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ABSTRACT In classical approaches for an artificial pancreas, continuous glucose monitoring (CGM) is the
only measured variable used for insulin dosing and additional control functions. The CGM values are subject
to time delays and slow dynamics between blood and the sensing location. These time lags compromise the
controller’s performance in maintaining (near to) normal glucose levels. Meal information could enhance the
control outcome. However, meal announcement by the user is not reliable, and it takes 30min to 40min from
meal onset until a meal is detected by methods based on CGM. In this pilot study, the use of bowel sounds
for meal detection was investigated. In particular, we focused on whether bowel sounds change qualitatively
during or shortly after meal ingestion. After fasting for at least 4 h, 11 healthy volunteers ingested a lunch
meal at their usual time. Abdominal sound was recorded by a condenser microphone that was attached to the
right upper quadrant of the abdomen by medical tape. Features that describe the power distribution over the
frequency spectrum were extracted and used for classification by support vector machines. These classifiers
were trained in a leave-one-out cross-validation scheme. Meals could be detected on average 10min (std:
4.4min) after they had started. Half of these were detected without false alarms. This shows that abdominal
sound monitoring could provide an early meal detection. Further studies should investigate this possibility
on a larger population in more general settings.

INDEX TERMS Abdominal sound, artificial pancreas, bowel sounds, meal detection, pattern recognition.

I. INTRODUCTION
A. MEAL DETECTION IN AN ARTIFICIAL PANCREAS
The pancreas produces insufficient insulin in diabetes melli-
tus type 1 (DM1). Persons suffering fromDM1 are dependent
on exogenous insulin to regulate the blood glucose level
(BGL). Themanual insulin therapy is a time-consuming daily
task that often dominates the life of affected people. To reduce
this burden, worldwide research efforts focus on the devel-
opment of a so-called artificial pancreas, a fully automated
system that controls the BGL [1]. The most advanced sys-
tems rely on continuous glucose monitoring (CGM) by
sensors that are placed in the subcutaneous (SC) tissue.
Based on the CGM value (along with static parameters
such as body weight, insulin-to-carbohydrate ratio, insulin

sensitivity, active insulin time and glucose target range), algo-
rithms decide on the amount of insulin that will be injected
into the SC tissue. The slow glucose kinetics and slow insulin
absorption in the SC tissue limit the glucoregulatory out-
comes of these SC systems by limiting the bandwidth of
the closed loop and thereby causing e.g. larger postprandial
glucose excursions. [2].

To reduce the postprandial BGLwhile avoiding episodes of
serious hypoglycemia, meal announcements are required by
clinically tested systems for glucose control [2]. Such require-
ments do not disengage the user from the mental occupation
with the disease. A more aggressively tuned controller may
be able to mitigate increased BGL after meals by administer-
ing insulin more liberally. This in turn increases the risk of
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postprandial hypoglycemia, which single-hormone systems
have no way of mitigating effectively, potentially resulting
in a dangerous situation. For a successful mitigation of post-
prandial hyperglycemia, insulin should be administered as
soon as possible. Automated detection of meals has therefore
been studied, which could trigger an increased insulin admin-
istration. Approaches for automated meal detection proposed
so far exploit the CGM data of SC sensors, e.g. [3], [4].
The delay between meal start and reliable meal detection
can easily reach 40min [5]–[7] although our recent studies
show that it may be possible to reduce this detection time
significantly [8], [9]. The fusion of measurements from two
redundant SC sensors was proposed to enhance the relia-
bility [10], but alternative sensing modalities have not been
exploited.

This paper investigates the use of audible signals from
the gastrointestinal tract for automated meal detection.
To the knowledge of the authors, Al Mamun and McFarlane
(2016) [11] were the first to suggest the integration of record-
ings of abdominal sounds into an artificial pancreas. They
developed a portable bowel-sound detector system.

The aim of this work is to study whether abdominal sounds
are changing significantly enough during and shortly after
meal intake to allow a reasonably early detection for use in
an artificial pancreas.

II. BACKGROUND
A. CHARACTERISTICS OF BOWEL SOUNDS
Bowel sounds are non-stationary, transient events. They can
be differentiated into two main types: (a) clicks of short
duration occurring alone or in sequences, (b) clusters of
(non-differentiable) bursts of longer duration, e.g. [12]. The
typical frequency range of bowel sounds lies between 50Hz
and 1500Hz [13]–[15]. Single studies report maximum fre-
quencies of up to 3000Hz [16] or 5000Hz [17]. However,
the power spectrum density above 1500Hz is rather low (see
fig. 5 in [16]). A more recent study confirmed that only 0.5%
of the signal’s power spectrum density occurs at frequencies
above 1000Hz [18]. The same study revealed that the largest
part of the power spectrum density of abdominal sounds is
located between 100Hz and 500Hz [18], while a minimum
frequency of 80Hz has been chosen by others before [14].

