup-
press the perturbative noise in high-contrast images; however, for low photon budget multiphoton images,
a high detector gain will not only boost the signals but also bring significant background noise. In such
a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise,
meaning that a denoising filter capable of removing noise without sacrificing important cellular features,
such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising
autoencoder method — a fully convolutional deep denoising autoencoder (DDAE) — to improve the quality
of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The
average of 200 acquired images of a given location served as the low-noise answer for the DDAE training.
Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio
(28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG,
respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF
and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and
preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE
system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can
enhance the quality of microscopic images and effectively support clinical evaluation and assessment.

INDEX TERMS Third harmonic generation, three-photon fluorescence, deep denoising autoencoder.

I. INTRODUCTION
Real-time visualization of living cells in their tissue environ-
ment is crucial for many applications in life sciences and
medical devices [1], [2]. For instance, deep-tissue cellular
imaging with transgenic labeling of reporters could reveal
niche environments and functional interactions of multiple

cells in the context of hematopoiesis [3], tumor metastasis
[4], [5], [6], and neuronal connection [7], [8]. In vitro or
non-invasive in vivo imaging flow cytometry (IFC) through
real-time microscopy of the intra-fluidic channel or intravas-
cular blood cells could have the potential to benefit patients
and caregivers in detecting physiological aberrancy more
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efficiently [9], [10], [11], [12], [13]. Several studies have
successfully employed IFC to provide quantitative image data
of cellular targets to support decision-making in clinical diag-
nosis [14]. Results show that IFC can significantly improve
the classification accuracy of routine white blood cell counts
by their sizes, shapes, structures, and nucleus-to-cytoplasm
ratios.

To obtain sharp sectioning images of cells in tissues,
researchers developed confocal or multiphoton fluores-
cence microscopy to improve axial resolution [1], [15].
For instance, two-photon fluorescence microscopy has been
widely applied in many deep-tissue studies, such as in brain
research. Its near-infrared (800–1300 nm) laser excitation
can greatly reduce the photobleaching of probes, distor-
tion of the wavefront, scattering of photons, and main-
tenance of the subcellular resolution of images [1], [16],
[17]. For sufficient contrast of fluorescence imaging in deep
tissues, the excitation intensity must be high, which can
lead to background interference originating from the dif-
fused fluorescence photons caused by multiple scattering.
To obtain high-acuity images at depths greater than 700 µm,
three-photon contrasts were excited by a 1700-nm high
pulse energy laser. Three-photon microscopy can signifi-
cantly improve emission localization, reducing the out-of-
focus background compared to two-photon microscopy [18].
Various existing fluorescent dyes can still be used in three-
photon fluorescence (3PF) microscopy. However, to realize
in vivo imaging and medical testing such as virtual opti-
cal biopsy of immune cells, in vivo label-free microscopy
is critical. Many researchers have focused on the develop-
ment of third-harmonic generation (THG) microscopy for
label-free imaging of tissues [11], [19], [20], [21], [22].
At an excitation wavelength of 1230 nm, THG microscopy
can noninvasively obtain cellular morphology and visual-
ize subcellular organelles in deep tissues without labeling.
It can deliver an alternative contrast modality to complement
multiphoton fluorescence microscopy, which provides infor-
mation on cellular morphologies in three-dimensional tissue
culture [17], [23].

Although there have been several studies on both 3PF and
THG microscopies, their low signal-to-noise ratio remains
a crucial issue for the delineation and segmentation of
cells. The signal counts of third-order nonlinear optical
microscopy are low and comparable to the noise counts
resulting from the high bias voltages of the detection units.
The type of noise includes signal-dependent Poisson noise
and detector-dependent Gaussian noise. The former involves
a random process of photon emission and the discrete nature
of the photo-excited charges. The latter typically results from
flicker or thermal noise in electronic systems. Under such low
photon-budget conditions, the signals may have stochastic
resonance effects, where sub-threshold signals can be boosted
over the threshold with the help of detector noise [24]. The
signal pattern within cells carries features of noise, making
it difficult to extract the true signals from the background.
Therefore, it is crucial to find an effective noise-filtering

