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ABSTRACT  Objective: Older adults’ falls are a critical public health problem. The majority of free-living
fall risk assessment methods have investigated fall predictive power of step-related digital biomarkers
extracted from wearable inertial measurement unit (IMU) data. Alternatively, the examination of charac-
teristics and frequency of naturally-occurring compensatory balance reactions (CBRs) may provide valu-
able information on older adults’ propensity for falls. To address this, models to automatically detect
naturally-occurring CBRs are needed. However, compared to steps, CBRs are rare events. Therefore,
prolonged collection of criterion standard data (along with IMU data) is required to validate model’s
performance in free-living conditions. Methods: By investigating 11 fallers’ and older non-fallers’ free-
living criterion standard data, 8 naturally-occurring CBRs, i.e., 7 trips (self-reported using a wrist-mounted
voice-recorder) and 1 hit/bump (verified using egocentric vision data) were localized in the corresponding
trunk-mounted IMU data. Random forest models were trained on independent/unseen datasets curated
from multiple sources, including in-lab data captured using a perturbation treadmill. Subsequently, the
models’ translation/generalization to older adults’ out-of-lab data were assessed. Results: A subset of models
differentiated between naturally-occurring CBRs and free-living activities with high sensitivity (100%) and
specificity (> 99%). Conclusions: The findings suggest that accurate detection of naturally-occurring CBRs
is feasible. Clinical/Translational Impact- As a multi-institutional validation study to detect older adults’
naturally-occurring CBRs, suitability for larger-scale free-living studies to investigate falls etiology, and/or
assess the effectiveness of perturbation training programs is discussed.

INDEX TERMS Compensatory balance reactions, free-living digital biomarker, falls, machine learning, fall
risk assessment.
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I. INTRODUCTION

Falls in older adults, which may lead to serious physi-
cal and/or psychological consequences [1], [2], are one of
the most important public health problems world-wide. Fall
risk assessment (FRA) is the initial step for fall preven-
tion programs and interventions, which aims to identify
different risk factors for falls including intrinsic (e.g., gait
and balance impairments, cognitive status alterations) and
extrinsic/environmental (e.g., low-friction surfaces, uneven
terrains) [3]. Despite significant advances in FRAs, falls are
still resistant to preventive interventions. The majority of
FRAs, such as Timed Up and Go [4] or instrumented methods
(e.g., pressure sensitive mat), are confined to clinical settings
(controlled conditions), where patients may alter their perfor-
mance due to awareness of being observed (i.e., Hawthorne
effect [5]). Moreover, FRAs conducted under controlled con-
ditions could miss the examination of specific environmental
and behavioural risks that can lead to falls. Therefore, new
free-living FRAs are needed to address the aforementioned
limitations.

Wearable sensor systems (e.g., smartwatches, inertial mea-
surement units (IMUs) data loggers), have facilitated the
emergence of free-living FRAs to monitor older adults’ daily
activities in out-of-lab conditions. To address this, early stud-
ies (reviewed in [6]) have explored the relationships between
IMU-based free-living digital biomarkers (FLDBs) and the
frequency of prospective or retrospective falls in older adults.
These FLDBs include macro (e.g., quantity of: steps [7] and
turns [8]) and micro (e.g., spatiotempral measures such as
step time [7], or frequency measures [9] including index
of harmonicity) measures. However, many of these FLDBs,
which were mostly dependent on the detection of steps,
exhibited inconsistent fall predictive powers across studies,
indicating that they may not be stable in distinguishing fall-
prone individuals. Moreover, the relationships between falls
and free-living dynamic postural control measures, such as
step width [10] and the frequency of naturally-occurring
compensatory balance reactions (CBRs), have yet to be inves-
tigated in depth [6]. Considering balance impairment as one
of the strongest risk factors for falls [11], the investigation of
balance-related FLDBs may lead to more stable risk assess-
ments and provide new insights into fall prevention in older
adults. This necessitates the development of robust models to
identify balance impairment in older adults under free-living
conditions.

Also known as missteps or near-falls, CBRs are reactions
(e.g., trips, slip-like, crossover) to recover stability follow-
ing a loss of balance, characterized by rapid movements to
broaden the base of support. Findings from controlled stud-
ies support the view that impaired ability to execute CBRs
is associated with a higher risk of falling [12], however,
there have been only a limited number of studies investi-
gating biomarkers that are related to the naturally-occurring
CBRs. These studies either used self-reports [13], [14] or
wearable sensor data [15]-[17] to quantify the frequency
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of CBRs. For instance, Srygley efal. [13] described that
the quantity of self-reported missteps was positively associ-
ated with the frequency of prospective falls in older adults.
In contrast, Gazibara et al. [14] showed that self-reported
near-falls were not linked to prospective falls in people with
Parkinson’s disease (PD). However, these findings were lim-
ited to self-reported observations with no further verification
(e.g., video evidence) and lack spatial and temporal reso-
lution. An objective approach was used in [15], where the
quantity of ‘suspected’ missteps detected in 3 days of IMU
recordings was reported to be strongly associated with retro-
spective falls in people with PD. The thresholds used in this
CBR detection approach were mostly determined based on
trial and error [15]. The highest number of suspected missteps
was 1,007 within 4,148 gait windows (window length: 5 s,
~ 5.7 hours of gait), while the lowest number of suspected
missteps was 4 within 95 gait windows (or 7.8 minutes of
gait). The high rate of false positives was attributed to the
presence of high amplitudes in the vertical (V) acceleration
signal and more inconsistent gait patterns compared to con-
trolled conditions [15]. The term ‘suspected’ for this FLDB
highlights the lack of criterion (gold) standard data to reli-
ably validate the employed threshold-based CBR detection
approach in free-living conditions.

There have been machine learning-based CBR detec-
tion methods, developed based on surface electromyogra-
phy (sEMG) [18], [19] or IMU [19]-[21] features, where
the IMU-based models presented a more satisfactory per-
formance compared to the sSEMG-based ones [19]. These
models were developed (trained and tested) using healthy
young participants’ data collected in controlled conditions,
and achieved high detection accuracies. However, their trans-
lation to detect older adults’ naturally-occurring CBRs has
remained uninvestigated. Considering the aforementioned
findings, further research on the validity of CBR detection
models needs to be undertaken to reliably examine the asso-
ciations between the frequency of naturally-occurring CBRs,
as a stand-alone FLDB, and falls in older populations.