B. MEASURES OF BOWEL ACTIVITY
Early studies report the number of bowel sounds per
time unit, the duration of bowel sounds and duration of
silence to describe the bowel activity [16], [19], [20].
Hansen and Haslinger (1984) [21] analyzed the signal power
in different frequency bands. More recent studies combine
features based on both occurrence rate of bowel sounds and
their frequency distribution in the analysis of abdominal
sound [18], [22].

C. PRE- VS. POSTPRANDIAL SOUNDS
Abdominal sound has been studied with focus on the extrac-
tion of stationary sound patterns to diagnose gastric disorders.

The dynamics of bowel sounds have received less attention.
Previous studies that compared pre- and postprandial sounds
did not cover the actual period of the meal intake but rather
paused the recording (or at least did not report results for the
prandial period) [17]–[19], [23]–[26]. Other studies mention
the analysis of pre- and postprandial recordings, but do not
report the timing relative to the meal onset [16], [24].

III. EXPERIMENTAL SET-UP
A. RECORDING
A Sennheiser MKE2 P-C condenser microphone (Sennheiser
Electronic GmbH & Co. KG, Wedemark, Germany) was
fixed in the chest-piece of a classical stethoscope, as shown
in Fig. 1. Single-channel 24-bit audio signals with a sam-
pling frequency of 32 000Hz were recorded using a the dig-
ital audio recorder 722 (Sound Devices LLC, Reedsburg,
Wisconsin, US). The data was analyzed on a personal
computer using MATLAB and Signal Processing Toolbox
Release 2016b (TheMathWorks, Inc., Natick,Massachusetts,
United States).

FIGURE 1. Chestpiece from a stethoscope with microphone in the center
hole.

B. PRE-PROCESSING
Before further processing, the raw signals were down-
sampled to a frequency of 4000Hz using the Chebyshev
Type I IIR filter of order 8 as anti-aliasing filter. This accel-
erates processing without loss of information since the maxi-
mum frequency of bowel sounds is not higher than 2000Hz.

The amplification of the signals varies between the dif-
ferent recordings. For meal detection, we are interested in
detecting a characteristic change within the signals. To be
able to combine recordings with different amplification for
training and tuning, each recording was linearly mapped to
the range [−1, 1]. By this normalization, the relative change
within the signals is considered, rather than their absolute
amplitudes. All reports of signal power in the following thus
relates to the normalized signals.

C. DATA SETS
1) TRAINING SET
The idea of using bowel sounds for early meal detection
was initially investigated on one subject. This volunteer was
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neither diagnosed with nor had self-reported gastrointesti-
nal disorders. In 17 of the in total 18 available recordings,
the subject sat reclined on a chair, whereas the subject was
lying during the remaining recording. Recordings with less
than 15min of fasting state prior to the lunch were excluded.
In total, 10 lunch meals of this subject were included in
the training set. Each lunch consisted of wheat-ray bread
with cheese. Breakfast (müsli, fruits, dairy) had been finished
4.5 h to 5 h before the lunch started. The recorder’s amplifi-
cation was tuned from one recording to the other in order to
find a suitable amplification that would be high enough to
grasp sounds of low power in rather silent periods, and low
enough to not saturate when loud bowel sounds would occur
later on. Adjusting the amplification at the beginning of the
recording was rather challenging, because recordings usually
started without significant bowel sounds, while louder sounds
occurred later. The amplification was not adjusted during
recordings as the sound power envelope was expected to
contain useful information. The microphone was fixed in the
upper right quadrant of the abdomen in all but two recordings.
In those two recordings, the lower right quadrant was used.
After fixation of the microphone by medical tape, the micro-
phone was covered by clothes. This was done to increase
the comfort of the subject during the more than one-hour
recordings.

FIGURE 2. Spectrogram of a recording in the training set. Windows with a
length of 20 s and overlap of 10 s were analyzed using spectrogram
function in MATLAB. The meal started at minute 51.

Figure 2 provides the spectrogram of one recording in the
training set that shows the frequency distribution over time.
It was created by plotting the short-time Fourier transform
of windows that had a length of 20 s and were overlapping
by 10 s. This example illustrates that the initial recordings on
one subject suggested that the gastrointestinal sound activ-
ity increased in the early digesting phase compared to the
fasting.

The aim of the present study is to investigate whether the
described differences can be utilized to detect meals early
enough to be beneficial in an artificial pancreas.

2) TEST SET
Based on the initial one-subject study, the experimental pro-
cedure for the pilot study was refined: the amplification was
chosen rather low to avoid saturation; a seated but reclined

posture rather than lying flat was adopted for maximum
comfort of the participants.

Ten volunteers were enrolled in the pilot study, which was
approved by the Regional Ethical Committee Central, REK
Midt 2018/28. All subjects were self-reported healthy with
respect to gastrointestinal functions.

