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ABSTRACT Alzheimer’s disease (AD) is one of the most common progressive neurodegenerative diseases,
and the number of AD patients has increased year after year with the global aging trend. The onset of AD
has a long preclinical stage. If doctors can make an initial diagnosis in the mild cognitive impairment (MCI)
stage, it is possible to identify and screen those at a high-risk of developing full-blown AD, and thus the
number of new AD patients can be reduced. However, there are problems with the medical datasets including
AD data, such as insufficient number of samples and different data distributions. Transfer learning, which can
effectively solve the problem of distribution discrepancy between training and test data and an insufficient
number of target samples, has attracted increasing attention over recent years. In this paper, we propose a
multi-source ensemble transfer learning (METL) approach by introducing ensemble learning and our tri-
transfer model that uses Tri-Training, which ensures the transferability of source data by the tri-transfer
model and high performance through ensemble learning. The experimental results on the benchmark and AD
datasets demonstrate that our proposed approach has effective transferability, robustness, and feasibility, and
is superior to existing algorithms. Based on METL, we propose an auxiliary diagnosis system for the initial
diagnosis of AD, which helps doctors identify patients in the MCI stage as quickly as possible and with high
accuracy so that measures can be taken to prevent or delay the occurrence of AD.

INDEX TERMS Alzheimer’s disease, multi-source transfer learning, ensemble learning, auxiliary diagnosis
system.

I. INTRODUCTION
Machine learning has shown great success in variety of appli-
cation fields, including computer vision, object recognition,
and natural language processing [1], [2]. Some scholars have
appliedmachine learning in themedical field, which led to the
emergence of machine learning-driven intelligent auxiliary
diagnostic systems [3], [4].

Alzheimer’s disease (AD) is one of the most common
progressive neurodegenerative diseases, and with the global
aging trend, the number of patients with AD has increased
year after year. It is estimated that by 2050, AD patients will
increase by three times [5].Medical research shows that in the
early stage of AD, patients will present with mild cognitive

impairment (MCI) [6], which lies between the normal state
and the diseased state and begin to appear younger patients.
Many studies are based on the hope that potential AD patients
can be detected during the MCI stage, and then effective
measures can be taken to prevent the disease from worsening.
If early prevention and treatment are available, the number of
new patients will be reduced. If the MCI stage can be studied
in depth, it is hoped that the high-risk population of AD will
be discovered and screened, thus providing an optimal treat-
ment time window for preventing or delaying the occurrence
of AD. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [7] provides researchers committed to determining
the progression of AD with research data. ADNI research
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resources and data include MRI images, PET images, genetic
data, and clinical data from the North American ADNI Study;
the collected samples include patients with Alzheimer’s dis-
ease, subjects with mild cognitive impairment, and elderly
controls.

Traditional machine learning still suffers from two defects:
1) high labor intensity for labeled data, especially for insuf-
ficient AD samples and 2) different data distributions that
produced different regions and ages, multi-source medical
datasets such as MRI images, PET images, genetic data, clin-
ical data. Due to the above problems, it is difficult to obtain
accurate classifiers directly by using traditional machine
learning. Transfer learning was proposed to address these
issues by imitating the learning of human beings. The core
idea of transfer learning is to transfer knowledge from a well-
trained source domain to a target domain where training data
is insufficient. Due to its advantages, transfer learning has
been widely used in various cross-domain fields and has been
attracting increasing attention in recent years [8], [9].

The key issue in transfer learning is inappropriate domain
adaption that results from different data distributions across
domains [10]. Moreover, some transfer will not improve
performance or may even reduce the performance of the
target classifier; this is called negative transfer [11]. Many
approaches aim to address this issue, such as TrAdaBoost
and Co-Clustering approaches, and a comprehensive review
on transfer learning is given in [10]. However, most exist-
ing approaches, such as TrAdaBoost [12] and Co-Clustering
[12], only utilize a single source domain. In actual medi-
cal problems, the target domain often involves knowledge
from multiple source domains. Therefore, transfer learning
involving multiple source domains, referred as multi-source
transfer learning (MSTL), is proposed to effectively utilize
the knowledge from different domains [13], [14].

Multiple source domains not only bring benefits but also
a new challenge, i.e., how to identify and select the useful
knowledge from multiple source domains. The knowledge
from multiple source domains usually have different distri-
butions, and thus not all knowledge can be reused to improve
performance. Thus, inappropriate selection and deployment
of source domains will exacerbate negative transfer [13]. Sev-
eral approaches were proposed to address this issue [13], [14].
Although these approaches have been developed to alleviate
the limitation of negative transfer, it could reduce perfor-
mance because most of them are unattachable to explore the
distribution similarity between source and target domains,
and to handle the imbalanced data.