Performing a validation study in the context of CBR detec-
tion is logistically challenging. Compared to other gait events
such as steps and turns, naturally-occurring CBRs are rare
events and hard to capture. For instance, only 46 CBRs (trips)
were self-reported by three older adults in 107 person-day
of data [17]. Therefore, prolonged acquisition of criterion
standard data (e.g., egocentric vision) along with IMU data
from older adults is required to capture naturally-occurring
CBRs. The integration of criterion standard data allows accu-
rate identification/localization of CBR onsets in the corre-
sponding IMU data and may provide information on the
circumstances leading to false alarms. This information can
be used to assess the performance of the IMU-based CBR
detection models.

This paper presents a multi-institutional collaborative
effort and proposes a machine learning-based framework
for the detection of multidirectional CBRs, which has been
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validated using fallers’ and older non-fallers’ free-living or
out-of-lab data. The key considerations for model develop-
ment and validation have been discussed in subsection [-A.

A. KEY CONSIDERATIONS FOR CBR DETECTION MODELS’
TRAINING AND VALIDATION

Previous studies conducted in controlled conditions have
suggested that a single IMU placed on participants’ trunk
(e.g., sternum [19], waist [20]) or pelvis [21] outperforms
all other single IMU placement sites, including ankles and
thighs, for the purpose of CBR detection, possibly as it
performs better at approximating the linear mechanics act-
ing through the whole-body center of mass. Moreover, the
use of IMUs mounted on waist (close to pelvis) and bilat-
erally on ankles and thighs (5 total IMUs) resulted in
slightly higher CBR detection accuracies compared to a sin-
gle waist-mounted IMU (96.6% vs 94.7%) [21]. The marginal
improvement in accuracy shown with multi-IMU methods
coupled with the need to minimize obtrusiveness indicate the
potential for a single sensor location suitable for prolonged
field studies. Therefore, the data of a trunk-mounted IMU
were considered in the present study.

Although CBRs happen more often during gait [22],a CBR
detection model dependent on a gait detection algorithm
(e.g., [15], [22]) may exhibit limited performance in some
scenarios (see section IV). Thus, differentiation between
CBRs from all other activities of daily living was hypothe-
sized to be a more promising approach, and considered in this
study.

Previous CBR detection studies [19]-[22] considered alter-
nate methods of model training and performance assessment,
such as k-fold and leave-one-subject-out cross-validation.
Similar to our previous research works [21], [23], we hypoth-
esize in the current study that incorporating a training dataset
curated from data sources that are independently collected
from the test dataset would result in the machine learning
models with more realistic results in terms of generalization
to unseen data (although lower accuracies are expected to
be obtained compared to the cross-validation methods where
training and test datasets share very similar distributions,
e.g., k-fold [21]). Specifically, this study examines the use
of in-lab perturbation data for model training as a viable
approach to detect real-world CBRs (in the test dataset). This
approach also facilitates forming a balanced training dataset
(i.e., balanced set of CBR and non-CBR events, and balanced
distribution over different CBR classes), which is otherwise
very challenging to be achieved in free-living studies due to
the rarity of naturally-occurring CBRs (discussed earlier) and
the varying occurrence frequencies for different types. For
instance, trips were reported to be the most common CBR
type (e.g., in PD fallers [14]) and are potentially easier to be
captured compared to the other CBR types during free-living
data collection. While the investigation of CBRs in the sagit-
tal plane has attracted more attention from the researchers
(e.g., in [17], [22]), the ability to detect different CBR types,
including those in the frontal plane, may provide a more
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comprehensive insight into older adults’ balance impairment.
This can be addressed by training models on a comprehensive
dataset that includes samples from different CBR types (e.g.,
crossover, sidestep, slip-like).

The findings of our previous study [21] indicated that a per-
turbation treadmill (PT) is a safe and reproducible option to
elicit multidirectional CBRs (PT-CBRs). Additionally, it was
hypothesized that incorporating PT and free-living data in
the training dataset can augment the performance of CBR
detection models [21].

To address the aforementioned points, two models were
developed:

1) Model 1 was trained using an open access benchmark
dataset, i.e., the Inertial Measurement Unit Fall Detec-
tion (referred to as the ‘IMUFD’) dataset [24], which
includes young adults’ simulated CBR and non-CBR
events (simulated activities of daily living),

2) Model 2’s training dataset was formed by adding
an equal number of CBR and non-CBR events from
(a) the PT dataset (young adults’ data) [21] and (b) one
older adult’s out-of-lab activities’ data from Multi-
modal Ambulatory Gait and Fall Risk Assessment
in the wild (MAGFRA-W) dataset, to the IMUFD
dataset.

While the incorporation of the aforementioned training
datasets comes with multiple advantages, previous research
showed that CBR detection models developed based on con-
trolled data may generate high rate of false positives when
applied to unseen/free-living data [15], [21]. In contrast to
falls, which result in coming to rest inadvertently on the
ground, CBRs are often accompanied by subtle changes in
posture, and subsequently, may be confused with other activ-
ities of daily living [21]. Considering that the majority of
samples in the training datasets for Models 1 and 2 were
acquired from controlled data, several criteria were consid-
ered to automatically compensate for the prominent discrep-
ancies between the training and validation/test datasets, when
required (detailed in section II-D.2.a).

The dataset used to validate the proposed framework
includes a subset of 11 fallers’ and older non-fallers’
multimodal data from a) Free-living IMU and Voice
Recorder (FIVR) and b) MAGFRA-W datasets, which
encompasses 8 naturally-occurring CBRs. The CBRs were
verified using criterion standard data (e.g., visual verification
in MAGFRA-W using egocentric vision data, Fig. 1). Using
this independent validation/test dataset, the models’ perfor-
mance was further assessed by investigating their:

« generalizability to detect naturally-occurring CBRs exe-
cuted by older adults with different characteristics (e.g.,
history of falls, with walking aids),

« robustness against false alarms generation in different
indoor and outdoor contexts.