Subjects were asked to keep their regular life style at the
days prior to the recording. This included the timing, amount
and composition of meals, as well as type and intensity
of physical activities. On the day of recording, they had
breakfast as usual and then fasted until lunch. The recording
sessions were scheduled at the typical lunch time of each sub-
ject to match the individual alimentary habits. Furthermore,
subjects brought their own usual lunchmeal. Themicrophone
was fixed in the upper right quadrant of the abdomen using
medical tape. This quadrant was chosen to maximally capture
sounds originating from the region where the stomach ends in
the duodenum.

FIGURE 3. Protocol of recording sessions in pilot study.

Figure 3 depicts the protocol of a session: The recording
started in fasting state. After 30min, the subjects started to
eat and used maximum 15min to finish their meal. The meal
was followed by an at least 45min long digesting period. The
recording ended after 90min in total.

During the recording, the subjects remained reclined with
the instruction to move as little as possible. The food was
positioned in an easily reachable distance from the subject.
‘‘Unforeseen events’’ such as heavy movements while chang-
ing the posture, coughing, nose-clearing, or exogenous distur-
bances from the surroundings were logged by the subjects,
who were also asked not to use electronic devices that could
interfere with the recording device. Periods where subjects
reported ‘‘unforeseen events’’ such as heavymovements were
discarded.

IV. METHODS
The training and testing procedure is illustrated in Fig. 4. The
proposed meal detection is based on the binary classification
of a feature matrix. This feature matrix must be constructed
before the classification can take place. The transforma-
tion from the recorded audio signals into feature matrix
and response vector is described in Sections IV-A and IV-B.
Sections IV-C and IV-D deal with the training and test-
ing, respectively. When evaluating the performance, one
must differentiate between classification and meal detec-
tion. Section IV-E defines the performance measures that are
applied during training and testing.
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FIGURE 4. Procedure for training (Section IV-C) resulting in the final
classifier that is tested on the test set (Section IV-D). The term ‘‘LOOCV’’
indicates leave-one-out cross-validation. The generated output of each
step that is used in the following is defined between the downward
pointing arrows. Classifier validation is always evaluated based on the
meal detection performance.

A. SEGMENTATION AND FEATURE EXTRACTION
The original signal was segmented before features were
extracted for each segment. Segments of length 10 s, 20 s,
30 s and 60 s were implemented as Table 1 shows. Successive
segments were overlapping by half of their length.

TABLE 1. Parameter variations in feature matrix X and response vector Y .
Response delay and response duration are illustrated in Fig. 5.

Features were chosen based on the spectral analysis in
Section III-C. They are listed in Table 2. The spectral analysis

TABLE 2. Extracted features in each segment.

indicated that the power distribution over the frequency
range changes shortly after a meal intake starts. In partic-
ular, the power below 1000Hz is increasing. Frequencies
above 1000Hz were included because one could visually
differentiate between noise and increased sonic bowel activity
based on the power distribution: Noise occurred often over
the whole frequency range, while bowel sounds caused a
power increase mainly up to 1000Hz. If a silent period is
followed by bowel sounds, one would thus expect an increase
of power below 1000Hz. Typical noise, on the other hand,
would cause an increased power level including the frequency
range between 1000Hz and 2000Hz. Bands of 100Hz width
between 0Hz and 2000Hz were therefore considered. For
each segment s, an estimate of the power spectral density
P̂s(f ) dependent on the frequency f in this segment xs was
generated:

P̂s(f ) =
1t
N

∣∣∣N−1∑
n=0

xs,ne−i2π fn
∣∣∣2 (1)

with 1t the sampling interval, N the number of samples
in segment s, for −1/21t < f ≤ 1/21t . This estimate
was then integrated to compute both the total power and the
power in specific frequency intervals. For each time segment,
the power fraction within each frequency interval was gen-
erated by division of the power in the particular frequency
interval by the total power.

B. FEATURE MATRIX AND RESPONSE VECTOR
All features were collected in the feature matrix X :

X =


f1(1) f2(1) · · · fN (1)
f1(2) f2(2) · · · fN (2)
...

...
. . .

...

f1(K ) f2(K ) · · · fN (K )

 (2)

with feature fn(k), n = 1, . . . ,N , in segment k = 1, . . . ,K .
One row represents all N features in one segment, while
the vertical dimension represents time. Its extent depends
on the length of the recordings. Each feature column n
was processed by a median filter with 2min width to mit-
igate occasional outliers. This smoothing was introduced
because in particular the shorter segments were subject to
single outlying peaks, and we were interested in the aver-
age increasing power. The median-filtered features were
linearly scaled to the range [0, 1] [27] for each feature
individually.
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Closely related to the feature matrix is the response vector.
Each row in X (Eq. 2) was assigned to either the class ‘‘1’’
or the class ‘‘0.’’ This assignment is defined in the response
vector Y :

Y = [0, . . . , 0, 1, . . . , 1, 0, . . . , 0]T , (3)

FIGURE 5. Definition of the parameters response delay and response
duration relative to the meal start. Instances with values of ‘‘1’’ and ‘‘0’’
in vector Y (Eq. 3).

with the class ‘‘1’’ as meal indicator and ‘‘0’’ as default.
The class ‘‘1’’ does not necessarily coincide with the period
in which the subject actually ate nor does its onset always
coincide with the meal start. It rather defines the instances
that are set to 1 in the response vector. Figure 5 provides
an illustration of the class assignment in the response vec-
tor Y relative to the meal start. The response delay was
introduced to consider the possibly delayed onset of audible
bowel activity after the meal start. The response duration
was varied to find the interval length best suited for early
meal detection. The implemented values of response delay
and response duration are summarized in Table 1.
Feature matrices and response vectors were constructed

with all combinations of the three parameters in Table 1. The
term ‘‘parameter combination’’ in the following refers to any
of these 144 parameter combinations.

