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ABSTRACT The clinical assessment technology such as remote monitoring of rehabilitation progress for
lower limb related ailments rely on the automatic evaluation of movement performed along with an estimation
of joint angle information. In this paper, we introduce a transfer-learning based Long-term Recurrent
Convolution Network (LRCN) named as ‘MyoNet’ for the classification of lower limb movements, along
with the prediction of the corresponding knee joint angle. The model consists of three blocks- (i) feature
extractor block, (ii) joint angle prediction block, and (iii) movement classification block. Initially, themodel is
end-to-end trained for knee joint angle prediction followed by transferring the knowledge of a trained model
to the movement classification through transfer-learning approach making a memory and computationally
efficient design. The proposed MyoNet was evaluated on publicly available University of California (UC)
Irvine machine learning repository dataset of the lower limb for 11 healthy subjects and 11 subjects with knee
pathology for three movements type-walking, standing with knee flexion movements and sitting with knee
extension movements. The average mean absolute error (MAE) resulted in the prediction of joint angle for
healthy subjects and subjects with knee pathology are 8.1 % and 9.2 % respectively. Subsequently, an average
classification accuracy of 98.1 % and 92.4 % were achieved for healthy subjects and subjects with knee
pathology, respectively. Interestingly, the significance of this study in itself is promising with substantial
improvement in the performance compared to state-of-the-art methodologies. The clinical significance of
such surface electromyography signals (sEMG) basedmovement recognition and prediction of corresponding
joint angle system could be beneficial for remote monitoring of rehabilitation progress by the physiotherapist
using wearables.

INDEX TERMS sEMG, movement classification, joint angle prediction, signal processing, LSTM, CNN,
transfer learning.

I. INTRODUCTION
NEE injuries due to sports or accidents like anterior cruciate
ligaments (ACL) injury, meniscus injury, and sciatic nerve
injury, and knee osteoarthritis are the most common causes
of disability to the person of any age globally [1]–[4]. The
assistive technology including monitoring the rehabilitation
progress has significant potential in improving the quality

of life of such differently-abled persons [4]–[8]. For diag-
nosing neuromuscular and skeletal disorder, the diagnostic
devices use gait analysis for classification and assessment of
lower limb motion [9]. After diagnosing, patients required
therapeutic exercises for the purpose of rehabilitation in train-
ing the muscles associated with activity of daily life (ADL)
prescribed by the physiotherapist [6], [7], [10]. However,
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traditional clinical rehabilitation techniques require exten-
sive gait laboratory setting which is a long, inconve-
nient, expensive and sometimes unavailable in remote
areas [9], [11], [12]. These limitations necessitate a remote
monitoring of the rehabilitation progress using wearables,
which not only control the assistive devices such as exoskele-
ton but can also provide the recovery feedback to the user as
well as give assistance to the clinicians in the assessment and
treatment of the patients [6], [8], [11], [12].

The remote monitoring of rehabilitation progress espe-
cially for lower-limb related ailments, needs more effi-
cient and intelligent framework to decode user’s intention
along with joint information in performing particular move-
ment [8], [13]. The working principle for such framework
includes two important tasks, viz. (i) decoding user inten-
tion and (ii) prediction of joint angle information. The first
task is ‘decoding user intention’, which is usually accom-
plished by applying pattern recognition techniques on sur-
face electromyography signals (sEMG) captured from user’s
muscles for inferring the intent of performing desired move-
ments [14]–[16]. However, since the lower limb muscles are
present deep beneath the skin with significant overlap among
them, therefore the classification of sEMG signals from such
muscles is more challenging when compared to the upper
limb muscles [14]. Due to this very reason, many researchers
have introduced a combination of classical signal processing
and pattern recognition techniques in the classification of
lower limb movements from sEMG signals. Naik et al. [14]
applied independent component analysis via entropy bound
minimization (ICA-EBM) with linear discriminant analysis
(LDA) classifier for recognizing of lower limb movements of
persons with and without knee pathology. Varol et al. [13]
proposed a multiclass real-time intent recognition based on
sEMG signals approach for powered lower limb prosthesis.
In another study, Joshi et al. [17] used Bayesian information
criterion and linear discriminant analysis for classification of
different gait phases of the lower limb.