The translation results to detect naturally-occurring CBRs
are discussed in section III and the framework’s clinical
implications are further highlighted in section IV.
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Il. METHODS AND PROCEDURES

A. DATASETS AND MULTI-INSTITUTIONAL STUDIES
Previous research showed excellent agreement between spa-
tiotemporal measures estimated from L5- (of the lumbar
spine) and waist-mounted (right hip) accelerometers [25].
Therefore, despite discrepancies in the exact anatomical loca-
tion of the trunk-mounted IMU across the multi-institutional
datasets, inertial data collected from pelvis-, lower back-
(L5-), and waist-mounted IMU s, i.e., trunk-mounted, were
considered comparable for the task of CBR detection model
development in this study. While multiple IMUs were used
to collect data in the studies discussed here, data recorded by
trunk-mounted IMUs were considered to develop CBR detec-
tion models. The sensor’s three orthogonal axes were checked
to be aligned with the three anatomical axes in upright posture
for the MAGFRA-W dataset as well as the IMUFD, PT, and
FIVR datasets as detailed elsewhere [15], [16], [21].

1) IMUFD

The IMUFD dataset includes 150 CBRs and 240 non-CBR
epochs simulated by 10 healthy young participants between
22 and 32 yrs [24]. Five types of CBRs (commonly observed
in videos recorded in long-term care facilities) were simu-
lated: 1) trips, 2) slips, 3) hit and bump (by another person),
4) incorrect transfer while rising from sitting to standing,
and 5) misstep during gait. The simulated non-CBR epochs
include the following activities: 1) walking, 2,3) ascending
and descending stairs, 4) standing, 5) sitting to standing,
6) standing to sitting, 7) standing to lying, and 8) picking up
an object from the ground. Only data from the waist-mounted
IMU (APDM Opal, Portland, USA), were considered in the
study (sampling frequency of f; =128 Hz, triaxial accelerom-
eters range: +6 g; triaxial gyroscope, range: 1500 deg/s).

2) PT DATASET

As detailed elsewhere [21], nine healthy young partici-
pants (mean age = 26 yrs) wore five IMUs (Opal model,
APDM Inc., accelerometers and gyroscopes were set to
operating ranges of +16g and +2000 deg/s, respectively)
at the pelvis, and bilaterally on thighs and ankles, and
walked over a perturbation treadmill (speed = 1.1 m/s).
Perturbations in 4 directions (right, left, backward, forward)
were induced during the right or left leg stance phases (in
2 separate 20-minutes sets). This process resulted in eight
different classes of PT-CBRs, such as sidestep, crossover,
slip-like, trip-like (80 PT-CBRs/set for each participant, over-
all 160 PT-CBRs/participant). Here, the pelvis-mounted IMU
data recorded from 6 participants were considered for model
development. The study has received ethics clearance and
was reviewed and approved by the Medical Faculty, Tiibingen
University, Germany (No: 266/2016MP2).

3) FIVR DATASET
In order to capture real world CBRs, participants wore a
wrist-mounted voice recorder and 4 body-worn IMUs (Opal,
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APDM Inc., Portland, USA; f; = 128 Hz, 16 g accelera-
tion, 2000 deg/s angular rate) during waking hours on the
wrist, feet, and lower back [16]. As detailed elsewhere [16],
5 participants (4 males, 76.2+5.4 yrs, with a history of >2
falls in the past 6 months) were instructed to self-report any
CBR (defined as an event where balance control was lost
momentarily, but recovered, including slips, trips, stumbles
or missteps) using the voice-recorder immediately after the
event occurrence. Here, the self-reported trips (either the
participant used the word ‘trip’ or the explained contexts that
were consistent with a trip such as ‘stubbed foot’ or ‘caught
foot on’) were considered. A pose estimation algorithm was
used to verify the presence of CBRs within the recorded IMU
data and spot their onsets. To address this, location of the
feet, as well as lower back and wrist orientation data were
combined to create a three-dimensional animation represent-
ing the estimated body motion [26]. Overall, 7 CBRs (all
trips), with &~ 10 minutes before and after each event (overall
140 minutes of data) were taken into account for model val-
idation (see FIVR D1 to D7 in Fig. 2 and 3, D: dataset). The
study reviewed and approved by the University of Michigan
Institutional Review Board (HUMO00073568).

4) MAGFRA-W DATASET

The MAGFRA-W dataset includes data collected by mul-
tiple wearable IMUs (Axivity, Newcastle upon-Tyne, UK;
acceleration range: £8 g, angular velocity range: £500 deg/s,
fs = 100 Hz) as well as a waist-mounted camera (GoPro
Hero 5 Session or Hero 6 Black camera, 30fps, wide view)
in out-of-lab environments. Data collection was performed
in (a) public environments within Northumbria University,
during which older adults navigated through different indoor
and/or outdoor environments while walking alongside a
researcher, or (b) older adults” homes (indoor) or their neigh-
bourhood (outdoor) for &~ 1 — 2 hours with no researcher
in attendance. Outdoor data collection was performed during
daylight hours. The camera was centered at each older adults’
waist by means of a belt attachment and was set up to capture
top-down views of feet and the regions around them, with
no calibration or a strictly reproducible placement procedure
on camera’s angle with respect to the frontal plane. In the
present study, the L5-mounted IMU data collected from 7 par-
ticipants (mean age: 73.46 yrs, 1 male, 3 fallers based on the
number of self-reported falls in the previous 12 months) were
processed. One older adult’s data (female, 80 yrs, non-faller)
were used for model training (see II-C.1.c) and 6 participants’
data were considered for models’ validation (see II-D.1.b,
Supplementary Materials I and II). One participant’s age was
below 65 yrs, however, as she was a recurrent faller, her
data were considered for further analysis (MAGFRA-W D5:
female, 55 yrs, faller). MAGFRA-W D3 (female, 80 yrs, non-
faller) and MAGFRA-W D5 include 2 adults’ data collected
in their homes and neighbourhoods. In MAGFRA-W D5 and
D6 (male, 80 yrs, faller) participants used walking aids. The
project received ethics approval (reference number: 17589,
approval date: 4-Oct-2019) from Northumbria University
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Research Ethics Committee, Newcastle upon Tyne, UK. All
participants gave written informed consent before participat-
ing in the study.