When several recordings were used for training, their fea-
tures were linearly scaled for each recording separately to
consider the individual differences in general power. The
scaled features were vertically stacked in X . This extends the
time dimension while the number of features stays the same.
The response vector Y was extended in the same way.

C. TRAINING
The goal of the training procedure is a final classifier that is
thereafter tested on an unknown data set. Figure 4 illustrates
that the training is composed of three steps. During these three
steps, the training set is used which consists of 10 meals from
the same subject (Section III-C.1). The output of each step
builds the basis of the next step and is indicated between the
downward pointing arrows.

Step 1: In the first step, features were selected before a
support vector machine (SVM) classifier1 was trained and
validated. This was repeated for each of the 144 parameter
combinations in Table 1. The motivation for this supervised
learning strategy was that different features may be rele-
vant depending on the definition of ‘‘1’’ in the response
vector Y (see Fig. 5). Consequently, we applied leave-one-
out cross-validation (LOOCV) throughout the whole training
procedure [28] in step 1. For each parameter combination
in Table 1, a LOOCV with 10 iterations was performed
where each of the 10 meals was used for validation once.
To ensure that the trained classifier was not biased towards
the validation meal, it was left out during feature selection
and classifier training. Each of the LOOCV iterations in step 1
included the following:
1a. The features of 9 training meals were composed in the

feature matrix X .
1b. The feature matrix was input to a feature selec-

tion by filtering: The correlation between each fea-
ture and the meal response vector was calculated and
checked against a threshold of 10%, which is com-
putationally efficient and yields a conservative result
(c.f. Section VI). Features whose correlation did not
exceed this threshold were discarded.

1c. The remaining features in X together with the response
vector Y were then used to train SVM classifiers with
radial basis function. A grid with 2[−10,−5,0,5,10] for
both the box constraint and the kernel scale was used
to perform tuning by grid search. One SVM model
was built for each grid point. The classifier tuning that
resulted in the lowest mean squared error between the
classifier output and the response vector of the valida-
tion meal was chosen.

1d. Whereas the sample classification was used to tune the
classifier in 3., themeal detection of the validationmeal
was compared to eventually choose the classifiers.

The results of training step 1 illustrated the general fea-
sibility (see Section V). Those features and parameter com-
binations that resulted in the highest number of TP detected
validation meals were chosen and forwarded to step 2. The
feature sets chosen for the same parameter combination in
the different LOOCV iterations differed slightly. In order to
conclude with a single classifier for each parameter combina-
tion, the feature sets chosen for each parameter combination
in step 1 were combined in step 2.

Step 2: One SVM model was built for each of the most
promising parameter combinations. The following LOOCV
procedure was applied in training step 2 to find the final
tuning for each chosen parameter combination:

2a. The feature matrix X was composed of the features of
9 training meals.

1Support vector machines are classifiers that can be applied for overlap-
ping classes with non-linear decision boundaries. A more detailed descrip-
tion of support vector machines is beyond the scope and thus omitted here.
See for example [28] for an in-depth introduction.
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2b. Feature selection was omitted. Instead, all features
were included that had been selected for this parameter
combination during one of the LOOCV iterations in
training step 1.

2c. An SVM model with radial basis function was built
based on the selected features and the response vector.
The same grid search as before was applied to tune the
SVM classifier.

2d. The classifiers were applied to classify the validation
meal resulting in a classification error for each LOOCV
iteration.

The classification errors of the 10 LOOCV iterations were
averaged for each chosen parameter combination and tuning.
The tuning with the lowest average error was selected for the
specific parameter combination.

Step 3: In training step 3, the classifiers with the tuning
chosen in step 2 were trained once more on the whole training
set of 10 meals to include as much variability as possible.

D. TESTING
The final classifiers built in Section IV-C were tested on 10
meals, each of a different subject (Section III-C.2). This test
set had not been used in any of the training steps. The results
of meal detection for the test set is reported in Section V-D.

E. PERFORMANCE MEASURES
a: PERFORMANCE OF CLASSIFICATION
The classification can be evaluated based on the sample
prediction error. The sample prediction error is the fraction
of misclassified observations in the training, validation or test
set, respectively.

