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ABSTRACT Objective: Improving geographical access remains a key issue in determining the sufficiency
of regional medical resources during health policy design. However, patient choices can be the result of
the complex interactivity of various factors. The aim of this study is to propose a deep neural network
approach to model the complex decision of patient choice in travel distance to access care, which is
an important indicator for policymaking in allocating resources. Method: We used the 4-year nationwide
insurance data of Taiwan and accumulated the possible features discussed in earlier literature. This study
proposes the use of a convolutional neural network (CNN)-based framework to make predictions. The
model performance was tested against other machine learning methods. The proposed framework was
further interpreted using Integrated Gradients (IG) to analyze the feature weights. Results: We successfully
demonstrated the effectiveness of using a CNN-based framework to predict the travel distance of patients,
achieving an accuracy of 0.968, AUC of 0.969, sensitivity of 0.960, and specificity of 0.989. The CNN-
based framework outperformed all other methods. In this research, the IG weights are potentially explainable;
however, the relationship does not correspond to known indicators in public health. Conclusions: Our results
demonstrate the feasibility of the deep learning-based travel distance prediction model. It has the potential to
guide policymaking in resource allocation.

INDEX TERMS Deep neural network, machine learning, patient choice, public health, policymaking.

Clinical and Translational Impact Statement— Deep learning technology is feasible in investigating the
distance that patients would travel while accessing care. It is a tool that integrates complex interactive
variables with highly imbalanced data distributions.

I. INTRODUCTION
It is ideal for people to receive sufficient healthcare services
without the need to travel a distance. However, nonmedical
financial obstacles, such as transportation and high travel
burdens, have been acknowledged as key barriers in access-
ing healthcare [1], [2]. Several studies have identified that
patients are willing to travel farther distances under certain
circumstances. For example, [3] noted that patients with
chronic illnesses travel approximately two-thirds of the dis-
tance to a physician compare to those who report no chronic

illnesses. Further, [4] observed that half of the patients
expressed that they would travel a distance to reduce the time
on a waiting list for surgery. Other studies have identified
an association between patient travel distance and disease
severity [1], [4], [5]. However, studies have shown that the
burden of travel makes treatment an unaffordable option [6].
Furthermore, [7] showed that patient health outcomes (for
example, survival rates, length of hospital stay, and non-
attendance at follow-up) decrease gradually as the distance
to the healthcare facilities increases. Some studies noted
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that follow-up services must be geographically accessible to
ensure utilization, irrespective of insurance status [8], [9].

Previous studies have used econometrics to predict patient
choice. For example, [10] built patient choice models to pre-
dict the hospital that a patient would go to in the region using
multinomial logit (MNL) and utility-maximizing nested
logit. Furthermore, [11] distinguished patient choice between
hospital-based and clinic-based care using a two-level nested
MNL model, and [12] described the impact of quality on
hospital choice using MNL. Generally, the purpose of econo-
metrics is to estimate the interaction of variables and to
explain causality, whereas it does not make predictions that
indicate an action [10], [13].

Improving geographical access remains a key issue
in health policy design [6], [17]. Travel distance is an
essential piece of information that affects a patient’s
choice [10], [13]–[15]. Evaluating the travel distances of
patients is a way of investigating whether the medical
resources of the area are sufficient, estimating potential med-
ical demands, and the tolerable distance that an individual is
willing to travel [4], [16]. It provides important guidance for
allocating resources from the perspective of policy [16], [18].

Most earlier studiesmainly relied on conventional statistics
and econometrics to analyze the impact of specific variables
under certain hypotheses, preconditions, and limited patient
groups. This involved in ruled out the potential confounding
variables under balanced label sampling [13], [19]. However,
it may be insufficient to support decision-making in reality
when patient choices can result from a complex interaction
of various factors and circumstances [4], [6], [19]–[22]. It is
difficult to determine the insufficiency of regional medical
resources without a tool that can integrate complex interactive
variables and illustrate their interactivity under highly imbal-
anced circumstances. Such restrictions limit policymakers’
decisions based on their experiences and interpretations.