On the other hand, the second task of remote monitoring
system for rehabilitation, as mentioned above is ‘prediction
of joint angle information’ that can provide accurate assistive
torque to the user [6]. In this context, Kianifar et al. [2] used
inertial sensor for estimation of joint angle for automatic
assessment of dynamic knee valgus and risk of knee injury
during the single leg squat. Zhang et al. [8] introduced an
autoregressive integrated (ARI) model to predict time series
knee joint angle for network based rehabilitation system.
Chen et al. [18] proposed artificial neural network for esti-
mation of knee joint angle using EMG signals and functional
electrical stimulation (FES) parameters such positive pulse
amplitude, positive pulse width and negative pulse width.
Lui et al. [19] used time-domain features from sEMG for the
prediction of knee joint angle based on generalized regression
neural network. Recently, Huang et al. [20] used recurrent
neural network for prediction of real-time intended knee joint
motion from combination of sEMG and inertial data.

Based on the aforementioned observations, it can be noted
that the state-of-the-art methodologies used a combination
of sEMG signal with inertial sensor data and goniometers
for joint angle prediction [2], [6], [18]–[20], whereas for
movement classification only sEMG signal is being pre-
ferred. Therefore, to eliminate the additional computational
cost incurred by other signals processing in predicting joint
angle, in this study, we focused on executing the movement
classification and joint angle prediction on a single unified
platform using sEMG signal only, removing the need of
inertial sensor data and goniometer data. Additionally, the
state-of-the-art methodologies for sEMG based lower limb
movement classification as well as joint angle prediction, suf-
fer from accuracy issues due to handcrafted feature selection
and extraction before classifying the intendedmovements and
predicting the joint angle. Furthermore, the feature selection
and extraction put a significant amount of time due to the
human intervention and exertions in finding suitable features,
whereas feature extraction increases computational time and
complexity. Thus optimal, accurate, and fast feature selection
as well as extraction for classification of movement and esti-
mation of joint angle are still considered to be a challenging
task for the envisaged remote monitoring of rehabilitation
progress device using wearables.

Therefore, motivated by aforementioned arguments and
observations, in this paper, we propose a transfer-learning
based deep learning framework ‘MyoNet’ on a single unified
platform for accurate classification of lower limb move-
ments along with the prediction of corresponding knee joint
angle from four channel sEMG recordings. The proposed
framework is designed by utilizing the Long-term Recurrent
Convolution Network (LRCN), exploiting the data-driven
feature engineering property and precluding handcrafted fea-
ture extraction and selection procedure [11], [12], [21]–[23].
Further, the LRCN delivers end to-end learning from the raw
data in data-driven fashion, which enables high level features
extraction, helping in understanding, determining and distin-
guishing the hidden information from the data regarding their
clinical patterns due to its hierarchical structure. Thereby,
it eliminates the need of domain expertise thus, improves
performance. Further, Transfer-Learning is applied to make
a memory and a computationally efficient design. This is
done by transferring the knowledge of a model trained for
prediction of joint angle to the model of classification of
movements. The novelty of this work lies in developing an
accurate, hybrid deep learning model having the capability
to recognize the lower-limb movements, and predict joint
angle information of the performed limb movement which is
essential especially for remote monitoring of rehabilitation
progress where expert clinicians and physiotherapist are
not present. The proposed MyoNet was successfully eval-
uated on the publicly available UC Irvine Machine Learn-
ing Repository dataset, comprising of 11 healthy subjects
and 11 subjects with knee injuries for three movement classes
i.e., walking, sitting, and standing [24]. We achieved an
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FIGURE 1. Transfer-learning based proposed LRCN architecture of DNN.

average accuracy of 98.1 % and 92.4 % for classifying the
limb movements of healthy and knee-pathology subjects
along with their joint angle having 8.1 % and 9.2 % mean
absolute error, respectively. The successful classification of
lower limb movement along with the prediction of joint angle
information demonstrates the usefulness of LRCN model
in accessing the rehabilitation conditions particularly for
subjects with knee pathologywhere joint angle information in
very important in evaluating the overall conditions in remote
monitoring settings.