method to enhance image contrast while retaining structural
information for further segmentation and texture analysis.
Typically, researchers have applied Gaussian and median
filters to remove Poisson or Gaussian noise. Poisson noise can
be transformed by a stabilizing method such as Anscombe
transformation into Gaussian white noise and a Gaussian
noise filter can be utilized to alleviate it [25]. The nonlocal
mean method performs noise filtering on image patches with
similar textures. Block-matching and collaborative filtering
methods, such as block-matching and 3D filtering (BM3D),
have been proposed and widely used [26]. The feasibility of
these enhancement approaches has been validated in vari-
ous clinical examinations, including breast cancer [27], pan-
creatic neuroendocrine tumors [28], and hematology [29].
In addition, some researchers have used the Bayesian method
to extract noise information from prior knowledge of images,
train the likelihood function to predict the residual images V,
and remove them from noisy observations [25], [30]. These
methods perform well in many image-denoising problems;
however, conventional signal processing assumes that noise
is a linear addition of signals by y = S + V , where S
represents the signals and V represents the noise. This model
is appropriate when noise V is perturbative to S; however,
in the stochastic resonance regime, V is comparable to or
larger than S and the detection threshold T is larger than S
in many-pixel images. The representation of overall signals
should be y = S + V − T if S + V > T ; 0, if S +
V < T . Therefore, the conventional de-speckle filter, median
filter, or Gaussian filter may decrease the details of cellular
morphology. For signal-noise entangled stochastic resonance
images, these methods may not work well because of the
difference in noise modeling, that is, the noisy observation
is not simply a superposition of signals and noise. Hence, for
low photon-budget multiphoton microscopy images acquired
in high-speed or deep-tissue imaging, it remains a challenging
task to enhance the signal-to-noise ratio without sacrificing
structural information.

Several machine learning and deep learning-based denois-
ing methods have been proposed and demonstrated better
filtering results compared to traditional filters. In particular,
deep convolutional neural network (CNN)-based algorithms
have been widely applied in image classification [30], seg-
mentation [31], and denoising [32], [33]. In the field of
acoustics, researchers have proposed CNN-based methods
and denoising autoencoder (DAE) architectures to perform
speech denoising [34], [35], [36], where the DAE method
successfully filtered background noise and improved the
perceptual evaluation of speech quality (PESQ). Reference
[33]. Inspired by the success of CNN and DAE methods,
in this work we propose a fully convolutional deep denoising
autoencoder (DDAE) method to reduce noise in low photon
budget multiphoton microscopy images, especially for 3PF
and THG images. In our experiments, we confirm that the
DDAE model outperforms the Gaussian filter, median filter,
and the benchmark BM3D algorithm in terms of signal-to-
noise ratio and structural similarity. Moreover, DDAE effec-
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tively preserves stochastic resonance-enhanced features so
that regions of nuclei or cells can be delineated more cor-
rectly, which is important for further segmentation.

II. METHODS
A. CELL CULTURE, CELL STAINING, AND ACQUISITION OF
MULTIPHOTON IMAGES
RAW 264.7 — a murine macrophage cell line — was plated
on bottom glass dishes (Nest Scientific, 801001) and cultured
in Dulbecco’s modified Eagle’s medium (DMEM) containing
10% fetal bovine serum (FBS), 100 U/ml penicillin, and
100 µg/ml streptomycin. For 3PF imaging, no further treat-
ment was added. For THG imaging, three hours after plating,
50 ng/ml lipopolysaccharide (LPS; Sigma-Aldrich) was used
to elicit inflammatory macrophages in the M1 state. After
24 h of cytokine stimulation, the medium was replaced with a
normal medium for cell imaging. For 3PF imaging, 2 µg/mL
Hoechst 33342 (Thermo Fisher Scientific) was used to stain
cell nuclei for 5 min. Unloaded Hoechst 33342 was removed
by washing the cells with normal medium. For THG imaging,
there was no cell labeling. Lipid granules in M1-activated
macrophages can produce strong THG signals.