In this paper, we propose a multi-source ensemble transfer
learning (METL) approach. METL consists of two phases:
(1) single-source tri-transfer learning, which improves the
transferability of the classifier trained by a single source
domain, and (2) MI-based multi-source ensemble learning,
which ensembles multiple classifiers into a robust final clas-
sifier. To validateMETL, we conduct four sets of experiments
via a variety of multi-source transfer tasks. The experimental

results show that METL outperforms existing algorithms
in medical fields and has practical capability in AD initial
diagnosis. To further prevent or delay the occurrence of
AD, we propose an METL-based auxiliary diagnosis system,
which helps doctors to identify patients in MCI stage as
quickly and accurately as possible.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the details of
our approach. Section IV reports on and analyzes the exper-
imental results on benchmark and AD datasets. Section V
discusses the results, the limitations of our approach, and
future work. Finally, Section VI concludes this paper.

II. RELATED WORK
In recent years, many improved transfer learning algorithms
have been proposed by combining with other methods. In this
part, we discuss algorithms related to our work.

A. TRANSFER LEARNING BASED ON
ENSEMBLE LEARNING
Ensemble learning occurs when tasks are learned by com-
bining the strengths of a collection of simpler base mod-
els [15]–[17]. In general, ensembled learners outperform the
single algorithm in three aspects: (1) Accuracy: An ensem-
bled solution has better average performance. (2) Novelty: An
ensembled solution is unattainable by any single algorithm.
(3) Robustness: An ensembled solution has lower sensitivity
to noise, outliers, or sampling variations. Dai et al. [12]
proposed a classic correlation-based TrAdaBoost algorithm,
which reasonably adjusted the weights of examples. Liu
[18] presented a transfer learning algorithm that dynamically
reassembled the main training dataset, and quickly elimi-
nated redundant data. Xiao et al. [19] proposed a dynamic
transfer ensemble model based on clustering and selection.
Meanwhile, Mei [20] proposed a transfer learning framework
for large-scale membrane protein identification based on the
SVM ensemble.

B. MULTI-SOURCE TRANSFER LEARNING
Yao and Doretto [13] proposed Multi-Source-TrAdaBoost
(MTrA), which extends TrAdaBoost to utilize multi-
ple sources. However, MTrA selects only one source
domain that is closest related to the target domain at
each iteration. Qian et al. [14] proposed an algorithm based
on multi-sources dynamic TrAdaBoost (MSDTrA), which
ensembles all knowledge, but it does not consider unbalanced
classes. Ge et al. [21] proposed the Supervised Local Weight
(SLW)method, which effectively transfers knowledge even if
there are unrelated source domains and unbalanced classes;
however, it is not applicable to the classification of high-
dimension data. Eaton and Desjardins [22] presented a novel
set-based boosting technique that boosts each source task
and assigns higher weights to source tasks with positive
transferability.
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C. TRANSFER LEARNING FOR AD AUXILIARY DIAGNOSIS
Cheng et al. [23] presented a novel domain transfer learn-
ing approach for MCI conversion prediction, which contains
three transfer components and uses data from both the target
domain (i.e., MCI) and source domains (i.e., AD and nor-
mal control). Since 2D convolutional neural networks (CNN)
will not be able to consider the relationship between 2D
image slices in the MRI volume and make decisions on them
independently. Ebrahimi-Ghahnavieh et al. [24] proposed to
utilize recurrent neural network after the CNN and transfer
learning to understand the relationship. Li et al. [25] pre-
sented an effective knowledge transfer method is proposed
to reduce the differences between different data sets and
improve the classification accuracy of data sets with insuffi-
cient training samples, tested on a small dataset from a local
hospital and a large shared dataset.

III. MULTI-SOURCE ENSEMBLE
TRANSFER LEARNING
In this section, we describe the details of METL. The frame-
work of METL is shown in Fig. 1. METL consists of
two phases: single-source tri-transfer learning and mutual
information-based (MI-based) multi-source ensemble learn-
ing. Single-source tri-transfer learning improves the transfer-
ability of the classifier trained by a single source domain,
while MI-based multi-source ensemble learning combines
multiple classifiers into a final robust classifier.