B. SIGNAL PREPROCESSING

The AX6 data in the MAGFRA-W dataset showed incon-
sistency with the other 3 APDM-captured datasets (IMUFD,
FIVR, and PT) in terms of the units and sampling frequency.
Therefore, unit conversion as well as signal upsampling
(100 to 128 Hz, using MATLAB interpolation method
‘pchip’) were performed to obtain comparable data within
all dataseets. Signal detrending (removing the DC offset) was
considered in the previous CBR detection studies to address
slight tilts/shifts in sensor placement [15], [21]. Therefore, for
each of the simulated CBR and non-CBR trials in the IMUFD
dataset (with an approximate width of 15s/trial), each of the
6 acceleration (ACC) and angular velocity (Gyro) signals
was detrended separately. Moreover, due to the consistency
in activity type (over-treadmill walking), which resulted in
relatively consistent sensor orientation, all six ACC and Gyro
signals corresponding to each set were detrended separately
[21]. However, as the orientation of the trunk-mounted IMU
with respect to the gravitational vector is expected to change
considerably during free-living activities (impacting signals’
DC values), for FIVR and MAGFRA-W datasets, instead of
detrending the full-length signals for each participant, non-
overlapping sliding windows (SWs) with the length of 15 s
(in accordance with the IMUFD segments) were applied to
each of the six inertial signals, and the overlapping data
were detrended separately. All data were processed using
MATLAB (R2019a, MathWorks Inc, USA).

C. MODEL TRAINING

In this section, the procedure for data preprocessing and
segmentation is discussed for each dataset. Overall, to form
the training datasets, 227, 60 and 60 non-CBR and 148,
120 and 0 CBR signal segments were extracted from the
IMUFD, PT and MAGFRA-W inertial data, respectively
(overall 17 individuals). The subsequent segments were fur-
ther used for feature extraction (see II-C.2) and prepara-
tion of the training datasets (i.e., feature matrices X) for
Models 1 and 2.

1) DATA SEGMENTATION

Based on the findings reported in [18], [19], [21], in the
signal vector amplitude of acceleration signal (SVAscc)
recorded by a trunk-mounted accelerometer, the peaks, i.e.,
argmax(SVAacc), can be reliable signal-based indicators of
CBR onsets in response to perturbations. Moreover, based on
the available evidence and criteria discussed in [21], a seg-
ment width of & 4.69 (= 601 samples at f; = 128 Hz) created
by cropping &~ 2.34 s (or 300 samples with f; = 128 Hz)
before and after of the corresponding argmax(SVAacc) in
all 6 ACC and Gyro signals is sufficiently wide to encompass
important transitional information attributed to the mechan-
ical and postural adjustments evoked after a perturbation.
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Here, each CBR and non-CBR segment is a 6 x 601 matrix
(6: number of signals).

a: IMUFD SIGNAL SEGMENTATION

After calculation of the SVA signal and detection of
argmax(SVAacc) for each trial in IMUFD (section II-A.1),
227 non-CBR and 148 CBR segments were considered
for feature extraction to form the training datasets for
models 1 and 2 (as discussed in II-C.3).

b: PT SIGNAL SEGMENTATION

Considering the possible adaptation happening over the
course of data collection (80 CBRs/set for each participant
as discussed in II-A.2) [27], only the first 10 CBRs elicited
in each set were considered, resulting in 120 PT-CBRs
(6 participantsx?2 sets (right and left leg stance phases) x
[2 (trip-like)+ 2 (slip-like)42 (crossover)+2 (sidestep)]).
The i PT-CBR segment was created by cropping 300 sam-
ples before and after of the sample corresponding to
argmax(SVAacc,i) in all of the 6 signals. Additionally,
60 non-CBR segments were extracted from the ‘steady state’
normal over-treadmill walking intervals between the two
consecutive PT-CBRs (as discussed elsewhere [21]). These
segments were further considered for feature extraction (dis-
cussed in II-C.2) to form the training dataset for Model 2.

¢: MAGFRA-W SIGNAL SEGMENTATION

One participant’s (female, 80 yrs) data from the MAGFRA-W
dataset were used to prepare the training dataset for Model 2.
This participant’s data were confirmed to be free of any
CBR events by manual inspection of the egocentric vision
data. A non-overlapping SW with the length of 5 s, ie.,
SWsvaucc.ss» Was applied to the SVAscc signal attributed to
this participant. In each SWgya, . 5, the index corresponding
to the peak, i.e., argmax(S WSVA ACC.Ss,j)’ is identified, and
300 samples before and after this point in all 6 signals form
the segment. Overall, 60 non-overlapping non-CBR segments
were selected and considered for feature extraction (discussed
in [I-C.2) to form the training dataset for Model 2.

2) FEATURE EXTRACTION

Extraction of discriminative features from the IMU segments
is a necessary step in the proposed machine learning-based
approach for the recognition of CBR patterns. In contrast to
the CBR detection models proposed in [21], for which each
of the 6 ACC and Gyro axes was considered independently
for feature extraction, for each of the CBR and non-CBR
segments, only 2 signals: 1) SVAscc and 2) the SVA of
angular velocity signals (SVAgy,), were taken into account.
The following 20 features were extracted from the SVA4cc
and SVAgyr, components of each segment: 1) maximum
peak, 2) root mean square (RMS), 3) mean, 4) variance,
5) skewness, 6) kurtosis, 7) number of peaks, 8) maximum
autocorrelation, 9) integral (trapezoid numeric), 10) the Shan-
non entropy, 11) amplitude of the dominant frequency (peri-
odogram PSD), 12) the dominant frequency in the segment,
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13) maximum of signal derivative, 14) mean of the signal
derivative, 15) variance of the signal derivative 16) skewness
of the signal derivative, 17) kurtosis of the signal deriva-
tive, 18) RMS of the signal derivative, 19) integral (trape-
zoid numeric) of the signal derivative, and 20) the Shannon
entropy of signal derivative. In addition to the aforementioned
features, argmax(SVAgy,) in each segment was considered,
resulting in 41 (= 2 x 20 + 1) features for each window.
These features were previously taken into account for the
development of CBR detection models [19]-[21].