The remainder of the paper is structured as follows-
Section II provides motivational background and method for
data acquisition system, Section III discuss the proposed
MyoNet framework along with training and evaluation pro-
cedure, Section IV presents the results and discussion and
Section V concludes the paper.

II. MOTIVATIONAL BACKGROUND AND METHOD
A. LONG-TERM RECURRENT CONVOLUTIONAL
NETWORK (LRCN)
The proposed transfer-learning based LRCN architecture of
deep neural network (DNN), shown in Fig. 1 consists of
Convolutional Neural Network (CNN) for feature extraction
from input data followed by LSTM with a dense layer for
joint angle prediction and another dense layer with softmax
loss function at the output for interpreting the features across
time step for classification. For movement’s classification,
transfer-learning technique is applied wherein learned knowl-
edge of sEMG data during the angle prediction is directly
transferred to the dense layer of movement classification.
Thus, eliminates the need of extracting the sEMG features
which already being learned during the angle prediction task.
Thereby, it provides saving in the computational cost and time
along with the memory requirement, owing to the fact that it
shares the knowledge of angle prediction tasks.

The CNN extracts the discriminant features in a
data-driven fashion from raw input data while training.
The CNNs are described by a set of convolutional filters
(consists of weights which slides over input) gives outputs
feature maps, followed by the activation function, pooling

layer, and fully connected layer which realizes the classifica-
tion [25]. Whereas, LSTM units are a type of recurrent neural
network (RNN) [26] which enables long-range learning. Typ-
ically, LSTM units contain a hidden state activated with non-
linear function, which uses a learned gating function to allow
that state to propagate without modification, be updated, or be
reset. Recently, LSTMs have achieved impressive results in
biomedical applications [21], speech recognition [27], and
language translation [28], [29] and computer-vision appli-
cations [30]. In a recent study, Biswas et al. [21] proposed
a CorNET network for PPG based heart rate estimation
and biometric identification. Motivated by the progress and
achievement of LRCN models, in this paper our attempt is
to propose an LCRN architecture based on sEMG signal for
classification of lower limb movements along with prediction
of their knee joint angle.

B. METHOD FOR DATA ACQUISITION SYSTEM
In this study, 4 channels sEMG and 1 channel goniometer
data were considered from lower limb of 22 male partici-
pants older than 18 year of age, publicly available at UC
Irvine Machine Learning Repository [24]. The participants
are 11 healthy and 11 with knee pathology (i.e. six with
anterior cruciate ligaments (ACL) injury, four with meniscus
injury, and one has sciatic nerve injury). For sEMG and knee
joint angle data collection, Datalog MWX8 by Biometrics
Ltd. and SG150B goniometer is used.

The four channels sEMG electrodes were placed 20 mm
apart with a high input impedance greater than 10 M ohm
to allow sampling without conducting gel. The sampling
frequency for data collection is 1000Hzwith 14 bit resolution
and data samples were bandpass filtered in frequency range
between 20 Hz to 460 Hz. The four channels of sEMG
electrodes were placed on the surface of muscles which are
(i) vastus medialis (vm), (ii) semitendinosus (st), (iii) biceps
femoris (bf), and (iv) rectus femoris (rf) and the goniometer
was kept to the external side of knee joint. The left leg and
affected limb of the individuals were selected for the normal
subjects and subjects with knee pathology respectively.