In meal detection for fully automated glucose control in
DM1, the outcome of a false classification is asymmetric:
When ameal is not detected it has no consequences other than
that the postprandial period will be poorly regulated by the
nominal control system. A false meal detection, on the other
hand, could trigger a fatal insulin injection and cause hypo-
glycemia. This calls for an analysis that explicitly accounts
not only for true positive detections (i.e. detected actual
meals), but also false positives (i.e. detection of a meal where
no meal takes place). Based on the elements of the confusion
matrix (true positive (TP), false negative (FN), false positive
(FP), and true negative (TN), cf. Table 3), the true positive
rate (TPR) and the false positive rate (FPR) are determined
as follows:

TPR =
TP

TP+ FN
, (4)

TABLE 3. Illustration of results in binary classification.

and:

FPR =
FP

FP+ TN
. (5)

TPR and FPR can be used to generate a so-called Receiver-
Operator Characteristic (ROC) plot as in Figs. 7 and 8, which
is a common way to evaluate classification results. In this
graph, the main diagonal represents mere chance (akin to a
coin toss), while a perfect binary classifier is represented by
the upper left corner (i.e. TPR = 1, FPR = 0). Consequently,
the further above and to the left of the diagonal a given system
is placed, the better it performs.

b: PERFORMANCE OF MEAL DETECTION
For meal detection in the context of an artificial pancreas,
it is not critically important whether each sample is classified
correctly. As soon as a meal is detected, this information will
be processed by a superior control layer that decides about
an insulin dosing. Instead of a performance measure based
on samples, we therefore introduce a meal-based measure:
A TP meal detection occurs if two successive samples within
30min after the meal start are assigned to the class ‘‘1.’’ This
TP meal duration does not coincide with the eating period
but considers that the audible bowel activity may increase
delayed to the start of food intake.

A FN meal detection is accordingly counted if no two
successive class ‘‘1’’ samples occur within the 30min
period.

All samples classified as ‘‘1’’ outside of the positive meal
period could be defined as FP detection. However, once a
meal started, the remaining part in the data set belongs to
the digestion. Furthermore, a repeated meal detection within
the digestive period is no drawback but rather a confirmation
of the previous meal detection. Supervisory control decisions
(that are out of the scope of this pilot study) could be based
on enhanced certainty about the meal. No FP is therefore
assigned for detection after the meal start. Prior to the meal,
false detections can occur. Again, only if two consecutive
samples indicate a false detection, it is counted as such in this
study. These definitions of TP and FP are introduced to assess
the performance of meal detection in the present data set.
A supervisory controller in a real implementation, however,
does not know whether a detection is TP or FP and trigger the
same control actions.

An evaluation of TNmeal detections along these lines does
not add value to the analysis and is therefore omitted.

Besides the sensitivity towards meals, the time delay
between meal start and detection is important when this
information shall be used in an artificial pancreas. The time
of meal detection is reported relative to the meal start (marked
by the dashed bar with circle in Fig. 5) when the person
started eating. The response delay in Fig. 5 is introduced for
training purposes to consider the possibly delayed onset of
bowel sounds. However, the timing of the response vector in
the training set does not influence the reported time of meal
detection.
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V. RESULTS
A. FEATURE SELECTION
The feature selection is performed for each of the parameter
combinations in Table 1 in training step 1. Figure 6 presents
the selection rate per feature. The most frequently selected
features are: Power in the ranges 1800Hz–2000Hz (fea-
tures 20 and 21) and roughly 0Hz–700Hz (features 3–7 and
22–28), as well as the total power (feature 1). It indicates that
these frequency bands of the recorded sound contain the most
important information with regards to early meal detection.

FIGURE 6. Selection rate of features by filtering in training step 1.
The fraction relates to the runs where at least one feature is selected.
Features are numbered according to Table 2.

B. PARAMETER SELECTION
This paragraph relates to Step 1 of Figure 4. The selected
features are used in each LOOCV run to train and vali-
date an SVM model. This is repeated for each parameter
combination. Figure 7 is an ROC plot (cf. Section IV-E.a)
of the classified samples in the training meals in training
step 1. Different marker properties describe the parameter
combination: The shape indicates the response duration in the
response vector Y ; the color indicates the response delay in
Y relative to the meal start; unfilled and filled markers, and
markers surrounded by a circle or triangle indicate the length
of the segments. Each parameter combination is represented
by one marker that summarizes the results of 10 LOOCV
runs by averaging. The achieved maximum TPR is 0.7 for
a response duration of 20min, a response delay of 0min
and a segment length of 10 s (black, filled, not surrounded
circle). Most parameter combinations result in TPRs of less
than 0.5. At the same time, the FPR is comparatively low
with a maximum of 0.023. This demonstrates that abdominal
sounds contribute with substantial information about meal
intake.

The training set is, however, not suited to evaluate the
performance of the classifier. Instead, Fig. 8 shows the

FIGURE 7. Sample classification of the training meals in training step 1
(Section IV-C). True positive rate vs. false positive rate. One marker
represents the average of all 10 LOOCV runs with the same parameter
combination. The overall performance is illustrated while the exact
distribution of the data points is not important. The parameter
combinations with the best classification performance are magnified part
in the upper right corner.