According to the definition of transfer learning, data in
the source domain DS has the same feature space X as
data in the target domain DT but has a different data dis-
tribution. DS = {(xS1 , y

S
1}, · · · , (x

S
m, y

S
m)}, where x

S
i ∈ XS

is an instance, and ySi ∈ YS is the corresponding label.
DT = {(xT1 , y

T
1 ), · · · , (x

T
n , y

T
n )}, where xTi ∈ XT is an

instance, and yTi ∈ YT is the corresponding class label. In our
approach, substantial labeled examples are available in source
domains, and a few labeled examples are useful in the target
domain.

Phase 1 (single source tri-transfer learning):
At this phase, one source domain (i.e., one of

DS1,DS2,DSi, · · · ,DSm) and target domainDT are first com-
bined to generate a new training datasetD1,D2,Di, · · · ,Dm.
Then, three heterogeneous classifiers are iteratively trained
on the new training dataset until a metric is satisfied. Here,
we propose a novel source data sample method to effectively
sample high-confidence data from source domains. As soon
as the iterations stop, the three classifiers are ensembled
to generate a robust classifier for one source domain, e.g.,
f1(x), f2(x), f3(x). The main object of this phase is to enhance
the transferability from one source domain to the target
domain. (Details are in Section III.A)

Phase 2 (MI-Based multi-source ensemble learning):
After phase 1, many classifiers are obtained, each corre-

sponding to one source domain.We propose a novel approach
to weigh these classifiers based on the correlation between
the source domain and the target domain. By means of our

FIGURE 1. Multi-source ensemble transfer learning approach.

proposed weight assignment, each source classifier is given
an optimal weight. Finally, all classifiers are ensembled to
generate the final classifier f ∗(x) for the target domain.
(Details in Section III.B)

A. SINGLE-SOURCE TRI-TRANSFER LEARNING
Tri-Training [26] is a semi-supervised learning algorithm that
uses three different classifiers to exploit unlabeled data for
enhancing learning performance. Inspired by Tri-Training,
we derive three heterogeneous classifiers f1i, f2i, f3i from
different ‘‘views,’’ i.e., using different features. In phase 1,
the core concept is to check the consistency between these
classifiers. We assume that if they have the same predication
for one instance xj, the transferability of xj is considered to be
high and should be included to improve the prediction perfor-
mance for the target domain. Different from the Tri-Training
bootstrap sampling mechanism, where it is meaningless to
divide a source domain into multiple source domains with
the same data distribution, single-source tri-transfer learning
employs a new source data sampling method for the multi-
view ensemble. Here, we can improve the transferability of
a single source domain to the target domain, thus avoiding
negative transfer.

Softmax [27], Support Vector Machine (SVM) [28], and
Deep Neural Network (DNN) [29] are chosen as our three
heterogeneous base classifiers. The Softmax classifier is a
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linear classifier, the input is an example feature, and the
output is the probability that the example belongs to each
category, which is flexible, efficient, and time-saving. SVM
is an algorithm that uses nonlinear mapping to transform
low-dimensional training data into higher dimensions, which
builds an optimal hyperplane in feature space based on struc-
tural risk minimization theory. Therefore, it is robust, accu-
rate, and less prone to overfitting. Finally, DNN mimics the
learning mechanism of the brain, automatically combining
simple features into more complex features, and uses these
combined features to solve problems. Thus, the DNN has
strong generalization ability.

Therefore, we can identify all useful data sample with high
confidence by checking the predictive consistency of three
heterogeneous classifiers. However, checking the consistency
between three classifiers only once may not sample a good
source data for transfer learning. Furthermore, we use an
iterative approach to refine the data samples of the source
domain.

The pseudo-code of phase 1 is given in Algorithm METL.
As shown in Algorithm METL, we initially combine the
target training dataset DT with data in the i-th source domain
DSi to form a new training dataset D1

i . Three classifiers are
given to train D1

i from different views. We sample all exam-
ples with consistent results from three classifiers into Dn+1Si .
Then, Dn+1Si and DT form a new training set. We update the
three classifiers and repeat the above-mentioned steps. The
algorithm terminates when the training dataset is no longer
changed and finally outputs the latest classifiers.

Once the final classifiers are derived, we use a multi-view
ensemble method to train a more robust classifier for one
source domain. The strong classifier of the i-th source domain
is denoted as fi(x) and can be calculated as follows:

fi(x) =
∑3

k=1

1
3
f nki(x) (1)

B. MI-BASED MULTI-SOURCE ENSEMBLE LEARNING
After the first step, we have obtained one classifier for each
source domain. Due to use one single classifier is unlikely to
provide a robust classifier for the target domain, but ensemble
learning can improve this by combing several classifiers.
In ensemble learning, we need to weigh ensemble classifiers
according to their correlation such that the final classifier
achieves the best performance. Likewise, we utilize ensemble
learning to combine all classifiers from the source domains to
produce a more robust and predictive classifier for the target
domain.