The sEMG data and knee joint angle were recorded for
three physical activities of the lower limb such as walking
on level ground (gait), sitting with knee extension move-
ments and standing with knee flexion movements respec-
tively. These three movements were chosen because they do
not require extra weights, dumbbell and fitness equipment in
doing activity of daily life (ADL) and rehabilitation process.
It can be noted that the dataset does not include the sEMG and
knee joint angle data corresponding to the transition phase i.e.
sitting to standing and walking to sitting etc.

III. PROPOSED MyoNet MODEL
The proposedMyoNetmodel is designed for the classification
of three lower limb movements along with the prediction
of corresponding knee joint angle, which includes walking,
sitting with knee extension movement, and standing with
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FIGURE 2. Workflow of the proposed MyoNet framework.

knee flexion movement. Fig. 2 shows the workflow of the
proposedMyoNetmodel comprising of preprocessing, model
development and training-testing steps.

A. PREPROCESSING
The preprocessing step consists of data segmentation, data
augmentation, 3-fold training and test set partition along with
annotation with ground truth, and data normalization to zero
mean and unit variance. All the four channels of sEMG data
were considered for input to design the customized deep
learning model based on the literature. The four channel input
sEMG data are then sectioned into 256 ms window with
64 ms overlap similar to the study reported by Naik et al. [14]
to ensure the delay is within the tolerable limit i.e. 300 ms
window so that natural dexterity can be achieved in real-
time [31], [32]. Further, it can be noted that the performance
of the model increases with increase in window length as
reported in [32].

Since deep learning algorithms demand a huge amount
of data for training and testing the model for better gener-
alization capability and performance analysis in real-time.
However, collecting repetitive activity data for long-duration
from individuals with knee pathologies is challenging. There-
fore, data augmentation is a favored technique in the field of
deep learning for building a robust and generalized solution
for small datasets [33]. The recent study [34], revealed the
importance of data augmentation wherein virtual data were
generated by mixing Gaussian noise on sEMG data which
shown increase in the performance of deep learning model.
The performance increment is achieved due to inclusion of
those data samples in training which may occur in real-time.
Thus, in this study Gaussian noise is added to the segmented
raw sEMG data, which generate diverse possible variations
in the input data resulting in 10x larger dataset size. Equa-
tion (1) expresses the data augmentation technique adopted
from [11], where Dv is virtual data, Do is the original input
data and wgn is a weighting parameter generating an m-by-n
matrix of white Gaussian noise samples and p is the power.
The power p of the white Gaussian noise is chosen such
that the signal to noise ratio of the augmented data equals to
25 based on the study conducted by [34].

Dv = Do + wgn(m, n, p) (1)

Based on the previous study by [14] on the same dataset,
we have employed a similar approach for partitioning the
data into a training set and test set for a fair comparison.
The approach used is a simple holdout method, i.e. k-fold
cross-validation strategy for k equal to three in the vision
of improving the consistency for the prediction and classi-
fication results. Thus, the datasets are arbitrarily divided into
k subsets, and the method is repeated for k times resulting
k-folds. In every fold, one of the k subsets is considered as test
dataset, while the k-1 subset is treated as the training dataset.
The mean absolute error and mean classification accuracy
across all the k-folds is reported in the results. Furthermore,
sEMG data is normalized to zero mean and unit variance
based on training dataset for faster conversion of gradient
descent and prevention of overfitting problem [35].

B. NETWORK ARCHITECTURE OF THE PROPOSED MyoNet
Fig. 3 represents the network architecture of the proposed
MyoNet model which comprises of feature extractor, joint
angle predictor, and movement classification blocks. For
input, all the four channels of sEMG were considered in this
study, therefore, the first stage consists of four convolutional
layers, working in parallel with Relu activation function fol-
lowed by max-pooling and dropout layers to extract all the
features simultaneously from four channels. Further, all the
obtained feature-maps are concatenated before inputting to
the second stage. The second stage consists of only one
convolutional layer with Relu activation function followed
by max-pooling and dropout layer. Then, the output of the
feature extractor block is fed concurrently to both joint angle
predictor block and movement classification block for further
processing. The joint angle predictor block is having two lay-
ers of LSTMunits with linear activation function in series fol-
lowed by a dense layer for the prediction of knee joint angle
based on features extracted from sEMG signals. Likewise,
the classification block consists of flatten layer followed by
dense layer with softmax loss function, which helps in the
classification of movements based on the extracted features.