Machine learning is known to be capable of processing
multidimensional features and provides a generalized pre-
diction [13], [23]. It has exhibited excellent performance in
the medical domain, such as early risk detection [24], [25],
mortality prediction [26], [27], symptom classification [28],
and patient admission prediction [29]. The aim of this study
is to propose a framework using a deep learning approach to
predict the travel distance of a patient. The proposed approach
has the potential to support decision making in policy design.
To the best of our knowledge, this is the first study to demon-
strate the feasibility of deep learning techniques in predicting
the travel distance of patients to access healthcare.

The remainder of this paper is organized as follows. The
methods section illustrates the retrieval of data, extraction
of features, and the predicted target. Furthermore, it intro-
duces machine learning methods, training strategies, eval-
uation indicators, and model interpretation methods. The
results section illustrates the prediction and interpretation of
the outcomes. The discussion section thoroughly interprets
our findings. Finally, the conclusion section concludes our
findings.

II. METHODS AND PROCEDURES
The training and testing processes used in study are illustrated
in Fig. 1. The following subsections introduce our method
according to different phases, including data collection, data
preprocessing, model training, prediction, performance eval-
uation, and interpretation of the prediction model.

A. DATA COLLECTION
The data used in this research were the insurance claims
from two million clinical declaration files and the Reg-
istry for Beneficiaries files from the Taiwan National Health
Insurance Research Database (NHIRD), dated January 1,
2008 to December 31, 2011. The data released were origi-
nally sampled to ensure their representation of the population
across Taiwan. The files included demographic information
and visiting records of outpatients and emergency settings.
In addition, four publicly announced data were included. One
is the ‘‘physician density’’ information that referred to the
number of practicing physicians serving per 10,000 people
in each region of Taiwan [30]. Second, the national calendar
was used to distinguish between workdays, weekends, and
national holidays. Third, the center latitude and longitude
of each district was used to calculate the travel distance
of each visit. Fourth, the number of medical institutes and
medical staff in each region, which were used to calculate
the healthcare accessibility index (acc. index) based on the
adjustment of the enhanced two-stage floating catchment area
(2SFCA) method. The 2SFCA is a way to evaluate the local
accessibility of medical care based on the regional physician-
to-population ratio and the weight of distance decay effect
(that is, the farther the distance is required to travel, the
less likely an individual is to use a healthcare service) [2],
[17], [31], [32].

This study was approved by the Research Ethics Commit-
tee at the National Taiwan University (No. 202004EM035
and No. 202104EM038) and waived the requirement for
informed patient consent for the data, which had already been
de-identified before analysis.

B. DATA PREPROCESSING
1) FEATURE EXTRACTION
This study extracted 25 features that were accumulated from
the earlier literature [34]–[39], as listed in Table 1, and
the detailed calculation equations are summarized in the
Appendix [40]. Incomplete or questionable data, such as
individuals without a birthdate or gender (or with two gen-
ders), records without a date, a birthdate later than the visit
date, patients without any visiting records, patients without
a primary diagnosis, incomplete information of visiting hos-
pitals, patients unable to determine their place of residence
(POR), and places that could not indicate the acc. index, were
excluded. To avoid having dominated predictors, a Pearson
correlation test was performed, presenting with a heatmap
to demonstrate the correlation between all features and the
prediction target.
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FIGURE 1. Training and testing process flow. c indicates conventional
machine learning methods, which underwent preprocessing of PCA and
non-PCA. d indicates deep learning methods. RA: regression analysis; RF:
random forest; SVM: support vector machine; MLP: multi-layer
perceptron; CNN: convolutional neural network; PCA: principal
component analysis; AUC: area under the receiver operating
characteristics curve. In the training dataset, the minimum number of
traveled distances is 10–15 km (n = 379,301). The balanced label
sampling used the under-sample strategy to randomly select data of
other labels to reach an even amount of data, resulting in label balanced
dataset having n = 1,517,204 (= 379,301 × 4).