Inspired by the distribution weighted combination rule
[30], the ideal target classifier can be treated as a mixture
of multiple source classifiers weighted by normalized source
distributions. In other words, the multi-source transfer learn-
ing problem is viewed as finding the ‘‘mean’’ predicted labels
of all possible predicted labels that are generated by the
corresponding source classifiers.

The pseudo-code of phase 2 is given in Algorithm METL.
In phase 2, we select mutual information to assign different
classifier weights. Mutual information from information the-
ory [31] is widely used to describe the mutual dependence
between two random variables. In METL, different source
domains and target domains may have diverse data distri-
butions. The source domains with a similar data distribution
as the target domain should contribute more in our ensemble
learning in terms of improving performance.

As mentioned above, p(x, y) denotes the joint distribution
of two random variables (X ,Y ), while p(x) and p(y) denote
the edge distribution of X and Y , respectively. The mutual
information of X and Y is expressed as I (X;Y ), which is
the relative entropy of p(x, y) and the distribution product
p(x)p(y), as shown in Eq. (2).

I (X;Y ) =
∑

x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(2)

The mutual information value between the source sample

x
S ′i
m in the i-th source domain after iterationsD′Si, and the target
sample xTn is obtained from Eq. (3).

I (x
S ′i
m ; xTn ) =

∑
x∈x

S′i
m

∑
y∈xTn

p(x, y) log
p(x, y)
p(x)p(y)

(3)

For D′Si and DT , the mutual information value between
the two data distributions is calculated by Eq. (4), which
actually computes the mean of all relevant source and target
samples:

I (D′Si;DT ) = I (x
S ′i
m ; xTn ) (4)

We use mutual information I (D′Si,DT ) to indicate the
weight of one source domain DSi and target domain DT .
Hence, for each source domain DSi, we have weight wi =
I (DSi;DT ). We normalize weight w∗i as follows:

w∗i =
wi∑m
k=1 wk

(5)

where w∗i ∈ [0, 1] and
∑m

i=1 w
∗
i = 1. The target classifier is

treated as a linear combination of the multiple classifiers with
a weightw∗i , and weights for all source classifiers collectively
form a weight vector w∗ =

{
w∗i
}m
i=1. Finally, we utilize

the value of weighted ensemble classifiers from multiple
source domains and obtain an ensemble transfer learning
effect with high performance and robustness. According to
the above description, the function of the final classifier f ∗(x)
is described as follows:

f ∗(x) =
∑m

i=1
w∗i fi(x) (6)

C. AD INITIAL DIAGNOSIS WITH METL
We combine the proposed approach with the traditional med-
ical diagnosis process to achieve practical application value.
The ultimate goal is to help solve medical problems and
facilitate early diagnosis of AD. The METL-based auxiliary
diagnosis system is shown in Fig. 2; the system simulates the
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FIGURE 2. METL-based auxiliary diagnosis system for initial diagnosis
of AD.

traditional diagnosis process. It has four phases: collecting
the new patient’s medical records, data preprocessing, METL
auxiliary diagnosis, and final diagnosis by the doctor.

The first phase is to use medical devices to examine the
new patient, collecting information such asMRI images, PET
images, and clinical data. Then, we generate an inspection
report, present this report to the patient, and upload the data
to doctors’ computers and servers. The second phase is the
preprocessing of the new patient data and source and target
domain datasets that fromADNI, including cleaning, integra-
tion, reduction, transformation, and class balancing. The third
phase aims to generate an METL classification model and
use the model to generate an auxiliary diagnosis; the results
are displayed as either healthy or sick, the latter meaning the
patient is in the MCI stage. In the fourth phase, the doctor
refers to the auxiliary diagnosis result, makes the diagnosis,
and informs the patient.

Different from the traditional diagnosis process, the pro-
posed METL-based auxiliary diagnosis system not only

TABLE 1. Splitting attributes and partitions of the 12 UCI datasets.

reduces human error, but also improves accuracy, enabling
doctors to make accurate judgments as soon as possible.
If patients are found to be in the MCI stage, then the occur-
rence of AD can be prevented or delayed, thereby reducing
the number of AD patients [32].