The key factor which affects the performance of the
DNN model is the selection of the optimally tune hyper-
parameters. These parameters can be categorized into two
types such as architectural and training parameters. For the
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FIGURE 3. Network architecture of proposed MyoNet model.

selection of architectural parameters, we have considered the
number of layers, number of filters/kernels in each layer,
size of each filter, stride rate and pooling size. While, for
training parameters we include learning rate, type of back
propagation algorithm, activation function, loss function,
dropout and number of epochs, etc. The proposed MyoNet
model utilizes 20 filters of size 11×1, stride rate of 1,
and 4×1 max-pooling in all the convolutional in the fea-
ture extractor block. For joint angle predictor block, a size
of 32 and 64 memory units were used for first and second
LSTM layer respectively along with 16640 neurons in the
dense layer linked to 256 outputs. Whereas, in movement
classification block, 963 neurons linked to three outputs in the
dense layer were used. For model training, batch size of 25,
70 epochs, dropout with 50 % probability level, and Adam
optimizer with default learning rate of 0.001 were set. These
architectural details of MyoNet is provided in Table 1. The
obtained hyper-parameters were optimized using heuristic
grid search, which yielded superior performance compared
to state-of-the-art methodologies.

C. PROCESSING OF PREDICTED JOINT ANGLE FROM
EMPIRICAL ITERATIVE ALGORITHM
The prediction of knee joint angle from sEMG signals cap-
tured from lower limb muscles is challenging because the
former signals are complex in nature and associated with

TABLE 1. MyoNet model parameters detail.

FIGURE 4. Comparison of actual, predicted and EIA processed joint angle
with noise.

crosstalk issue due to physiology of the related and other
muscles placements. Thus, in our attempt from sEMG to
knee joint angle prediction by exploiting the data-driven deep
learning approach using CNN and LSTM showed interesting
results as depicted in Fig. 4. However, it can be noticed from
Fig. 4 that the proposedmodel is able to accurately predict the
trend of increasing or decreasing joint angle but with some
embedded unwanted noise which is due the deviation of pre-
dicted joint angle from the actual joint angle. Thus, to remove
the unwanted noise, we have used our previously published
work i.e. a data-driven iterative low pass filtering ‘Empirical
Iterative algorithm’ (EIA) [36], inspired by Empirical Mode
Decomposition (EMD) [37] to smoothen the predicted knee
joint angle. The working principle of EIA is to get the trend
of a signal by finding mid-point of consecutive local maxima
and minima and vice versa, followed by interpolating those
mid-points iteratively by cubic spline in a data-driven fashion.
For more details about EIA the readers are requested to go
through [36]. Moreover, for the ease of understanding the
pseudocode of the EIA is given in Table 2. The number of
iterations is fixed to 2 based on visual inspection on the
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TABLE 2. Empirical iterative algorithm.

full set of data from all the healthy and subjects with knee
pathology.

D. TRAINING
MyoNet was trained and tested on Keras 2.2.0 environment
configured to use Tensorflow 1.9.0 as backend engine on a 64
bit Ubuntu operating system on Lenovo ThinkStation with an
Intel Xeon CPU E5-2650 v2 processor@ 2.6 GHz and 32 GB
RAM.

Initially, model is trained for joint angle prediction and
later, transfer learning methodology was employed to use the
existing features and parameters of feature extractor block for
classification of three movements. Thus, enabling sharing of
same weights and parameters of feature extractor block for
both the classification and prediction provides a cost effective
solution for implementation of inference phase.