Time-lapse 3PF and THG images were acquired using an
inverted multiphoton microscope (A1MP+; Nikon, Japan)
and a near-infrared (800–1300 nm) femtosecond laser
(InSight X3, Spectra-Physics, Mountain View, California)
with a 100-fs pulse width and 80-MHz repetition rate was
used as the excitation source. The operation wavelength for
the 3PF and THG images was 1250 nm, which has the
least on-focus phototoxicity and deepest penetration depth
for biomedical samples. The laser light first transmitted
an 820 nm edged the multiphoton dichroic beam splitter
and was then focused through a water-immersed 40× and
1.15 NA objective. To avoid photobleaching, the Hoechst
blue-labeled cells were excited at an average power of 11mW
(100 GW/cm2 instantaneous intensity), whereas 37 mW
(335 GW/cm2 instantaneous intensity) was required to obtain
detectable signals. All the pairs of the resonant scanner and
galvanometer mirrors generated three-photon signals that
were epi-collected by the same objective, reflected by the
820 nm edged multiphoton dichroic beam splitter, which
was further reflected by a 495-nm edged dichroic beam
splitter in the non-descanned detection unit, filtered by a
415–485 nm bandpass filter, and finally detected by the same
photomultiplier tubes. Then, the laser was raster scanned
to perform point-by-point excitation and detection, forming
512 × 512 pixel images at a 15-Hz frame rate. All the images
were subsequently exported to the TIFF format for denoising
and deep learning processes.

B. TRADITIONAL DENOISING METHODS
For the Gaussian and median filters, we used the
Python SciPy function ndimage.gaussian_filter and ndim-
age.median_filter to perform Gaussian and median filtering
with standard deviations σ (sigma values) of 1, 3, 5, and

TABLE 1. Architecture details of DDAE.

10. For the BM3D method, we implemented MATLAB
codes from http://www.cs.tut.fi/∼foi/GCF-BM3D/ to per-
form BM3D denoising with noise standard deviations σ
(sigma values) of 120, 140, 160, 180, 200, 220, and 240.

C. FULLY CONVOLUTIONAL DEEP DENOISING
AUTOENCODER MODEL
We used the Keras framework to implement the DDAEmodel
with a fully convolutional neural network architecture. A
5-fold cross-validation method was used to validate the pro-
posedDDAEmodel.We divided all data into five groups. One
group was considered as the testing set, and the remaining
four groups were used for training. During training, we ran-
domly selected one group as the validation set, while the
other three groups were used to train the DDAE models. The
cross-validation approach repeated five iterations until all
groups have been tested. Next, we repeated the 5-fold cross-
validation three times, with random selection of grouped data
for each round. The final reported average results across all
folds from all runs were used to assess the reliability of the
proposed DDAE.

We trained the model with 50 epochs for the THD and
3PF, and early stopping with the patience of 10 epochs was
applied for model training to avoid overfitting. The loss for
training DDAE was the mean-squared error. The architecture
of DDAE and its details are shown in Table 1. As shown in
the table, different numbers of filters are investigated in this
work.

D. ANALYZING THE CONTRAST AND STRUCTURAL
SIMILARITY OF RESTORED IMAGES
To evaluate the signal-to-noise ratio and the restoration of
structural information, we used peak signal-to-noise ratio
(PSNR) analysis [37] and the structural similarity index
(SSIM) [38].
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FIGURE 1. The procedures of image processing for analyzing the preservation of nuclear and cellular
boundaries.

E. ANALYZING THE RESTORATION OF NUCLEAR AND
CELLULAR BOUNDARIES
To assess how well the denoising filter retained the stochas-
tic resonance-enhanced features in cells, we analyzed the
precision, recall, specificity and F-measure of nuclear and
cellular boundaries from the denoised image ImgO and the
low-noise answer image ImgAns. The contrasts of ImgO
and ImgAns were first enhanced through histogram equal-
ization (see Fig. 1), and then binarized using the intensity
auto-threshold method — IsoData — thereby obtaining the
binary images of bImgO and bImgAns, respectively. The
boundaries of the binarized answer images could precisely
depict the boundaries of the cells and nuclei [Fig. 2(a)].
bImgAND is the overlap of bImgO and bImgAns, representing
the true positive of the nucleus (in the 3PF images) or cell (in
the THG images) regions. We also use a NOT OR gate to the
bImgO and bImgAns to obtain the true negative of the nucleus
bImgNOR, and inverse bImgAns (as bImgIAns) to represent
the actual negative. Finally, we used the pixel counts of the
five binary images, countO, countAns, countAND, countNOR,
and countIAns to compute the precision, recall, specificity
and F-measure of the denoised images, using the following
functions:

precision =
countAND
countO

, (1)

recall =
countAND
countAns

, (2)

Specificity =
countNOR
countIAns

, (3)

F−measure =
2 ∗ precision ∗ recall
precision+ recall

. (4)

We also created pseudo-color images to visualize the
retained regions of nuclei or cells (blue, Fig. 1), false neg-
ative regions of bImgAns- bImgAND (green, Fig. 1), and
false positive regions of bImgO- bImgAND (magenta, Fig. 1).
We then combined these three pseudo-color images to obtain
the superposition image [Fig. 2(b)], such that the mismatch
of boundaries could be visualized.