D. THEORY ANALYSIS
1) PHASE 1 (SINGLE SOURCE TRI-TRANSFER
LEARNING)
Let pSk (x), pSk (y|x), pSk (x, y) denote the marginal, condi-
tional, and joint distribution of the source domains, respec-
tively, and pT (x), pT (y|x), pT (x, y) for those of the target
domain. It is obvious that if the prediction of classifier
f1, f2, f3 for the source sample xSKi is the same, then this
source sample is deemed to have a highly similar distribution
with the target domain and is marked with a high confi-
dence value, and vice versa. Here, we use βi to represent the
transferability of one source sample xSKi , which is defined in
Eq. (7).

βi = exp[αipT (x
Sk
i )] (7)

Here, pT (xSki ) denotes the probability of sample xSKi gen-
erated under the target domain distribution. αi is an indicator
of whether three classifiers have the same predication as
f1(x

Sk
i ) = f2(x

Sk
i ) = f3(x

Sk
i ). If so, αi = 1; otherwise,

αi = −1.
The large distribution difference between the source and

target domains is an important factor of negative transfer.
To eliminate the distribution difference between source and
target domains, we weigh the source sample with its transfer-
ability. p̂Sk (x, y) = βpSk (x, y) is defined as the estimated joint
distribution of the source domain. Based on the Kullback–
Leibler (KL) divergence [33], we define the following
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objective function for minimizing the distribution difference:

KL[pT (x, y)||p̂Sk (x, y)]=
∫∫

D
pT (x, y) log

pT (x, y)
p̂Sk (x, y)

dxdy

=

∫∫
D
pT (x, y) log

pT (x, y)
pSk (x)

dxdy

−

(∫∫
D
pT (x, y) log pSk (y|x)dxdy

+

∫∫
D
pT (x, y) logβdxdy

)
(8)

The objective function contains two terms, and the first
term is fixed when the dataset is known. Hence, to minimize
Eq. (8), we just need to maximize the second part (within
the parentheses). The second term can be maximized by
training a better classifier. Consequently, optimizing Eq. (8)
is equivalent to maximizing the third term, which becomes

max
∑nSk

i=1
logβ ti

=

∑
i∈D+Sk

αipT (x
Sk
i )+

∑
i∈D−Sk

αipT (x
Sk
i )

=

∑
i∈D+Sk

pT (xSki )−
∑

i∈D−Sk
pT (xSki )

= s+i − s
−

i (9)

where D+Sk ∪ D
−

Sk = Dsk , and D
+

Sk ∩ D
−

Sk = ∅. D
+

Sk denotes
the set of examples on which f1(x

Sk
i ) = f2(x

Sk
i ) = f3(x

Sk
i ),

and D−sk denotes the rest of the source examples. Moreover,
s+i =

∑
i∈D+Sk

pT (xSki ), and s−i =
∑

i∈D−Sk
pT (xSki ), which

means that sample xSki ∈ s
+ is helpful for learning the target

task. In contrast, when xSki ∈ s
−, it plays a negative role. Note

that s+i , s
−

i ≥ 0, and we can maximize the function as show
in (9) by selecting better transferability of source samples
xSki ∈ s

+.

2) PHASE 2 (MI-BASED MULTI-SOURCE
ENSEMBLE LEARNING)
In phase 2, we denote f ∗(XT ) and {fi(XT )}mi=1 as the target
labels predicted by the ideal target classifier and the source
classifier, respectively. As mentioned above, the ideal target
classifier can be derived by minimizing the loss function:

L =
∑m

i=1
wid(f ∗(XT ), fi(XT )) (10)

where wi refers to the weight of the source classifier fi(x),
and d is a distance metric approach. A classification func-
tion f (·) can be written as p(y|x) from a probabilistic view-
point. For each source classifier, the predicted labels fi(XT )
are mathematically represented as probability distributions:
pi(xn) =

∑
y pi(y)pi(xn |y ), where pi(y) is the prior probabil-

ity of labels, and pi(xn|y) is the post-probability of instance
xn. Using the KL distance, the loss function L can be further

derived as follows:

L =
∑m

i=1
wmDKL(fi(XT ), f ∗(XT ))

=

∑m

i=1
wi
∑n

j=1
pi(xj) log

pi(xj)
p∗(xj)

=

∑m

i=1
wi
∑n

j=1

∑
y
pi(y)pi(xj|y) log

pi(xj)
p∗(xj)

=

∑m

i=1
wi
∑

y
pi(y) [

∑n

j=1
pi(xj|y) log

pi(xj)
p∗(xj)

]

=

∑m

i=1
wi
∑

y
pi(y)

[
−H (pi(xj|y), pi(xj) )

+H (pi(xj|y), p∗(xj))
]