E. PERFORMANCE EVALUATION
The performance of the proposedMyoNet model for predict-
ing the knee joint angle and classification of movements was
measured by different statistical parameters which include
mean absolute error, and accuracy, precision, recall, F1-score,
confusion matrix respectively. The aforementioned statistical
metrics can be expressed by following equations:

Absolute Error = AJ − PJ (2)

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1score = 2×
Precision× Recall
Precision+ Recall

(5)

Accuracy =
TP+ TN

TP+ FP+ FN + TN
× 100 (6)

where AJ, PJ, TP, TN, FP, and FN represent the actual joint
angle, predicted joint angle, true positive, true negative, false
positive, and false negative outcomes of the MyoNet model
respectively.

TABLE 3. Performace evaluation of the proposed MyoNet for knee joint
angle prediction.

TABLE 4. Overall MyoNet model performance for healthy and subjects
with knee pathology.

IV. RESULT AND DISCUSSION
A. PREDICTION OF KNEE JOINT
ANGLE FROM SEMG SIGNAL
Table 3 depicts the performance analysis of MyoNet for
prediction of knee-joint-angle. The evaluation is performed
using averaged mean absolute error and standard devia-
tion for all the healthy and knee pathology subjects respec-
tively, considering 3 folds validation scheme. The average
MAE ± SDAE for all 11 healthy subjects and 11 subjects
with knee pathology are 8.1 ± 1.2 and 9.2 ± 1.5 respec-
tively. Fig. 5 shows the comparison plots of actual knee joint
angle, predicted joint angle and EIA processed joint angle
for healthy subjects 3 and 7, and subject with knee pathol-
ogy 1 and 8 respectively. The zoomed portion of actual joint
angle, predicted joint angle and EIA processed joint angle are
also shown in Fig.5 which are depicted in blue, green and
red color respectively. Fig. 5(a), (b), (c) and (d) validate the
performance in pictorial form for proposedMyoNetmodel in
predicting the knee joint angle.

Further, the correlation coefficient of actual joint angle
and EIA processed joint angle is estimated which is shown
in Fig 5. The correlation coefficient of 0.9971, 0.9946 is
obtained for 3rd and 7th healthy subject and 0.9965, 0.9991 for
1st and 8th subjects with knee pathology respectively.

B. CLASSIFICATION OF THREE LOWER LIMB
MOVEMENTS FROM SEMG SIGNAL
The performance of the proposed MyoNet model for clas-
sification of the lower limb movements is discussed in this
subsection. The MyoNet model performance has been quan-
tified and consolidated for all the subjects in Table 4 based
on the metrics defined from equations (3) to (5). An average
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FIGURE 5. Comparison plots of the actual joint angle, predicted joint angle and EIA processed joint angle for four subjects (a) Healthy subject 3,
(b) Healthy subject 7, (c) Subject with knee pathology 1, and (d) Subject with knee pathology 8.

TABLE 5. Subject-wise classification accuracy in percentage for healthy subjects for walking, standing with knee flexion movements and sitting with knee
extension movements.

precision, recall and F1-score of 98.8, 97.6, and 98.2 is
achieved for all the healthy subjects for movement classifica-
tion, respectively. Whereas, an average precision, recall and
F1-score of 93.4, 92.6, and 92.9 is achieved for subjects with
knee pathology, respectively.

Automatically, the classification accuracy in percentage of
the proposedMyoNetmodel will reveal whether the recorded
sEMG signal corresponds to either walking, sitting with
knee extension movements or standing with knee flexion
movements. Further, we have also listed the subject wise
classification accuracy for all the healthy and subjects with
knee pathology in Tables 5 and 6 respectively. A compari-
son of average classification accuracy of proposed MyoNet
with [14] and [15] for walking, standing, and sitting for all

FIGURE 6. Comparison of proposed MyoNet with ICA-EBM [14] and
NA-MEMD [15] for average classification accuracies of walking, standing
and sitting for all the healthy subjects.

the healthy subjects is illustrated in Fig. 6. The proposed
MyoNet model achieved an average classification accuracy
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TABLE 6. Subject-wise classification accuracy in percentage for subjects with knee pathology for walking, standing with knee flexion movements and
sitting with knee extension movements.