TABLE 1. Features extracted from the visiting records.

2) DEFINITION OF TRAVEL DISTANCE
The targeted prediction outcome in this study was the travel
distance of the patients. The POR and the location of the
hospital were required to calculate the travel distance for each
visit. Owing to the nature of privacy protection, the NHIRD
provides the POR of each patient with an approximate district
that the patient registers as a hometownwhen filling the insur-
ance form. However, registered districts often differ from

FIGURE 2. Rules to determine the place of residence (POR): Adopting the
queen contiguity definition, where all the districts with attached
boundaries are included [42]. The nearby district list was generated using
GeoDa version 1.14.0, an open geographic information system (GIS)
software. The rules are slightly reduced because family members and
relatives are not considered in this study.
Rule 1: Whether the patient belongs to a type A identity. Type A identity is
the type of insurance identity that people are required to register at their
POR.
Rule 2: Accessing care owing to flu or respiratory infection conditions.
Rule 3: Is the visiting institute in a nearby registered district?
Rule 4: At least having two emergency service records.
Rule 5: Is the emergency service institute in a nearby registered district?

where the patient actually lives. People may leave their home-
town and live at an alternative location for several reasons,
which makes it difficult to capture the travel distance. This
study adopted themethod proposed by Lin et al. [41] to obtain
the estimated POR. It mainly used the records of treatment for
flu, respiratory infection conditions, or emergency services to
determine the POR of patients. These types of care services
are less likely to travel far away. The estimated rules are
shown in Fig. 2. This study identified the center of the POR
district and the center of the hospital district with latitude
and longitude, and calculated the distance between the two
centers to obtain the estimated travel distance [2], [17], [31].
Considering the characteristics of the distance decay effect,
impedance differentiations among areas [4], [32], [33], and
that the distance was determined through approximation,
we categorized the distance into four levels (<5 km, 5–10 km,
10–15 km, and >15 km). Approaching the prediction with
approximate labels instead of actual values was considered
to result in better generalization and more straightforward in
practical use.

3) DATA NORMALIZATION AND TRAINING STRATEGY
After the preprocessing, all the numerical values (including
age, number of diseases and chronic diseases, number of
visits, number of votes as the most frequent provider conti-
nuity (MFPC), the least frequent provider continuity (LFPC),
physician density, Charlson comorbidity index (CCI), acces-
sibility index of each region, and disease importance rate
(DIR)) were normalized between −1 and 1. The categorical
features (including gender, regional groups, and the indi-
cation of low income, surgery, emergency service, severe
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condition, and workdays) were transformed into one-hot
encoding [43], which converts a categorical variable that
has n values into n variables. The numeric and categorical
features were then concatenated into a patient visit vector to
represent each event. Each physician visit was seemed as an
independent visit event.

Afterward, the data were randomly split into training and
testing data at an 80:20 ratio. Owning to the imbalanced
distribution of patient travel distance, the training data were
further randomly undersampled to reach a balanced label
among the four distance labels. The training data were then
randomly separated into five subsets. The training process
included the rotation of each subset as a validation subset
whereas the others acted as a training subset. On the other
hand, considering that the models were required to face the
actual behavior of patient travel, the testing data remained in
its original label distribution, as the final evaluation of this
research remains in its original label distribution.

C. MODEL TRAINING
This study proposes a convolutional neural network
(CNN)-based framework for travel distance prediction. The
proposed framework was tested against three conventional
machine learning methods and a deep learning method
to demonstrate its effectiveness. The three conventional
machine learning methods were regression analysis (RA),
random forest (RF), and support vector machine (SVM).
Because the conventional machine learning method does not
inherit the ability of feature selection, principal component
analysis (PCA) is added to conventional machine learning
methods for feature reduction. That is, conventional machine
learning methods underwent two preprocessing steps, one
with PCA and the other without PCA. PCA is a multivariate
statistical technique that extracts important information from
the data and expresses it as a set of new orthogonal variables,
known as the principal components [44], [45]. In our design,
the number of components to be kept was set to 95%.