FIGURE 2. (a) The boundaries (yellow contours) of the binarized 3PF
answer image bImagAns can precisely outline the nuclear boundaries.
(b) The superposition image of the true positive (blue color), the false
positive (magenta color), and the false negative (green color) parts of
denoised THG images. Fields of view: (a) 120 × 120 µm; (b) 160 × 160 µm.

III. RESULTS
To evaluate the denoising performance of the different
approaches, we performed 1250 nm excited 3PF and THG
microscopy on RAW 264.7. The 3PF contrast mostly labeled
the nuclei, and the THG contrast revealed lipid granules
within cells. The excitation intensity used for the 3PF
microscopy was too low to generate sufficient THG signals
and for 3PF imaging, we did not activate the proliferation
of lipid granules in the RAW cells. There was no crosstalk
between the 3PF and THG signals.

At each observation location in a petri-dish, we acquired
200 images at a 15-Hz frame rate, with fixed excitation
power, using the same detection channel and bias voltage.
The acquired images served as low-photon-budget images
to be denoised. To evaluate the denoising performance,
we obtained a low-noise answer image of the corresponding
location from the average of the acquired 200 images. The
low-noise answer image also served as a low-noise answer
for DDAE training. Several studies have utilized a similar
approach to obtain ground-truth images [39], [40], [41] and
we referred to the same principles to select the required
number of images for ground-truth estimation [42].

For each imaging modality, we selected 31 locations on
each petri-dish and acquired 31 image batches. All the
batches were used for 5-fold cross-validation to validate
DDAE. Then, we compared the results with those processed
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FIGURE 3. (a) Noisy inputs (upper rows) and low-noise answers (bottom rows) of three testing 3PF images of
Hoechst blue labeled RAW cells. (b) The low-noise answer image, (c) noisy input, and (d) DDAE processed one.
Processed by DDAE model, the noise was suppressed, the contrast was enhanced, and the nuclear boundary
was well-preserved (yellow dashed closure). Fields of views: (a) 120 × 120 µm; (b–d) 50 × 50 µm.

by traditional denoising methods such as Gaussian filter,
median filter, and BM3D. We measured the quality of the
results using PSNR and SSIM to represent the fidelity of the
signal and structures. BM3D. We measured the quality of
results by PSNR and SSIM to represent the fidelity of signal
and structures.

A. DENOISING OF THREE-PHOTON FLUORESCENCE
IMAGES
Three testing cases of 3PF images were sampled from
each testing batch. Given that the images were acquired
at a 1/15-s frame time, they contained a lot of salt-and-
pepper noise [Fig. 3(a), upper row]. The stochastic resonance-
enhanced signalsmade the cells faintly discernible [Fig. 3(c)].
By applying the trained DDAE model, they showed a great
improvement in image contrast [Fig. 3(a), bottom row]. The
nuclear boundaries were well preserved [Fig. 3(d), yellow-
dashed contour]. For cells with relatively low signal levels
in low-noise answer images [Fig. 3(b), indicated by blue
arrows], noise cannot boost them in the high frame-rate
image, and the DDAE cannot restore them in such a situa-
tion. Compared with traditional filtering methods such as the
Gaussian filter, median filter, and BM3D (Fig. 4), the results

of the 3PF DDAE denoising surpass all of them on the PSNR
and SSIM scores (Table 2 and Appendix Table 4). In general,
the DDAE method achieves a higher signal-to-noise ratio
of 28.86 PSNR and retains more structural information of
0.89 SSIM. Among the traditional methods, by choosing the
optimal sigma value, the performance of the BM3D filter is
the best with 38.66 PSNR. It shows a relatively clear cellular
outline but loses several intracellular details with 0.88 SSIM.
As for the results of the median filter, although it can retain
a few significant signal spots, it cannot show nuclear bound-
aries. The Gaussian filter method generally performs better
than the median filter, but it contained significant noise and
vague nuclear boundaries in the results. In brief, 3PF DDAE
model can improve the image quality better than most tradi-
tional denoising methods, and users can obtain results in a
few seconds without time-consuming steps, such as by trying
optimal sigma values.