TABLE 7. Confusion matrix for myonet model for classification results in
percentage for healthy subjects.

TABLE 8. Confusion matrix for myonet model for classification results in
percentage for subjects with knee pathology.

of 98.2 ± 1.6, 97.7 ± 1.3, and 98.4 ± 1.4 for healthy
subjects for walking, standing and sitting respectively. While
for subjects with knee pathology, the average classification
accuracy of 92.8 ± 1.7, 92.3± 1.2, and 98.4± 1.4 is achieved
for walking, standing, and sitting respectively. Furthermore,
the validation of the proposed MyoNet model for accurate
classification of all the test samples of healthy and sub-
jects with knee pathology for the known classes- walking,
standing with knee flexion movements and sitting with knee
extension movements are briefly presented in the mean con-
fusionmatrix given in Tables 7 and 8 along with a comparison
with ICA-EBM [14] state-of-the-art method.

The diagonal bolded element of the confusion matrix rep-
resents the success of the MyoNet model and state-of-the-art
ICA-EBM method [14] in accurately classifying the move-
ments among the known classes while the other elements
represent the failure in classifying. Thus, the comparison
with [14] and analysis of other parameters such as preci-
sion, recall, F1-score and confusion matrix including the
classification accuracy shows the statistical significance of
the proposed Myo-Net model.

C. DISCUSSION
The lower limb movements including walking, sitting and
standing are more likely to be affected in persons suffer-
ing from knee related disorders such as knee osteoarthritis,
ACL and meniscus injury, restricting them in performing
ADL [4]. A recent study showed that sEMG signals captured
from the active muscles like quadriceps and hamstring [38]
while performing movements, helps the clinician in diagno-
sis [14], providing assistance in rehabilitation [6] and evalua-
tion of progress in physiotherapy sessions for network based
rehabilitation approach [8].

Hence, in viewpoint for remote monitoring of rehabili-
tation progress, the system demands an efficient, accurate,
intelligent and opportune framework, which accurately clas-
sify the sEMG signal among the known classes along with
the prediction of corresponding knee joint angle information.
As detailed in the introductory section, the classification of
sEMG signal captured from lower limb muscles suffers from
poor accuracy because of complex behavior and cross talk
due to overlapping of multiple muscles active at that moment.
Many approaches have been listed in the state-of-the-art
technologies, among them finding a suitable feature from
sEMG signal recording is a common task, which puts extra
efforts and induce a delay in assessment. Also, for joint
angle prediction sEMG signal were combined with inertial
sensor data and FES or goniometers, which put significant
amount of battery load in processing and transmitting extra
inertial and goniometers data. Further, two different method-
ologies for movement recognition and joint angle predic-
tion respectively, could prevent generalization of model and
may possibly require more energy and processing power
for its real-time implementation on wearable devices for
envisaged remote monitoring of rehabilitation progress. The
deep learning methods emerged as a key factor especially
for biomedical applications in providing the accurate per-
formance by carrying out the data-driven feature extraction,
obviating the feature selection/extraction steps. Furthermore,
the transfer-learning approach helps in the generalization of
the model in a single unified platform by utilizing knowledge
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TABLE 9. Comparision of average classification accuracy with
state-of-the-art methodologies.

of the model trained for joint angle prediction to the classifi-
cation of movements.