3) TRAINING PROCEDURE

In our previous work on a similar classification problem
to detect CBRs, multiple machine learning techniques were
examined [18], [19] [21], where the random forest (RF)
method (bootstrap-aggregated decision trees) [28] exhibited
a satisfactory performance. Considering RFs permit paral-
lel processing and demonstrates robustness against nonlin-
ear relationships, and considering the size of the training
dataset (small for the development of deep learning models),
RF models were investigated.

The training datasets for Models 1 and 2 were formed
by concatenating the feature vectors extracted from the 1)
IMUFD segments (a X375x4; matrix), and 2) IMUFD, PT,
and MAGFRA-W segments (a Xg15x41 matrix). Based on
the initial tests, an RF model with 19 trees (RF19) showed
satisfactory results on all validation datasets, while more trees
resulted in excessive sensitivity to classify a considerable
proportion of local peaks as a CBR (likely due to overfit-
ting). To indicate that the results are not impacted by the
inherent model randomness, another metric, i.e. ‘confidence
score’ was defined. This metric considers the predictions of
50 RF19’s models trained on the corresponding datasets for
Models 1 and 2 (discussed in section II-D.2.c). MATLAB
defaults were used for other parameters including the mini-
mum number of observations per tree leaf (i.e., 1 for classifi-
cation) and number of variables to select at random for each
decision split (i.e., square root of the number of variables for
classification).

D. MODELS VALIDATION BASED ON FREE-LIVING DATA

1) VALIDATION/TEST DATASET

a: FIVR DATASET

Data discussed in II-A.3 were considered to validate the
proposed CBR detection models. In each of the 7 FIVR
datasets, the confirmed CBR is located in the centre of the
timeseries, i.e., t € 600 &= 3 s, in FIVR D1 to D7, as shown
in Fig. 2 and Fig. 3.

b: MAGFRA-W DATASET

By visual inspection of the recorded egocentric vision data
in the MAGFRA-W dataset, 1 naturally-occurring (hit/bump)
CBR was identified (see Fig. 1 and Fig. 3-MAGFRA-W DI,
in which the CBR event happened at = ¢ = 631 s). The
participant (female, 76 yrs, non-faller) hit a light pole and
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FIGURE 1. A CBR was observed in an older adult’s egocentric vision data
(MAGFRA-W D1). The participant hit a light pole and lifted right leg
forward.

lifted her right leg forward. The multimodal data attributed to
this participant captured different movement patterns such as
level walking on different surfaces, turns, the use of elevator,
stair descending, and obstacle avoidance (see Supplementary
Material I-Fig. 1).

Data from 5 more participants (Fig. 4 and Supplementary
Material IT) were examined to assess the models’ robustness
across varying contexts during which the models could gen-
erate false alarms.

2) REGIONS OF INTEREST

The validation dataset was segmented similar to the method
described in section II-C.1.c. To avoid confusion, data seg-
ments extracted from the validation datasets are referred
to as the ‘regions of interest’ (ROIs). A SWsya s, Was
applied to the IMU data in the FIVR and MAGFRA-W
datasets, after removing ~ 10 s from the start and end of
each dataset. ROI; (a 6 x 601 matrix) includes all samples
€ [indROIj — 300, indROIj + 300] from all 6 ACC and Gyro
signals, indro, = argmax(SWsva,ccs,,;)» Where j denotes
the ROI’s number in the corresponding dataset. If the dis-
tance between the peaks in the adjacent ROIs was less than
300 samples, i.e., |indRo1j+l — indR01j| < 300, the ROI
corresponding to the smaller peak was disregarded as a con-
siderable proportion (> 50%) of this ROI (including the peak)
is being automatically included in the ROI attributed to the
peak with higher amplitude. This ROI elimination approach
can play an important role in large-scale free-living studies,
as it reduces the overall processing time by decreasing the
number of data points being examined by the CBR detection
models.

a: POSSIBLY-NOISY ROIs

Preliminary results (Supplementary Material III) indicated
that all CBRs were detectable either by Model 1 or 2;
with the exception of 1 CBR event depicted in FIVR D2
(Fig. 2). The models’ inability to capture this CBR event
was surprising as the peak corresponding to the CBR’s onset
in SVAacc was higher than the other detected CBR events
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(see Fig. 2 and Fig. 3). Moreover, high rate of false positives
were initially observed in FIVR D2 (Fig. 2) and FIVR D6
(Fig. 3) as shown in Supplementary Material III.

As mentioned in subsection I-A, the reasons behind the
aforementioned false negative and positive observations can
be attributed to the differences between the training and vali-
dation/test datasets, more specifically due to the differences:
1) between young healthy and older adults’ performance, and
2) between free-living and controlled data (e.g., treadmill vs.
free-living walking).

Hof et al. [29] reported that older adults corrected per-
turbations with higher variability and less accuracy in foot
placement, regained balance with more steps, and demon-
strated higher attentional demand. However, all CBRs in the
IMUFD and PT datasets were collected from young healthy
adults. Therefore, age-related difference are likely to play
a role in translating models trained on these datasets to
detect older adults’ CBR onsets. Moreover, while previous
research showed that gait speed could impact compensatory
stepping characteristics [30], all multidirectional PT-CBRs
were elicited while participants were walking with a constant
speed on the treadmill.

Moreover, previous research have highlighted differences
between in-lab and free-living gait [31]-[34] as well as dis-
crepancies between older and young adults’ gait [35]. Com-
pared to controlled gait, acceleration signals attributed to
free-living gait represent lower regularity [32]), more diverse
range, e.g., in the anterior-posterior (AP) [34] and V [15],
[34] axes, which may result in the generation of false posi-
tives. Treadmill and overground walking patterns were also
reported to be different in terms of smoothness and rhyth-
micity [36], and some of the digital biomarkers extracted
from older adults’ treadmill and free-living gait data were
significantly different [34]. However, a considerable propor-
tion of the training datasets for Models 1 and 2 include young
adults’ data collected under controlled conditions. In contrast,
the validation datasets captured walking patterns from older
adults in diverse contexts (e.g., while walking on an uneven
surface covered by gravels), with various gait speeds, differ-
ent walking bout lengths (e.g., short, long), and contains gait
events such as turns.