B. DENOISING OF THIRD HARMONIC GENERATION
IMAGES
Similarly, we built THG DDAE models by applying
31 batches to 5-fold cross-validation, composed of 200 THG
images acquired at 31 different locations on the petri-dish.
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FIGURE 4. Denoising results of 3PF images with DDAE, Gaussian filter, median filter, and BM3D algorithms.

TABLE 2. Average PSNR and SSIM scores yielded by different denoising approaches.

Instead of the nuclei, the THG images revealed granules in
the cytoplasm (Fig. 5), which delineated the outline of the
cells. The results (Fig. 6) show that the THG DDAE model
also outperforms

most traditional methods in terms of both the PSNR and
SSIM scores (Table 2 and Appendix Table 5), except BM3D.
In addition, among all of the denoising methods, the PSNR
of BM3D and the SSIM of Gaussian filter are the best, which
achieve 26.38 and 0.52, respectively. The BM3D method
performs relatively well in terms of its signal-to-noise ratio,
but becomes vague at the cellular boundaries. In the Gaussian
filter, we find that it can retain the general structure of cells,
but there is still significant noise in the background. Similar to
the case in 3PF images, the median filter retains the structures
and signals of the cells. In general, the THG DDAE model
was the better choice for denoising THG microscopy images
in terms of PSNR (=21.66) and SSIM (=0.70).

C. PRESERVATION OF NUCLEAR AND CELLULAR
BOUNDARIES
To understand whether the DDAE can preserve more stochas-
tic resonance-enhanced signals than the other denoising

filters, following the procedures described in the Meth-
ods section, we identified pixels that represent the regions
of nuclei or cells in both denoised and low-noise answer
images. We then computed their precision, recall rates, and
F1 scores (Table 3 and Appendix Table 5) to evaluate how
well the boundary information was preserved after denoising
(Figs. 7 and 8). For the 3PF cases, we found that the 58-59%
precision rate of the DDAE mode is higher than that of most
of the filters, except for a few cases of median filters (σ =
3 or 5) in extreme situations that have very low recall rates
of 8% and 10%. The 76-78% recall rate of DDAE performed
better than most BM3D and median filters but not as good
as Gaussian Filters (84–91%). This indicates that DDAE
generates more false negatives (green in Fig. 7) than BM3D
in the analysis of nuclei boundaries. Balanced with the F1-
score, which takes precision and recall as equal weighting,
the DDAE16 model has an average score of 0.667, which is
much higher than that of the other filters. For the THG cases,
the signal level and dynamic range of the low-noise answer
image were much lower than those of 3PF. We obtained an
average 65-66%precision rate for DDAE,which is lower than
part of the median filter results. However, DDAE’s average
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FIGURE 5. Noisy inputs (upper rows) and low-noise answers (bottom rows) of three testing THG images of
RAW cells. Fields of views: 160 × 160 µm.

FIGURE 6. Denoising results of THG images with DDAE, Gaussian filter, median filter, and BM3D algorithms.

83% recall rate is higher than theirs. This result indicates that
DDAE may result in more false-positive pixels and fewer
false-negative pixels in the THG images of the cytoplasm.
Balanced with the F1-score, the 0.736 scores of the DDAE
model again outperformed the other filters. These results indi-
cate that for low photon-budget images containing stochastic
resonance-enhanced signals, DDAE can retain nuclear or
cellular boundaries more accurately for further segmentation.

IV. DISCUSSION AND CONCLUSION
For low photon-budget multiphoton biomedical imaging,
it is crucial to find a balanced denoising method to pre-
serve stochastic resonance-enhanced regions and retain cell
boundary features for further segmentation. The despeckle
denoising strategy removes most of the noise-boosted signals
and corrodes the cell regions, whereas the low-pass spatial
filtering strategy sacrifices resolution and expands cellular
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TABLE 3. The Precision, recall, and f1- scores yielded by different denoising approaches.