For comparison with the state-of-the-art methodologies,
a comparative analysis of the proposed MyoNet model for
movement classification with existing study by [4] and
[14-16] is detailed in Table 9 that has used the same
dataset included in our study. However, comparison for
knee joint angle prediction with the existing study can-
not be done because they have used their own data-set
for evaluation. The recent study by Naik et al.[14], pro-
cessed the raw sEMG signal with ICA-EBM techniques
and then extracted the 7 time-domain features for classi-
fication of lower limb movements by LDA classifier. The
comparison of person-wise classification accuracy achieved
by [14] and proposed MyoNet model for three lower limb
movements for healthy and subjects with knee pathology
are detailed in Table 5 and Table 6, respectively. Another
study by Herrera-Gonzalez et al. [4], derived time-frequency
and wavelet transform features from sEMG and goniometric
signals and utilized multilayer perceptron artificial neural
network for the classification of three lower limbmovements.
Zhang et al. [15], considered the decomposed intrinsic mode
functions (IMFs) extracted from the raw sEMG signal as
features by using EMD, multivariate EMD (MEMD), and
noise assisted MEMD (NA-MEMD) for the classification
of lower limb movement. However, they had restricted their
evaluation to only healthy subjects data, which is detailed
in Table 5 for subject-wise comparative analysis. While
another study by Ertugrul et al. [16], introduced an approach
using adaptive local binary patterns (aLBP) for feature extrac-
tion from local changes of sEMG signals for binary clas-
sification of three lower limb movements. For comparison
with state-of-the-art techniques, the average classification
accuracy of healthy subjects and subjects with knee pathol-
ogy is considered and reported in Table 9. The comparison
shows the proposed MyoNet model outperformed [4], [14],
[15] and [16], by 3.9 %, 4.1 %, 13.6 % and 10.2 %.
Furthermore, the proposed MyoNet model does not involve

human intervention in feature selection and extraction unlike
the existing methods [4], [14]–[16], while the features are
extracted automatically through end-to-end learning from the
raw sEMG signals in data-driven fashion. Thus, facilitates
high level feature extraction which helps in understanding,
determining and distinguishing the hidden information from
the sEMG signal regarding their clinical patterns. Thus,
it eliminates the need of domain expertise, unlike the state-
of-the-art techniques. As a result, enabling a cost-effective
solution with enhanced accuracy.

This work is a step towards developing an IoT based solu-
tion to assist persons suffering from knee related disorders
such as knee osteoarthritis, ACL, sciatic nerve injury and
meniscus injury in tracking their rehabilitation progress in
ambulatory settings by physiotherapist. Further, prediction
of joint angle along with movement information can be
beneficial for the safety of the rehabilitated subject, which
can provide insight if patient is entering into the danger
zone and can be informed by sending a vital message.
Thus, proposed methodology is helpful in providing proac-
tive assistance to the user and could protect patient from
falling and other injuries. In the view of effectiveness of the
proposed methodology into remote monitoring of rehabili-
tation process, we envisaged to develop a wearable device
having embedded sEMG electrode integrated with MyoNet
for proactive decision making and assessment to offer an
energy efficient solution by eliminating the energy incurred
in data transfer. This output information can be sent to the
server accessible by the physiotherapist and patient’s smart-
phone to interpret the progress remotely. In this study we
aimed at detection of lower limb movements along with
prediction of corresponding joint angle to track the progress
of rehabilitation as a case study. Further, the proposed
myoelectric based movement recognition and prediction of
corresponding joint angle framework can be suitable for
other applications such as prosthetic and exoskeleton control
mechanism to assist individuals with amputated limb and
paralysis.

V. CONCLUSION
A transfer-learning based LRCN deep learning framework
named as MyoNet is proposed in view of lower limb move-
ment recognition along with prediction of corresponding
knee joint angle from sEMG signal recording for remote
monitoring rehabilitation progress. The framework is tested
on sEMG signal recording from 11 healthy subjects and
11 subjects with knee pathology. This framework precluded
handcrafted feature engineering process and enhanced per-
formance by 3.9 %, 4.1 %, 13.6 % and 10.2 % with respect
to state-of-the-art methodologies [4], [14], [15] and [16]
respectively. The proposedMyoNetmodel was designed con-
sidering computational-efficiency and robust architecture by
exploiting transfer-learning approach. The MyoNet architec-
ture is first of kind where from same sEMG input both
classification of movement and prediction of corresponding
knee joint angle is done.
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In future work we intend to develop a low complex hard-
ware accelerator for the proposed framework for its real-time
execution on resource constraint platform.
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