(11)

where H (X ) = −
∑

n p(xn) log p(xn) is the entropy, which
is an uncertain property. The loss function L can be further
divided into two parts L1 and L2:

L1 =
∑m

i=1
wi
∑

y
pi(y)

[
−H (pi(xj|y), pi(xj))

]
L2 =

∑m

i=1
wi
∑

y
pi(y)

[
H (pi(xj|y), p∗(xj))

]
, (12)

The performance of the ensemble learning approach
depends on the predicted results of both the source classi-
fier and the ensemble classifier. With the decrease of L1,
the source classifier can achieve better performance. The loss
function L1 defined in Eq. (12) refers to the confidence of
the classification results. Since the information entropy is the
confusion property for a system, better classification results
have smaller dissimilarity. For L2 show in Eq. (12), in order
to guarantee the performance of the ensembled classifier,
the member of ensembled classifier should have a higher
accuracy and dissimilarity for the classification task.

IV. EXPERIMENTAL EVALUATION
To validate METL, we conduct extensive evaluations and
experiments via a variety of multi-source transfer tasks.
We first use a standard benchmark dataset to evaluate
the following: (i) the efficacy of individual single-source
tri-transfer learning and multi-source ensemble learning,
(ii) the transferability of our approach, and (iii) the classi-
fication performance of our approach in comparison with
other algorithms. Then, we use the AD dataset from ADNI to
verify the feasibility of our proposed approach. Through these
experiments, we comprehensively evaluate the performance
of METL and the practical application capabilities in AD
diagnosis.

A. BENCHMARK DATASETS
We first conducted experiments on 12 representative medical
datasets from the UCI repository [34]. These 12 datasets,
widely used for comparison between different algorithms,
represent diverse domains and data features and have been
preprocessed.

To form multiple sources for our problem, we divide each
dataset from UCI into four sets, i.e., one target domain and
three source domains. We select a multi-valued attribute and
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TABLE 2. Classification accuracy of different prototypes on the 12 UCI datasets.

use K-means [35] on one attribute to cluster data into four
sets, each set corresponding to one domain. The resultant four
domains have different data distributions. TABLE 1 presents
the attribute that is used to split each dataset and the details
of each domain after splitting.

1) EVALUATION OF THE TWO PHASES
In order to demonstrate the effectiveness of the two phases
of METL, we design two baseline approaches for com-
parison against METL. The first approach (prototype1)

Algorithm 1 METL
Input: Source domain data DSi and target domain dataset
DT with labels yi ∈ Y .
Phase 1:
D1
i ← DSi ∪ DT

for n = 1 to N do
Using three heterogeneous classifiers, f n1i(x), f

n
2i(x) and

f n3i(x), to train on data D
n
i .

initialize Dn+1Si = ∅.
Dn+1Si ← training on all instances in DnSi.
if Dn+1Si = DnSi then
break.
end if
Dn+1i ← Dn+1Si ∪ DT
end for
fi(x)← multi-view-ensemble three classifiers as Eq. (1).
Phase 2:
for i = 1 to m do
fi← phase 1(DSi,DT )
wi←

∑
x∈x

S′i
m

∑
y∈xTn

p(x, y) log p(x,y)
p(x)p(y) as Eq. (3) and (4).

end for
W ∗← {∀i ∈ m| wi∑m

k=1 wk
} as Eq. (5).

f ∗←
∑m

i=1 w
∗
i fi(x) as Eq. (6)

Output: f ∗(x)

uses TrAdaBoost to replace the proposed tri-transfer model,
and the SVM is selected as the basic classifier. The sec-
ond approach (prototype2) replaces the MI-Based ensemble
method with an equal-weighted ensemble method.

Experiments using the three approaches are conducted on
the 12 medical datasets. For comparison purpose, we chose
70% of the labeled examples in the target domain as the
test dataset, and 3%, 10%, and 30% of the remainder as
the training data. The number of source domains is 3. The
experiments are repeated 10 times, and we average the results
to obtain an accurate error estimate.

The experimental results are summarized in TABLE 2.
We can see that METL outperforms the two baseline
approaches in the majority of cases. The results prove that tri-
transfer learning is generally better than TrAdaBoost, and the
MI-based ensemble method generally surpasses the equal-
weighted ensemble method. As the percent of labeled data in
the target domain increases, the accuracy of three approaches
is improved. Furthermore, as indicated by the accuracy on
mammographic_masses and sani datasets, prototype1 out-
performs METL. This is because in the case of 3% and
10% labeled training data in the target domain, only a few
source samples can be obtained; tri-transfer learning may
discard some of the samples are still useful even if they are
not strongly correlated with the target domain. Therefore,
the sampled source data may cause underfitting, and the value
of mutual information is not able to correctly measure the
similarity of data distributions between the source domain
and target domain. When the percent of labeled data in the
target domain reaches 30%, prototype1 and prototype2 are
worse than METL, which means that METL classification
performance is improved when the amount of training data
is sufficient.