The deep learning method used was a multilayer percep-
tron (MLP) and the proposed CNN-based framework. Deep
learning is known to inherit the ability to extract useful fea-
tures automatically [46]–[48]; hence, PCA was not applied
to MLP and CNN. The following are a brief introduction of
the used methods used, including the conventional machine
learning methods (i.e., RA, RF, and SVM) and deep learning
methods (i.e., ML and CNN):

1) REGRESSION ANALYSIS
Generally, RA is used to model and explain the relation-
ship between a dependent variable y(i) = (y(i)1 , . . . , y

(i)
k ) and

other independent variables x(i) = (x(i)1 , . . . , x
(i)
m ), where

i = 1, . . . ,N, which denotes the sample numbers; Given
a k × m matrix β, a standard model can be denoted as
y(i) = βx(i)+ε(i), (βx(i))j = x(i)1 β j1 + . . . + x(i)m βjm. The
best estimated β̂ is obtained by solving β̂= (XTX)−1XTY,
where Y and X represents the collection of all samples y(i)

and x(i), respectively; Ŷ = β̂ X denotes the vector of the fitted
value [49], [50]. In our design, the RAused the logistic regres-
sion method with a one-vs-rest scheme to model multiclass
prediction.

2) RANDOM FOREST
RF is a tree-based classifier that ensembles the results of mul-
tiple decision trees. By setting the number of decision trees
to be generated and the number of features to be selected,
RF was tested for the best split when growing the trees.
It returns the probabilities of the averaging classes of the pro-
duced trees for classification tasks or the general mean value
of trees for regression tasks. The performance is considered
better than that of a single classifier [51], [52]. In our design,
the user-defined number of trees to be generated was set to
100, and the number of features to determine the best split
was set to five.

3) SUPPORT VECTOR MACHINE
The basic idea of SVM is to establish a hyperplane that can
maximize the distance between the plane and the nearest
data [53], [54]. The hyperplane f(x) that separates the given
data can be denoted as f(x) = WT x + b =

∑M
j=1Wjxj + b,

where M denotes the number of samples, and the inputs are
xi,where i = {1, 2, . . . ,M}. In our design, the C parameter,
which indicates the tolerance degree of misclassification, was
set to 0.2.

4) MULTI-LAYER PERCEPTRON
MLP is a complex version of an artificial neural network
that contains multiple hidden layers [55], [56], where every
neuron in layer i is fully connected to every other neuron in
layer i+ 1. In a multi-layer neural network, each layer of the
network is trained to produce a higher level of representation
of the observed pattern [57], [58]. The computation of MLP
can be denoted as ŷ = σ

(∑d
j=1 xjwij + bij

)
, where each

hidden layer computes a weightwij and a bias bij of the output
from the previous layer, followed by a nonlinear activation
function σ that calculates the sum as outputs. The number
of units in the previous layer is represented by d , and the
output of the previous layer is represented by xj. In our
design, the proposed MLP model contained 25 input nodes
(based on input features) and five hidden layers containing
1500 neurons each. Rectified linear unit (ReLU) activation
functions were used between each layer. Four output nodes
symbolized the four categorized levels of distance.

5) CONVOLUTIONAL NEURAL NETWORK
The concept of CNN is to extract meaningful information
from the spatial pattern of data, which is primarily used
for pattern recognition within images. CNNs comprise three
types of layers: convolutional (Conv) layers, pooling layers,
and fully-connected (FC) layers. The Conv layer uses a small
array of numbers, called a kernel, to repeatedly apply across
the input, and calculate an element-wise product between
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FIGURE 3. An example of the convolution operation.

FIGURE 4. An example of max-pooling operation.

the input and the kernel to extract the spatial dimensionality,
as shown in Fig. 3. The element-wise product is then summed
up to obtain the output value in the corresponding position,
called a feature map.