FIGURE 7. Nuclear region analysis of 3PF images denoised with DDAE, Gaussian filter (σ = 5), median filter
(σ = 10), and BM3D (σ = 240) algorithms. Blue: true positive, Magenta: false positive, Green: false negative.

regions. Nonlocal mean algorithms such as BM3D and Gaus-
sian filters average the patches with similar textures and
achieve state-of-the-art performance; however, these meth-
ods involve either time-consuming optimization processes
or manually chosen parameters, which result in low com-

putational efficiency when pursuing high performance. This
problem becomes an analysis bottleneck for many high-
throughput 3D microscopies.

Our results for the compact DDAEmodel revealed its capa-
bility to realize both feature preservation and noise filtering.
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FIGURE 8. Cellular region analysis of THG images denoised with DDAE, Gaussian filter (σ = 5), median filter (σ =
5), and BM3D (σ = 180) algorithms. Blue: true positive, Magenta: false positive, Green: false negative.

FIGURE 9. Training and validation loss across different epoch iteration
during the DDAE training of 3PF images.

After several epochs of training, the validation loss was sig-
nificantly reduced (Appendix Fig. 9 and 10). The optimiza-
tion and parameter selection process can be accomplished
in advance during the training of the DDAE model, and the
denoising process requires only a few seconds. Even at such
a high denoising speed, the DDAEmodel outperformed other
conventional methods in preserving signal regions but sacri-
ficing a bit of denoising ability in PSNR. It shows that DDAE
under low-phonon budget conditions is a better trade-off
approach between structural similarity and the preservation
of the nuclear or cellular boundaries. This may be owed to the
nonlinear transformation characteristics of deep learning. The
stochastic noise in low photon-budget multiphoton imaging
is not a perturbative interference to signals. It can nonlinearly

FIGURE 10. Training and validation loss across different epoch iteration
during the DDAE training of THG images.

boost subthreshold signals above the detection limit. Hence,
methods such as Gaussian filters and BM3Dmay be unable to
handle such a situation well within a short computation time.
In contrast, the deep learning model could learn the nonlinear
features from the training dataset, effectively suppress the
noise, and correctly preserve the cellular boundaries. This
pilot study explored the effectiveness of the DDAE system
for boundary-preserved image denoising. We plan to explore
advanced deep learning models to further improve denoising
performance.

This study also investigated the effects of three filter sizes
(m = 8, 16, and 32) on the denoising performance of
DDAE. The results show that the performance of DDAE
models with different filter sizes varies while using different
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TABLE 4. Denoising performance of filters on 3PF images. TABLE 5. Denoising performance of filters on THG images.
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images and evaluation metrics. For example, DDAE with
m = 32 achieves the best PSNR and SSIM in 3PF images but
has relatively limited performance in THG images (Appendix
Table 4 and 5). However, the differences between DDAE
models are extremely low (<1%). It shows the proposed
DDAE model with smaller filter sizes (m = 8) requiring
less computation complexity is sufficient and more suitable
to enhance image quality and preserve nuclear and cellular
boundaries.

Previous studies have demonstrated the need for effective
image denoising tools in clinical applications. For example,
[14] white blood cell counting is a routine practice for med-
ical diagnosis, which requires high-SNR white blood cell
images of size, shape, structure, and nucleus-to-cytoplasm
ratio to accurately classify and identify cells based on mor-
phological phenotypes. The proposed DDAE could restore
nuclear and cellular boundaries, which supports nucleus seg-
mentation in white blood cell counting [43]. Texture analysis
after segmentation could further improve the accuracy and
reliability of white blood cell counting.

In future works, because the DDAE model has the poten-
tial to improve image quality from various types of image
sources, we plan to implement our DDAE model on different
types of microscopy images for practical medical technology
applications. To reduce the operation time, we plan to develop
a lightweight DDAE using advanced machine-learning tech-
niques at a low photon budget condition and under limited
hardware resources, such as by using pruning and tinyML.
In addition, Lehtinen et al. showed that without clean dataset,
the deep learning model can still perform good image restora-
tion [44].Wewill also attempt to train the neural networkwith
cleaner images excited by a higher laser power and detected
at a lower gain. A reliable denoising method can speed up
applications, such as high-throughput image segmentation,
fast 3Dmorphodynamic analysis, and long-term cell tracking.
We expect that this denoising method can be organically inte-
grated into the process of imaging analysis, help improve the
processing efficiency of many high-throughput microscopies,
and achieve online denoising on hardware.

APPENDIX
See Figures 9 and 10 and Tables 4 and 5.
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