FIGURE 8. Sample classification of the validation meals in training step 1
(Section IV-C). True positive rate vs. false positive rate. One marker
represents the average of all 10 LOOCV runs with the same parameter
combination. The overall performance is illustrated while the exact
distribution of the data points is not important.

TPR vs. FPR averaged over all meals that are left out for
validation. As expected, the classification of the validation
sets results in fewer TP samples and more FP samples. The
TPR is less than 0.5 for any of the parameter combinations
while the maximum FPR increases to 0.08, which still con-
firms substantial information about meal intake. All markers
are still located on the left side of the identity function’s
graph (the dashed diagonal line in the figure), i.e. more
samples are classified TP than FP when validating the trained
classifiers.
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C. MEAL DETECTION IN TRAINING SET
The classification of samples is used to detect meals accord-
ing to the criteria in Section IV-E. At best, themeal is detected
within 30min without prior false detection. The number of
classifier validations in training step 1 with this ideal outcome
(TP = 1, FP = 0) is shown in Fig. 9. The maximum number
is 144 because each of the meals in the training set is once
left out in the 10 LOOCV runs for each of the 144 parameter
combinations. For each left-out validation set, at least 32
parameter combinations and tunings of the trained classifiers
existed that led to successful meal detection. 80 runs with
validation meal No. 8 had one TP and no FP.

FIGURE 9. Number of runs per validation meal in training step 1
(Section IV-C) that resulted in meal detection without false alarm
(TP = 1, FP = 0).

Figure 10 compares the number of TPs and FPs per param-
eter combination in training step 1. The colored bars turned
upwards indicate the number of true positives; the black bars
turned downwards indicate the number of false negatives.
According to the definitions in Section IV-E, the maximum
of both is 10. The three shortest response durations (1min,
2min and 5min – dark blue, red, yellow) are not or only
rarely presented in Fig. 10. In most runs with a response
duration of 1min or 2min, no feature is selected such that
no classifier could be trained and no meal detected. Despite
a successful feature selection, a response duration of 5min
resulted in poor classification performance. Even a response
duration of 10min appears to be too short with the current set-
up. A response duration of 20min shows the best result with
up to 9 TP meals and only 2 false alarms. This is achieved
with both a segment length of 30 s and a response delay of
10min. The second best performance with 9 TPs and 4 false
alarms is achieved with segments of 10 s and 20 s length, and
a response delayed by 10min in Y .

In the context of an AP, it is important how long after
the actual start of food intake the detection occurs. The time
of detection is defined as the second TP sample. Table 4
presents the time of meal detection in minutes from the meal

TABLE 4. Detection time of the validation meals used to validate the
classifiers in training step 1 (Section IV-C). Mean and standard deviation
of meal detection after meal start for runs with a response duration of
20min and a response delay of 10min (cf. Fig. 5).

start for chosen parameter combinations. Runs with the same
parameter combinations are averaged in this table, excluding
runs where the meal is not detected. With segment lengths of
10 s, it took on average less than 10min to detect the meals,
and around 1min to 1.5min more with segment lengths of
20 s, 30 s and 60 s. While shorter segments yield faster meal
detection, we expect longer segments to produce classifica-
tion results with a higher likelihood of being correct. How-
ever, even a delay of 11min is significantly smaller than what
is exhibited by comparable meal detection methods. The vari-
ation between the validation meals is visually illustrated by
the boxplots in Fig. 11. If a validation meal is detected, it is so
within 1min to 20min, which is well within the performance
range of contemporary meal detection methods. The wider
distributed detection times with the 10 s-segment cf. Fig. 11
indicate that this segment length might be less suited than for
example the 60 s-segments with the narrowest distribution.
However, given the limited size of our dataset, this result can
hardly be stated with any statistical significance.

Based on these results of training step 1, the parameter
combinations of the final SVM models are chosen: for all
segment lengths, a response delay of 10min and a response
duration of 20min in the response vector. Classifiers with
these parameter combinations are tuned in a LOOCV scheme
in step 2, before the final classifiers are built in training step 3.

D. MEAL DETECTION IN TEST SET
The four final classifiers are tested on the previously unused
test set which contains one meal from ten different subjects.
The results of meal detection are presented in Fig. 12. None of
the test meals are detected using a segment length of 10 s. The
set-up with 20 s-segments results in 6 detected meals while
2 false alarms occur. For the 30 s and 60 s-segments, 8 meals
are detected along with 6 false alarms. Considering only meal
detections without false alarm (TP = 1, FP = 0), a segment
length of 20 s is most successful in this set-up.

For simplicity, in the following paragraph the meal of each
test subject is referred to as a ‘‘test meal,’’ although strictly
speaking the subject is the variable. The number of successful
detection varies between the test meals.Confusing terminol-
ogy. Calling it test meal sounds like the meal is the variable.
Either this terminology should be formally introduced prior
to use, or a different terminology should be used. While test
meal 2 is successfully detected with three final classifiers,
test meals 7 and 9 are not detected with any set-up. If test
meal 1 is detected, it causes each time also a false alarm. The
variation within the test set is illustrated in Fig. 13. The curves
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FIGURE 10. Meal detection of the sets used to validate the classifiers in training step 1 (Section IV-C). Number of true positive and false positive meal
detections for different parameter combinations.