The pooling layers operate over each feature map; max-
pooling, for example, takes only the maximum value of a
certain size of matrix on the feature map, shown in Fig. 4,
and denotes it as the feature in that section. Finally, the FC
layer, which is analogous to the MLP form, predicts the final
outcome based on the pooling results [59]–[61].

In this study, we used a CNN to predict the distance that
the patients would travel. The design of the proposedmodel is
illustrated in Fig. 5. In our design, four one-dimensional con-
volutional (Conv1D) layers with a ReLU activation function
and max-pooling were used. The convolution kernel size was
set to 3, stride was set to 1, and the width of the max-pooling
was 3. The FC layer had two hidden layers each containing
500 neurons. The final fully-connected output layer (FCO)
consists of four output nodes to condense the result to a four-
categorized output.

This study further demonstrated how adding layers to the
proposed framework contributed to the prediction results
and achieved optimization. The process included 1-layer
Conv+1-layer FCO, 2-layer Conv+1-layer FCO, 3-layer
Conv+1-layer FCO, 4-layer Conv+1-layer FCO, 4-layer
Conv+1-layer FC+1-layer FCO, and finally, the proposed
framework with 4-layer Conv+2-layer FC+1-layer FCO.
A ReLU activation function was included in every FC layer
to achieve nonlinear transformation.

FIGURE 5. Design of the proposed CNN-based framework. Conv1D:
one-dimensional convolutional layer. ReLU: rectified linear unit.
MaxPool1D: one-dimensional max-pooling layer. Conv: convolutional
layer. FC: fully-connected layers.

D. MODEL EVALUATION
The prediction model was evaluated using indicators includ-
ing the receiver operating characteristics (ROC) curve, area
under the receiver operating characteristics curve (AUC),
accuracy, sensitivity, specificity, precision, and F1 score [62].
(1)–(5) demonstrate the calculation of the indicators. For
a multi-class classification of travel distance, the macro-
average was used to generalize the performance index, which
computed the metric independently for each class and then
obtained the average to consider each class equally. The
AUC used the one-vs-rest scheme to demonstrate the general
performance.

Accuracy = (TP+ TN) / (TP+ FP+ FN+ TN) (1)

Sensitivity = TP/ (TP+ FN) (2)

Specificity = TN/ (TN+ FP) (3)

Precision = TP/ (TP+ FP) (4)

F1 = 2× (Prescision× Sensitivity) /(Prescision

+Sensitivity) (5)

E. INTEGRATED GRADIENTS INTERPRETATION
Although deep learning models can achieve excellent per-
formance, the model cannot explain how and why the
model reaches its prediction, known as the black-box prob-
lem [47], [63]. The lack of transparency in the model is a seri-
ous barrier to implementing the application in practice [64].
This study explored the interpretation of the proposed model
using the Integrated Gradients (IG) method [65]. Using a
function F : Rn→ [0, 1] to represent a deep neuron network,
let input x ∈ Rn and baseline input x ′ ∈ Rn. IG considers
the straight-line path from the baseline x ′ to the input x, and
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computes all the integral gradients at all points along the path.
The IG is obtained by cumulating these gradients, denoted as
in (6), where the baseline is commonly chosen as near-zero
F(x ′) ≈ 0 so that it can be ignored and represents the weight
of the individual input feature. i represents the ith dimension
along the x and x ′ paths.

IGi(x) ::= (xi − x ′i)×
∫ 1

α=0

∂F(x + α × (x − x ′))
∂xi

dα (6)

The IG was further averaged to obtain a weight for each
input feature. We used an open-source interpretation library
Captum [66] to implement the IG. This study was imple-
mented with Python version 3.7.6, combined with PyTorch
framework 1.1.0, scikit-learn 0.22.2, and Captum 0.3.1.

III. RESULTS
A total of 7,139,603 visiting records of patients were included
in the analysis, of which 65% of the patients had trav-
eled less than 5 km, 17% had traveled 5–10 km, 6% had
traveled 10–15 km, and 11% had traveled more than 15 km.