Considering the aforementioned points, as both CBR and
non-CBR data acquired under controlled conditions typi-
cally demonstrate more regular and smoother acceleration
signals compared to free-living data, we hypothesized that
by detecting and filtering/smoothing ‘possibly-noisy’ ROIs
in free-living data, we can compensate for inconsistencies
between the training and validation datasets and subse-
quently, improve the overall performance of the CBR detec-
tion models.

As mentioned earlier, gait speed impacts compensatory
stepping characteristics [30]. Based on knowledge that walk-
ing speed was strongly correlated with range in ACCy
and ACCyp signals [9], and considering that both ACCy
and ACCyp demonstrated significantly higher ranges during
free-living gait compared to their in-lab counterparts [34]
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(with little-to-no difference was reported in mediolateral
direction), we hypothesized that the range in AP and V direc-
tions can be used to define the ‘possibly-noisy’ condition
for a ROI. Therefore, while defining this condition war-
rants deeper investigation of controlled and free-living data,
we propose a ‘possibly-noisy’ ROI definition if the range in
ACCyp or ACCy in a window (with the length of ¢ = 2.32s)
before or after of the ROI is above a certain threshold
(0ap = 8.55m/s* and Oy = 11.36 m/s?). These hyperparam-
eters/thresholds were obtained based on the results reported
in [9], in which free-living data were collected from more
than three hundred older adults (including fallers and non-
fallers) using a lower back-mounted IMU. Window size, ¢,
was obtained based on the average stride frequency in older
adults’ free-living data (¢ = 2xaverage stride time = 2 X
1/0.86Hz ~ 2.32 s). Based on the same study, 8.55 m/s* and
11.36 m/s*> were the average range values for ACC4p and
ACCy signals during gait, respectively [9]. These parame-
ters for the identification of possibly-noisy conditions were
selected based on the assumption that CBRs are more likely to
occur during gait. If the windows before and after a ROI over-
lap with non-gait regions (e.g., sedentary), the possibly-noisy
condition is less likely to be met for the ROIL.

To compensate for inter-dataset differences, we hypoth-
esized that applying a low-pass butterworth filter with
the cut-off frequency of 10 Hz and order of 1 to the
possibly-noisy ROIs would make the underlying acceleration
signals smoother, while it can preserve important kinematic
information related to CBRs and other activities. Subse-
quently, for each detected possibly-noisy ROI, all 6 ACC and
Gyro signals were filtered and then the SVAscc and SVAGyo
signals were recalculated. The ROI remained unchanged
(no filter was applied), if the possibly-noisy condition was
not met.

b: FEATURE EXTRACTION FROM ROls

For each ROI, either low-pass filtered or unchanged, the
41 features discussed in II-C.2 were extracted.

¢: ROI's CONFIDENCE SCORE

For each ROI, the average of outputs (1: CBR, 0: non-CBR)
from 50 RF9’s in each model was defined as the ROI’s
confidence score. Subsequently, a ROI encompasses a CBR
if its corresponding confidence score is > 0.9 (i.e., at least
45 out of 50 RF9’s in Model 1 or 2 classified the ROI as a
CBR).

IIl. RESULTS

From 8 verified free-living CBR events, 4 and 6 CBRs were
correctly detected (confidence score>0.9) by Models 1 and 2,
respectively (see Table 1). Model 1 was unable to detect
4 valid CBRs: 1) FIVR D1 (confidence score: 0.00), 2) FIVR
D4 (confidence score: 0.24), 3) FIVR D5 (confidence score:
0.12), and 4) MAGFRA-W D1 (confidence score: 0.54),
and achieved the sensitivity of 50.00%. CBRs in FIVR D1
and FIVR D5 were correctly classified by 29 and 19 out
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of the 50 RF19’s in Model 2, respectively, however, their
corresponding confidence scores did not exceed the threshold
of 0.9 (i.e., considered as false negatives). Therefore, Model
2 achieved 75.00% sensitivity. From a total of 4,047 non-CBR
ROIs tested (extracted from all 12 datasets), 8 and 7 false
positives were generated by Models 1 and 2, respectively.
Subsequently, Models 1 and 2 achieved the overall specifici-
ties of 99.80% and 99.82%, respectively.

Among 50 trained RF'19’s in Model 2, 5 models detected
all 8 CBRs. However, no subset of RFj9’s in Model 1 was
able to detect all 8 CBRs (e.g., confidence score of 0.00 was
achieved for the CBR in FIVR D5). To probe further, Model
2’ was considered by including this subset of 5 RFj9’s in
Model 2. Model 2’, which achieved 100% sensitivity, was
applied to all 12 validation datasets to examine its robust-
ness against generating false positives (Table 1). This model
generated 13 false positives yielding the overall specificity of
99.80%.

By comparing the preliminary CBR detection results in
Supplementary Material III (obtained for 8 datasets: FIVR
D1-D7 and MAGFRA-W D1) with the corresponding results
in Table 1, it was observed that detecting and filtering the
possibly-noisy ROIs improved the overall models’ perfor-
mance. For these 8 datasets, the overall sensitivity and speci-
ficity of Model 1 increased from 37.50% and 98.71% to
50.00% and 99.87%, respectively. Similarly, the sensitiv-
ity and specificity of Model 2 increased from 62.50% and
95.82% to 75.00% and 99.74%, respectively. While a reduc-
tion in the quantity of false positives was observed for FIVR
D2 (Model 2: 27 to 0) and FIVR D6 (Model 1: 13 to 1; Model
2: 34 to 2), the results for some datasets including FIVR D1
and FIVR D5 did not change after applying the possibly-
noisy condition. Before considering this condition, the CBR
in FIVR D2 (Fig. 2) was not detectable by the models, how-
ever, it was successfully detected by Models 1 and 2, when its
corresponding ROI, identified as possibly-noisy, was filtered.
The corresponding ROI to the CBR in FIVR D6 also met
the criteria for being counted as possibly-noisy, and was still
detectable by the models after being filtered.