FIGURE 11. Detection time of the validation meals used to validate the
classifiers in training step 1 (Section IV-C). Boxplots of meal detection in
minutes after meal start for runs with a response duration of 20 min and
a response delay of 10 min. The stars indicate the time of detection for
the single validation meals. The red line is the median detection time.
Mean values are given in Table 4.

show the linearly scaled feature 8 (power in frequency band
from 300Hz to 350Hz) for test meals 2 and 7. The power in
this frequency band increases abruptly 8min after test meal

FIGURE 12. Meal detection of the test set (Section IV-D) with the four
final classifiers. True positive and false positive meal detection for each
test meal.

2 started. Instead of such a significant change shortly after the
meal start, the recording of test meal 7 includes two periods of
increased power: one before the meal, the other starting about
30min after themeal. Three other test meals are followed by a
clear increase in relevant frequency bands similar to test meal
2. The pattern of test meal 7 occurs less distinct in three other
recordings, but with a shorter first period that is not as often
erroneously detected as meal. The recording of test meal 1
contains almost no variation. Test meal 9 is contaminated by
significant background noise that masks the changes caused
by bowel activity.
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Neglecting test meals 1, 7 and 9, the classification of the
remaining test meals with a 20 s-segment length results in 5 of
7 TPmeal detections without false alarm. The average time of
detection for these meals is 8.4min with a standard deviation
of 5.6min.

VI. DISCUSSION AND FUTURE WORK
The present pilot study demonstrates that abdominal sound
recordings can potentially be used for meal detection in
an artificial pancreas. Lunch meals were investigated in 11
healthy subjects. A larger population should be studied to
confirm the generality of the findings. Eventually, people
with DM1 should be enrolled because they may suffer from
gastrointestinal disorders as a consequence of the primary
disease. The system needs to work for them, since they are
the target users of an artificial pancreas.

low yield, poor result The findings of this study are promis-
ing: With the best combination of parameters (response dura-
tion, response delay and segment length, cf. Fig. 5), it took on
average only 8.4min (std: 5.6min) from the onset of the meal
to its detection (cf. last paragraph of Section V-D). By com-
parison, meals have previously been detected based on CGM
data from the SC tissue within 30min to 40min after meal
onset [5]–[7]. Postprandial insulin delivery after 10min, com-
pared to 30min to 40min, would markedly reduce glucose
elevations without increasing the risk of late postprandial
hypoglycemia. The average diurnal glucose control would
also be improved.

As this is a feasibility study, the conclusion will be qual-
itative, not quantitative. A true positive rate of 0.4–0.5 and
a false positive rate of up to 0.08 may be unacceptable in a
practical AP system, since a false prediction and a following
insulin bolus may cause serious hypoglycemia. Nevertheless,
the study demonstrates that abdominal sounds contribute with
substantial information about meal intake earlier than indi-
cated in previous studies. This bears promise that sound anal-
ysis, possibly combined with other complementary sensor
modalities, can constitute an important part of a future system
for early meal detection. Such a system may be exploited e.g.
for closed-loop control or as a ‘‘meal reminder’’ for patients
who commonly forget meal boluses.

The number and the rate of occurrence of bowel sounds
have previously been linked to the state of digestion [18]. The
spectrograms in Fig. 2 indicate differences in gastrointesti-
nal sound activity between the preprandial and early post-
prandial period. Based on this observation, the total power
and the power fraction in different frequency intervals were
extracted as features. However, the power estimates are inde-
pendent of the presence of bowel sounds in the segments.
An increased sound power around meal time may partly
even be caused by meal-related activities (such as mov-
ing arms and hands, scratching cutlery, etc.). Typical arti-
facts cause a different power distribution over the frequency
range than bowel sounds which can be exploited to elimi-
nate artifacts [18], [29]. Motivated by this, power ratios were
included as features in this study. Furthermore, those sounds

are related to eating, and as such they could be regarded as
valid indicators of food intake. However, the recordings were
performed in an environment with relatively few potential
noise sources. The task of detecting changes in audible bowel
activity will be more challenging in free-living situations.
For this reason, the present results should be regarded as an
indication of feasibility and by no means as quantitatively
conclusive.

The general audible bowel activity differed between the
recorded meals in the training set. In some recordings one
can clearly hear bowel sounds from the beginning, while in
others they are less prominent or even absent. The reasons for
this difference can be two-fold: First, the number and duration
of bowel sounds may differ markedly between recording
sessions in the same subject as well as between different
subjects. This is likely because of natural physiological vari-
ations. Second, the recording condition differed in terms of
amplification due to the recorder-internal amplifying factors,
the contact pressure between skin and microphone, the exact
posture of the subject, etc. This was accounted for by linear
scaling of the features for each recording separately by which
the relative change of power is considered rather than the
absolute.