Demographic information of the patients is shown in
Table 2. The number of distance labels each patient traveled
across accumulates up to 1.89 (SD= 0.80), and the headcount
for each distance label shows that 92.45% of the patients
have a record of choosing institutes that are nearby (<5 km).
Meanwhile, 32.01% of the patients had a record of choosing
institutes that were far away (>15 km).

According to the correlation heatmap shown in Fig. 6, six
pairs of correlated features exceeded ±0.7: the total number
of diseases and the total number of chronic diseases (0.998),
MFPC and LFPC (0.986), age and CCI score (0.879), usual
provider of care (UPC) and sequential continuity of care
index (SECON) (0.778), the total number of visits and the
total number of diseases (0.759), and the total number of
visits and the total number of chronic diseases (0.758). None
of the features appeared to be a dominat feature (correlation
exceeding ±0.7) towards the distance, nor was the distance
in level form or continuous value form.

The results indicated that the proposed CNN-based frame-
work exceeded the performance of all other methods, achiev-
ing an accuracy of 0.968, AUC of 0.969, sensitivity of 0.960,
and specificity of 0.989, as shown in Table 5. Fig. 7 shows
the ROC curve of the CNN-based framework against all other
methods. Fig. 8 shows the contributions of the layers added
to the proposed framework. The detailed performance values
are listed Table 6 in the appendix.

The interpretation results are shown in Fig. 9. The detailed
values are listed Table 7 in the appendix. The top three
weighted features were the LFPC, physician density, and the
number of chronic diseases. The last three weighted features
were the MFPC, total number of visits, and SECOC.

IV. DISCUSSION
In our study, we successfully demonstrated the effective-
ness of using a deep learning-based framework to predict
the travel distance of patients. The results indicated that

TABLE 2. Demographic information of patients.

TABLE 3. Information of hospitals.

TABLE 4. Information of incidents.

deep learning methods (MLP and CNN) outperformed con-
ventional machine learning methods (RA, RF, and SVM)
in processing structuralized insurance data. The proposed
CNN-based framework outperformed all other methods. The
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FIGURE 6. Feature correlation heatmap. Correlation was calculated using
the Pearson correlation test.

TABLE 5. Prediction models performance.

FIGURE 7. Receiver operating characteristics (ROC) curve of the proposed
model and all the other compared methods.

performance converges and is optimized by adding layers by
layers. Although the models were trained based on balanced

FIGURE 8. Performance between the different layers of the proposed
CNN-based framework.

FIGURE 9. Integrated gradients feature interpretation of the CNN-based
framework.

label sampling, the results showed that themodel was feasible
when the testing data were highly imbalanced [19], [21]. This
implies that the designed framework can be applied in real
practice. In addition, we adopted a cross-validation strategy
as an act of generalizing data distribution. The reported result
is based on the validation of unseen data, which were isolated
before the training process. This avoids the potential for
overfitting in the prediction model. Meanwhile, based on the
number of distance labels that a patient traveled and the num-
ber of headcounts for each distance label, both results indicate
that patients may change their choice of travel distance under
different circumstances; therefore, each visit event should be
considered as independent.

Although conventional machine learning methods are
known to require the process of feature selection, our results
showed that, with or without the PCA process, performance
did not differ much; nonetheless, the features used decreased
from 25 to 16. This indicates that after PCA, conventional
machine learning methods can use fewer features and result-
ing in an approximate performance. Notably, conventional
machine learning methods were incapable of handling large
amounts of data, whereas SVM failed to converge without
increasing parameter C. The insurance and public health data
include nationwide records, which are typically large and
sparse. In contrast, the deep learning approach is known to
extract useful information automatically without additional
preprocessing [46]–[48]. This has the potential to achieve an
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ideal end-to-end system that requires no further interference
after data input. In addition, it has no difficulty in processing
a large volume of data. Combined with the observation of per-
formance results, we conclude that deep neural networks are
a better choice for implementation in public health problems
such as predicting the travel distance of patients.