While an equal number of 236 SWs were extracted from
each of the FIVR datasets, different numbers of ROIs were
reported across these datasets (Table 1) due to the integration
of the ROI elimination approach. This resulted in ~16.3%
reduction in the total number of ROIs for FIVR D1 to D7,
while saving the ROIs corresponding to the CBR events.

To visualize the range of contexts captured, sample mul-
timodal data for one participant (MAGFRA-W D2: female,
76 yrs, 0 falls in the prior year), who walked on different
indoor and outdoor surfaces (e.g., stairs, gravel, grass, transi-
tions), are included in Fig. 4. The only context leading to the
false positive in this dataset was a sudden change in walking
direction on carpet (indoor environment). Moreover, Supple-
mentary Material I represents an anticipatory pattern, obsta-
cle avoidance, which could generate false positives according
to previous studies’ reports [15]. While this event could have
been confused with sidestep and crossover CBRs, the models
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did not generate false positives (see MAGFRA-W DI in
Fig. 3). There were also several peaks with higher SVAscc
amplitudes than the spotted CBRs’, e.g., in Fig. 2-FIVR D4,
FIVR D5, as well as data points with high amplitudes (e.g.,
in MAGFRA-W D4 and D6, Supplementary Material II) for
which Models 2 and 2’ did not generate false positives,
indicating the models’ robustness against such signal
features.

IV. DISCUSSION/CONCLUSION
This paper presents one of the first CBR detection frame-
works validated using criterion standard data (including
egocentric vision) captured from older adults under free-
living conditions. The validation/test dataset were captured
from 11 fallers and older non-fallers with different levels of
mobility impairment while interacting with different indoor
and outdoor environments. The mobility patterns considered
in the validation dataset include various walking speeds,
turns, ascending/descending stairs, transitions, and anticipa-
tory reactions (e.g., obstacle avoidance). To represent a prag-
matic picture of model’s generalizability to unseen datasets
(i.e., complex free-living data captured from older adults with
different characteristics), rather than using cross-validation
approaches in which training and test datasets share very sim-
ilar distributions (e.g., k-fold), we formed training datasets by
curating data from multiple sources, including young adults’
controlled data that were independently collected from the
test dataset. Moreover, the integration of PT-induced CBRs
was hypothesized to provide satisfactory proxies for the
lack of available data of multidirectional naturally-occurring
CBRs in the target older adult populations to form a suffi-
ciently large training dataset. Therefore, Model 1 was trained
on an open access dataset (IMUFD), and Model 2 was
trained on a curated dataset from young adults’ (IMUFD,
120 PT-CBRs, and 60 non-CBR events from PT) and one
older adult’s (60 non-CBR events from MAGFRA-W) data
(i.e., 120 PT-CBR and 120 non-CBR events were added to
IMUFD). A condition was further defined to automatically
detect possibly-noisy signal segments to further compensate
for the prominent discrepancies between the training and
validation/test datasets. Model 2 showed a higher sensitivity
compared to Model 1 (75% vs 50%) and generated slightly
fewer false positives (7 vs 8). From the 50 trained RF9’s in
Model 2, 5 models (formed Model 2’) detected all 8 CBRs,
indicating that an optimized subset of RF’s can be found
to achieve a high sensitivity (100% here) in the detection
of CBRs. This model was more prone to generating false
positives (overall specificity: 99.67%) compared to Mod-
els 1 (overall specificity: 99.80%) and 2 (overall specificity:
99.82%). However, considering its lower processing time
(= x1/10 of Model 2) and higher sensitivity, Model 2’ can
be considered superior to Models 1 and 2, and thus, suitable
for being tested in larger-scale studies.

The higher sensitivity of Model 2 (and 2’), compared
to Model 1, is due to the inclusion of PT-CBRs as well
as one older adult’s out-of-lab data in the training dataset.
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FIGURE 2. CBR detection Models 1, 2, and 2" were applied to the FIVR datasets (the CBR events are located at 6003 s).

The simulated CBRs performed by participants in the responses to unanticipated threats to dynamic equilibrium
IMUFD [20] mostly include anticipatory adjustments pre- during gait, CBRs must be rapidly executed often with-
ceding voluntary movements [21]. However, as reactive out anticipatory adjustments to provide stability in the face
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FIGURE 3. CBR detection Models 1, 2, and 2’ were applied to three FIVR datasets (the CBR events are located at 600+3 s)
and one older adult’s data from the MAGFRA-W dataset (the CBR event is located at t = 631 s).

of environmental challenges, and are performed automati-

cally with no attention [21], [29]. Considering

ducibility and safety of the PT approach, as well as the
findings of the present study, this approach is suggested
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to be used to collect larger-scale multidirectional PT-CBR
datasets elicited in different gait speeds, to boost the general-
izability of the proposed models. Collecting larger training
datasets would subsequently facilitate the development of

the repro-
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TABLE 1. Test results obtained after applying the models on the extracted regions of interest (ROIs) from the validation datasets. FP: false positive.

Model 1 Model 2 Model 2’
#ROIs Sensitivity ~ Specificity ~ #FPs Sensitivity ~ Specificity ~ #FPs Sensitivity ~ Specificity ~ #FPs

FIVR D1 190 0.00 100 0 0.00 99.47 1 100 99.47 1
FIVR D2 203 100 100 0 100 100 0 100 100 0
FIVR D3 197 100 100 0 100 100 0 100 100 0
FIVR D4 198 0.00 99.49 1 100 99.49 1 100 99.49 1
FIVR D5 200 0.00 100 0 0.00 100 0 100 100 0
FIVR D6 201 100 99.50 1 100 99.00 2 100 97.00 6
FIVR D7 194 100 100 0 100 100 0 100 98.96 2
MAGFRA-W D1 173 0.00 100 0 100 100 0 100 100 0
MAGFRA-W D2 65 N/A 98.46 1 N/A 98.46 1 N/A 98.46 1
MAGFRA-W D3 1100 N/A 99.72 3 N/A 99.81 2 N/A 99.81 2
MAGFRA-W D4 205 N/A 100 0 N/A 100 0 N/A 100 0
MAGFRA-W D5 990 N/A 100 0 N/A 100 0 N/A 100 0
MAGFRA-W D6 139 N/A 98.56 2 N/A 100 0 N/A 100 0
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FIGURE 4. Multimodal data collected form one older adult. Upper panel: the detrended signal vector amplitude of
trunk-mounted acceleration signals and the false positives generated by the models. Lower panel: sample frames captured by a
waist-mounted camera showing different indoor and outdoor walking surfaces the participant walked over.

deep learning models, which may outperform the random
forest models and the engineered features discussed in the
present study [21].