2) EVALUATION OF MULTIPLE SOURCES
To verify the transferability of our approach, i.e., that it not
only makes full use of data in the multiple source domains
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TABLE 3. Classification accuracy on the 12 UCI datasets with different number of source domains.

TABLE 4. Main sets of multi-source transfer learning algorithms.

when there is little labeled data in the target domain but
also avoids negative transfer, we conduct evaluations with
multiple sources. We choose 3%, 10%, and 30% of labeled
data in the target domain, with 0, 1, 2, and 3 source domains.
We employ METL with different ratios of labeled data and
different numbers of source domains, and then repeat the
experiments 10 times and average the results.

As shown in TABLE 3, the average classification accuracy
of the case with 3% labeled data and zero source domains
is the worst while the case with 30% labeled data and three
source domains is the best. In general, with the increasement
in the ratio of target labeled data, the accuracy of METL
increases. This means that an increase in the amount labeled
data in the target domain more fully describes the data dis-
tribution, and hence the three heterogeneous classifiers have
better generalization ability to ensure that the examples sam-
pled from source domains have transferability. Furthermore,
the accuracy raises with the increase in the number of source
domains, indicating that METL can use samples from multi-
ple source domains to assist learning the target task.

The experimental results in TABLE 3 show that multi-
source transfer learning outperforms single-source transfer
learning. When the ratio of labeled data is 3%, the growth
rate of the accuracy is the largest, which means that the less
training data in the target domain, the more useful the transfer
knowledge. However, when the ratios of labeled data are
the same, the accuracy growth rate slowly decreases, which
means that when there is enough source data, increasing the
number of source domains will not significantly improve the
performance.

TABLE 5. Accuracy of four transfer algorithms on the 12 UCI datasets.

3) COMPARISON WITH EXISTING APPROACHES
To further demonstrate the performance of METL,
we compare it with three transfer learning algorithms:
MultiSource-TrAdaBoost (MTrA) [13], Multi-Source
Dynamic TrAdaBoost (MSDTrA) [14], and Multi-Source
Tri-Training Transfer Learning (MST3L) [36]. The main
settings of algorithms are shown in TABLE 4.

To seek an accurate error estimate, each algorithm repeats
cross-validation 10 times, and the mean is taken as the final
result. As indicated by the average classification accuracy
in TABLE 5, when the ratio of labeled data is 10%, METL
is superior to MTrA, MSDTrA, and MST3L; moreover,
MTrA performs the worst. Three heterogeneous classifiers
learn the same target task from different views, with strong
generalization ability. Furthermore, METL reasonably esti-
mates the correlation between each source and target domain
by employing mutual information. MTrA and MSDTrA are
both based on TrAdaBoost, but MSDTrA surpasses MTrA
since MSDTrA joins dynamic factor improves the problem
that the weight entropy caused by source weight convergence
is transferred from the source sample to the target sample.
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TABLE 6. DOMAIN partitions of the dataset.

B. ALZHEIMER’s DISEASE DATASET
To further validate the feasibility of the proposed approach,
we conduct extensive experiments on real-world AD medical
dataset. More than 30 million people worldwide suffer from
AD, and with the increase in life expectancy, patients are
expected to triple by 2050. Medicine has shown that during
MCI, timely detection and effective measures can prevent the
disease fromworsening. Therefore, the early diagnosis of AD
is very important, and determining the patient’s stage in the
disease has become the focus of current research.

ADNI provides researchers with research data as theywork
to determine the progression of AD. The data collection is
divided into four phases: ADNI1, ADNI-GO, ADNI2, and
ADNI3; ADNI3 is the latest stage.We used theADdiagnostic
summary dataset obtained from ADNI, which includes the
time phase, ID, multiple attributes of the inspection item,
and diagnostic results labels. Attributes of the inspection
item are DXCURREN, DXCONV, DXCONTYP, DXREV,
DXNORM, DXMCI, DXMDES etc. We used data from the
ADNI3 stage, including label 1 or 2, and then employed data
preprocessing and SMOTE techniques [37] to balance the
number of classes so that the training data in the AD dataset
was easy to learn. The partitions of the AD dataset are shown
in TABLE 6.