According to the IG interpretation results, the effect of the
features on the prediction results can be positive or negative.
Although all the features included were extracted based on
earlier studies (meaning that they should all appear to be sig-
nificant features), not all variables appear to be as effective.
Some of the features are weighted approximately to zero,
indicating that the scenario in Taiwan may appear differently.
In general, patient preference (LFPC and MFPC), medi-
cal resources in each region (physician density and region
groups), the complexity of diseases (number of chronic dis-
eases), and the regularity of visits (total number of visits and
SECOC) were weighted as the most effective features of the
prediction results. It is worth noting that LFPC and MFPC
are weighted as the top and last features, respectively, sym-
bolizing that patient preference affects significantly and in
different directions (positively and negatively). This indicates
that the IG weights are potentially explainable and can be
related to disciplinary knowledge in public health.

In addition, although some of the features shows correlated
with each other in the Pearson correlation test, the calculated
IG weight did not appear correspondingly (such as the total
number of chronic diseases and the total number of diseases).
Traditionally, acc. index and CCI score are considered more
sophisticated indicators to identify the density of medical
resources and the complexity of disease. Their IG weights
did not exceed the value of physician density and the number
of chronic diseases, which are indicators that provided less
insight. Both results indicates that common consensus, such
as correlation or sophisticated indicators, may not necessarily
affect the prediction model simultaneously. The discipline
of social science typically focuses on clarifying the causal-
ity and interrelationship of variables that affect patients’
access to healthcare services. However, the machine learning
approach attempted to provide a prediction that integrates the
interaction results of the variables [79]. Further studies are
required to interpret the differences in between.

Ensuring freedom of choice for patients is valued across
countries. It has the potential to empower patients by prompt-
ing providers to compete for patients through a customer-
market mechanism, improving care quality, efficiency, and
wait time [67]–[76]. In Taiwan, freedom is assured under the
universal coverage of National Health Insurance [77], [78],
which is a perfect field for observing patient choice.

The decision-making process in policymaking generally
involves current status investigation, policy design and evalu-
ation, and post-implementation evaluation. Our work focused
on supporting the first phase, whereas the model was capable
of simulating patient choice with up to 96% accuracy. The
policymaker can input patient data based on household reg-
istration in a particular region and investigate the distance

that the patients would travel. Such information led to the
evaluation of whether the patients considered the medical
resources in the region to be sufficient or whether there
are other considerations that induce them to travel further.
In addition, the prediction result of patient choice has the
potential to direct us in understanding patients’ reactions
under the current medical resource allocation. Based on the
characteristics of patients’ choices, the distance they would
travel can be further analyzed, and the conclusion is informa-
tive in policy design. Our work led to a more precise current
status investigation, and as a return, may potentially lead to
more precise resource allocation.

The prediction was based on the trajectory of the
de-identified patient-visit data commonly collected by insur-
ance companies. Therefore, the model is highly achievable
elsewhere, as it does not involve complex information that
is difficult to collect or violates patient privacy. However,
because of the nature of the de-identified data, the distance
to travel can only be determined based on projection and
assumption and cannot be validated accurately, which is a
limitation of this study. Applications using deep learning
technology are promising in healthcare policymaking, and
further investigation is encouraged before industrialization,
such as the discussion of individual impacts of each fea-
ture and its effect on the model performance and resource
allocation.

V. CONCLUSION
This study successfully demonstrated the effectiveness of
using machine learning to predict the travel distance of
patients. The proposed CNN-based framework performs well
in processing structured insurance data. It was capable of
handling complex combinations of features and imbalanced
datasets, which is commonly noted when facing the problem
of patient choice.