FIGURE 13. Example of variation between subjects in test set. Feature 8,
power in frequency band from 300 to 350 Hz, for a segment length
of 20 s. The meal starts at minute 30.

As shown in Fig. 13, the variation between the subjects in
the test set was quite high. The meal detection worked better
for those with a clear audible change of bowel activity. Some
of the less profound variations could be caused by posture
adjustments which resulted in periods with more or less tight
contact between microphone and skin. Such artifacts could
also be the reason for two distinct periods with increased
power that were observed in some recordings before and
after the meal. One recording suffered from significant back-
ground noise that should be prevented by suitable shielding
and grounding.
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All selective decisions were made based on the perfor-
mance of meal detection, except for the correlation-based
feature selection method (c.f. Section IV-C, Step 1b). The
latter method is a computationally cheap alternative to
classical greedy/wrapper algorithms. To the degree that
this method is suboptimal, it yields a conservative result
with respect to overall system performance, and there-
fore does not jeopardize our qualitative conclusion with
respect to the feasibility of sound based meal detection.
Greedy feature selection methods such as forward selection
and backward elimination should be considered in future
work.

In future work, long-term recordings covering several
meals and digestive states should be analyzed to validate gen-
eral patterns that are correlated with the meal onset indepen-
dent of the time of the day. Further states in the digestive cycle
could potentially be defined as classes and contribute to detect
meals with higher certainty. An extended feature space should
be explored that could, for example, include the number and
statistics of bowel sounds. Moreover, the type of ingested
meals was not reported in this study. A first step would be
to analyze whether one can differentiate between solid and
liquid meals. Moreover, it should be investigated whether
abdominal sound features can be identified that correlate with
the ratio of carbohydrates, proteins and fats in the meal. The
correlation of sound features with the increase of glucose con-
centration should be investigated. Such a correlation could be
used to determine the insulin dose, either alone or in combi-
nation with meal size estimation based on continuous glucose
monitoring [7].

A microphone would be a cheap and easily achievable
add-on to an artificial pancreas. Relevant sounds for meal
detection are chewing [30], swallowing [31] and bowel
sounds [21]. Chewing and swallowing are obvious and early
signs of ingestion. However, an (either subcutaneous or
intraperitoneal) artificial pancreas will likely be located at
the abdomen due to glucose sensing and insulin infusion.
Monitoring bowel sounds has, therefore, the big advantage
that the whole system can be more compact which will mini-
mize the discomfort for the user. Thus, if future improvement
of the presented method yields higher sensitivity and speci-
ficity, many patients will likely accept such a non-invasive
feature that automatically detects meals in less than 15min
and improves the glucose regulation.Yes, but a better detec-
tion rate is required. The best suited abdominal position
of the microphone with respect to high sensitivity towards
an early and precise meal detection should be explored
in future studies. Typical noise and artifacts occurring at
the different locations and methods to filter contaminated
sound should also be considered and further investigated.
Furthermore, privacy concerns must be adequately addressed
before a microphone can be included. Online sound pro-
cessing can be performed on typical hand-held devices,
while the classifier trainingmay require higher computational
power. The classifier model can be updated occasionally on a
more powerful device using data that was collected before.

To minimize the required storage capability, representative
data sets can be stored in cloud-based solutions for
this.

This pilot study showed that meals could potentially be
detected based on bowel sounds. It is too early to conclude
whether abdominal sound monitoring can be used as the only
feature for meal detection, or rather as an add-on of meal
detection based on CGM data. An increase of bowel sounds
could, for example, confirm that a rising glucose concen-
tration is caused by a meal. The design of a supervisory
controller that fuses the information of sound and continuous
glucose monitoring to detect meals and to determine insulin
doses has not been part of this pilot study but is left for future
work.

VII. CONCLUSION
This feasibility study investigated the use of abdominal
sound recordings for meal detection. An increased audi-
ble power occurs in the early postprandial period. This
was exploited to train a classifier to recognize the diges-
tion of a meal using features based on the power distribu-
tion in different frequency ranges. The experimental method
of this study achieved a true positive rate with respect to
meal detection of up to 0.5, which is not impressively
high. However, false positive rates were consistently signif-
icantly lower, which indicates that abdominal sounds con-
tribute with substantial, and early, information about meal
intake.

Comparable methods based on continuous glucose moni-
toring in the subcutaneous tissue are reported to detect meals
within 30min to 40min after the start of the meal, while
this feasibility study in a limited population yielded a mean
detection delay of 10min. If an improvement like this can
be realized with sufficiently high sensitivity and specificity,
it would allow for prandial insulin being dosed (by an artifi-
cial pancreas) as much as half an hour earlier, which would
significantly decrease postprandial glucose excursions and
improve the overall glucose control. In the case of manual
glucose control, the specificity of a meal reminder is less
important.

These findings are strongly in favour of further investiga-
tion of sound based meal detection.
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