On the AD dataset, METL was compared with the three
aforementioned algorithms. The main settings of the four
algorithms are the same as those listed in TABLE 4. The ratios
of labeled data in the target domain are selected as 3%, 10%,
and 30%. The four algorithms are repeat cross-validation
10 times, and the experimental results are averaged.

In Fig. 3, the x axis is the accuracy and the y axis is
the ratio of the labeled data in the target domain. As indi-
cated by the overall classification accuracy in Fig. 3, METL
and MST3L are better than MSDTrA, but MTrA is worse
than MSDTrA. When the ratio of labeled data in the target
domain is 3%, METL and MST3L significantly outperform
MTrA and MSDTrA, which demonstrates that METL has
better transferability when there is very little training data in
the target domain. MTrA and MSDTrA have similar accu-
racies when the ratio of labeled data in the target domain
reaches 30%, which means that MTrA and MSDTrA have
similar performance when the training data in the target
domain is sufficient.

Moreover, Fig. 3 shows that METL has good feasibility
in the initial diagnosis of AD and can help solve practical
problems. As the ratio of labeled data in the target domain
increase, the accuracies of the four algorithms will increase.
However, the growth rate of accuracy from 3% to 10% of the
ratio of labeled data in the target domain is higher than that

FIGURE 3. Classification accuracy of four algorithms on the AD dataset.

from 10% to 30%. This means that the less labeled data there
is in the target domain, the more useful the transfer learning.

V. DISCUSSION
As demonstrated in the reported experiments, our approach
obtains a high-quality transfer performance. Based on the
mathematical analysis and overall observation of the experi-
mental results, we summarize the advantages of our approach
as follows.

First, we proposed a single-source tri-transfer learning
model that has been proved mathematically feasible in
Sect III.D, and we tested it on a variety of datasets. The exper-
imental results as shown in TABLE 2, TABLE 3, TABLE 5,
and Fig. 3. The tri-transfer learning not only ensures that
the sampled source data has better transferability compared
to general transfer learning algorithms but also enhances
robustness. Second, the MI-based ensemble method was ini-
tially proved feasible via a mathematical derivation and then
demonstrated effectiveness of the method through experi-
ments. Finally, experimental results show that our approach
can assist initial diagnosis of AD.

Liu et al. [38] designed an ensemble transfer learning
framework that uses a weighted resampling method on the
source and target data. However, the framework is used for a
single source domain, and their base learners are trained by
the resampling method and TrAdaBoost. In contrast, METL
learns three classifiers via the sampling scheme to ensure
that the transferability of sampled source data. Therefore, our
approach improves not only the interaction between multiple
learners but also the reliability of source data.

Although the experimental results demonstrate that our
approach achieves a certain level of superiority on a variety
of datasets, there are some issues that could directly affect
its practical application. Like all existing transfer algorithms,
our approach may incur poor performance when the target
examples are very few. Furthermore, while our approach
chose Softmax, the SVM, and the DNN as the base learners,
selecting appropriate classifiers for datasets with different
data characteristics remains worthy of further research.More-
over, obtaining the shared feature space between the source

1400310 VOLUME 8, 2020



Y. Yang et al.: Multi-Source Transfer Learning via Ensemble Approach for Initial Diagnosis of AD

and target domains will be a direction for our future work
because of heterogeneous data in medical field.

The rapid aging of the population and the high incidence
of chronic diseases, especially AD, are increasingly serious
social problems worldwide. Through our approach, we can
slow down and interfere with the clinical conversion of MCI
or normal control to AD, thereby providing faster and safer
monitoring and treatment for dementia care.

VI. CONCLUSION
In this paper, we propose a multi-source ensemble transfer
learning approach, referred to as METL, to learn an accu-
rate and robust classifier for the target domain. In METL,
the source data sampling method ensures the transferability
of samples, which are sampled from the source domain. Then,
three heterogeneous classifiers are ensembled to obtain a
robust classifier. Finally, multiple classifiers are combined to
further improve the performance by utilizing mutual infor-
mation and ensemble learning. Many experiments show that
METL is accurate, effective, and robust. At the same time,
METL surpasses the existing algorithms when the target
training data is insufficient. AD dataset experiments prove
that our approach can effectively improve the classification
accuracy, solve two problems in medical datasets, and assist
doctors in making a diagnosis. We propose an METL-based
auxiliary diagnosis system for initial diagnosis of AD. This
system helps doctors accurately identify patients in the MCI
stage as soon as possible so that measures are taken to prevent
or delay the occurrence of AD.
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