APPENDIX
A. CHARACTERISTICS OF THE PATIENTS
Age, gender, low income (Yes/No), total number of visits,
total number of diseases, total number of chronic diseases,
four continuity indicators, and a disease complexity index
were included as characteristics of the patients. Age was
determined according to the birthdate and visit date. The
denotation of gender and low income was the status identi-
fied when entering the insurance. The total number of vis-
its was calculated as the number of visiting records during
the study period. The total number of diseases and chronic
diseases were identified using the International Classification
of Diseases (ICD) codes for each patient. The four continu-
ity indicators captured the duration, density, dispersion, and
continuity of an individual while accessing care [34]–[36].
To track the duration and density of patients accessing care,
the UPC and least usual provider of care (LUPC) were used
to indicate the visiting ratio of medical institutes. The UPC
represented the most frequently visited institute, while LUPC
represented the least frequently visited institute. The patients
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were required to visit the provider at least once to denote
an institute as LUPC. The SECOC was used to calculate
the change in providers, representing the dispersion of care.
The continuity of care index (COCI) is a single indicator
that represents the continuity of care for an individual. The
calculation of the four continuity indicators is shown in (7)
to (10), whereN denotes the total number of visits, ni denotes
the number of visits to the ith provider, k denotes the number
of providers once visited, and Cj is denoted as 1 when the
jth provider is the same as the (j+ 1)th provider (0, if not).
In addition, we included the CCI score [37] for the disease
complexity of the individual.

UPC = max
(ni
N

)
(7)

LUPC = min
(ni
N

)
(8)

SECOC =

∑N−1
j=1 Cj
N − 1

(9)

COCI =

(∑k
i=1 n

2
i

)
−N

N (N − 1)
(10)

B. CHARACTERISTICS OF THE PROVIDERS
We characterized the providers using four indicators: the
physician density of each region, MFPC, LFPC, and acc.
index. Regarding patients’ ‘‘vote with their feet’’ in choosing
providers by themselves, we calculated the MFPC and LFPC
to represent the patients’ experiences and recommendations
for each institute [38], [39]. The MFPC represents the fre-
quency of being voted as the UPC, and the LFPC represents
the frequency of being voted as the LUPC. Each patient was
able to vote for only oneMFPC or LFPC. The calculations are
shown in (11) and (12), where p indicates the total number
of patients, and UPCi and LUPCi indicate the ith patient
who voted the provider as the UPC or LUPC, respectively.
The acc. index of each region was calculated based on the
adjustment of the enhanced two-stage floating catchment area
method [2], [17], [31], [32], where the distance decay of each
regional physician-to-population ratio is considered.

MFPC =
p∑
i=1

UPCi (11)

LFPC =
p∑
i=1

LUPCi (12)

C. CHARACTERISTICS OF THE INCIDENTS
Each incident was characterized based on five encoded fea-
tures. Through the encoded ICD codes and treatment codes of
visiting records, we identified whether surgery was involved
(Yes/No), whether it was an emergency service (Yes/No),
whether it was considered as a severe condition (Yes/No),
whether the visit daywas aworkday (Yes/No), and the disease
importance rate (DIR) of the target disease during that visit.
The identification of surgeries and emergency services was

TABLE 6. Performance comparison between different layers of the
proposed CNN-based framework.

TABLE 7. Integrated gradients feature interpretation values of the
CNN-based framework.

based on the treatment codes defined by the NHIRD. Severity
was defined based on the emergency triage results. Triage
results rank for levels 1 to 3 (1 = resuscitation, 2 = emer-
gency, and 3 = urgent) were listed as severe, and the condi-
tions that were included in the catastrophic illness announced
by the National Health Insurance were also listed as severe.
The date of the incident was categorized as workday or non-
workday. We used the DIR to represent the importance of the
target disease in that visit to determine whether the visit of the
patient was a regular or singular event. The encoded primary
diagnosis was identified as the target disease at that visit. The
DIR represents the ratio of importance and is calculated as
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shown in (13), where N indicates the total number of visits
to the patient, and di indicates the total number of visits for
disease di. We used only the primary diagnosis of the visit to
identify the DIR.

DIR =
di
N

(13)
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