By exploring the findings of previous research works,
which examined differences between free-living and
controlled digital biomarkers, hyperparameters (e.g., ¢,
V and AP range) were considered to automatically detect
possibly-noisy ROIs in the validation dataset. Although con-
firming the suitability of these hyperparameters for the detec-
tion of highly irregular ROISs requires a deeper investigation,
they led to promising results in the present study. The results
obtained after applying a 10-Hz low-pass filter to the detected
possibly-noisy ROIs indicated these signal segments can
become smoother and potentially more comparable to the
training dataset, while important kinematic information in
their underlying CBRs (e.g., in FIVR D6 and D2) can be
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preserved. Subsequently, an increase in the overall models’
sensitivity and specificity was observed. Among all datasets,
FIVR D6 generated the highest rate of false positives. Even
after the consideration of the possibly-noisy condition, 6 out
of the total 13 false positives generated by Model 2’ were
attributed to this dataset. We attribute this high rate of false
positives to the significant differences between the movement
task(s) in this dataset (walking in a construction site, which
resulted in high amplitudes) and training dataset. By incorpo-
rating a more inclusive training dataset, the models’ perfor-
mance is expected to be improved. Although the collection of
older adults’ free-living non-CBR events is not as challenging
as capturing their naturally-occurring CBRs, only 60 samples
from one older adult’s out-of-lab activities were considered
in the training dataset for Model 2 (and 2’) so that the
balance between the number of CBR and non-CBR events
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could be maintained. Considering a more inclusive training
dataset consisting of different individuals’ non-CBR and
CBR events captured in various conditions may also bypass
the requirement for detecting possibly-noisy ROIs. This will
be investigated in our future studies.

Orientation signals (obtained from raw IMU signals) were
considered to detect CBRs in previous studies [22] and
used to verify the presence of CBRs in the FIVR dataset
(see II-A.3). Here, although CBRs were detected with high
sensitivity and specificity, incorporating the SVA signals
(rather than individual ACC and Gyro signals) as well as the
detrending process made the proposed models potentially less
sensitive to sensor orientation misconfiguration and everyday
orientation changes. The incorporation of orientation signal
features may impact the performance of the proposed CBR
detection framework, and may be considered in our future
studies.

Due to the challenges associated with the collection of
naturally-occurring CBRs, only 8 CBRs were verified and
investigated in the present study. Larger scale free-living
studies are required to be conducted to better understand
the natural statistics of CBRs in the real world and deeper
assess the performance of the incorporated: machine learning
models, hyperparameters for defining the possibly-noisy con-
dition, detrending process (e.g., optimal SW size), and ROI
elimination approach. Overall, considering the large range of
free-living movement patterns captured in the validation/test
dataset, and considering state-of-the-art models may not gen-
eralize well to new users whose data have not been used in
the training process [37], the proposed framework exhibited
a satisfactory performance.

A. NO REQUIREMENT FOR GAIT DETECTION

Previous work suggested a two-step approach for CBR detec-
tion, which require gait detection as the first step [15],
[22]. However, CBRs may not necessarily occur during
walking (e.g., incorrect transfer while rising from sitting
to standing). Moreover, poor performance of an employed
gait detection approach may decrease the overall sensitiv-
ity of the subsequent CBR detection model. For instance,
while short walking bouts constitute a considerable propor-
tion of daily walking bouts in older adults [38], they can be
missed/disregarded by commonly used gait detection algo-
rithms [6]. The majority of gait detection algorithms rely on
the identification of heel strike events in the acceleration sig-
nals. However, when it comes to free-living conditions, these
events may not always be identified by distinctive peaks [39],
due to reduced gait speed [40] and different variations of
gait patterns (e.g., scuffling, dragging of the feet [41]) hap-
pening frequently during activities such as household clean-
ing [39]. This may lead to misidentification of gait events
and potentially reduce the sensitivity of CBR detection mod-
els. As opposed to detection during gait only, distinguishing
CBRs from all activities of daily living, as proposed here, may
outperform models focused solely on detection of during-gait
CBRs.
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B. CLINICAL APPLICATIONS

Future research aims to focus on applying the described
models to large-scale free-living IMU datasets collected from
older fallers and non-fallers in a longitudinal manner to better
understand the associations between falls and CBR-related
FLDBs (e.g., direction, duration, number of steps to recover
balance as well as the signal-based features discussed in
section II-C.2). This would further allow the identification
of stable CBR-related FLDBs in terms of detecting older
fallers. Moreover, there are a number of perturbation training
programs that are currently being tested/developed in clinical
settings [42]-[44]. However, the transfer of balance recovery
skills gained during these in-clinic programs to everyday
scenarios has not been well-investigated. The models pro-
posed here help track responsiveness to these programs by
providing objective information on the timing and frequency
of naturally-occurring reactive responses induced by real-life
perturbations.

The egocentric vision data captured in MAGFRA-W pro-
vided rich contextual information about the factors leading
to CBRs (e.g., a light pole, Fig. 1) and contexts that may
lead to the generation of false alarm (e.g., a sudden change in
walking direction, Fig. 4). By identifying contexts associated
with verified CBRs, risky features of the environment can
be detected. Thus, by taking appropriate actions such as the
modification of environment (e.g., removing obstacles, secur-
ing fall areas) as well as rehabilitation interventions (e.g.,
training to negotiate stairs and transitions), future falls are
expected to be prevented.
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