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ABSTRACT Noncancerous breast tissue and cancerous breast tissue have different elastic properties.
In particular, cancerous breast tumors are stiff when compared to the noncancerous surrounding tissue.
This difference in elasticity can be used as a means for detection through the method of elastographic
tomosynthesis by means of physical modulation. This paper deals with a method to visualize elasticity of
soft tissues, particularly breast tissues, via x-ray tomosynthesis. X-ray tomosynthesis is now used to visualize
breast tissues with better resolution than the conventional single-shot mammography. The advantage of X-ray
tomosynthesis over X-ray CT is that fewer projections are needed than CT to perform the reconstruction,
thus radiation exposure and cost are both reduced. Two phantoms were used for the testing of this method,
a physical phantom and an in silico phantom. The standard root mean square error in the tomosynthesis for
the physical phantom was 2.093 and the error in the in silico phantom was negligible. The elastographs
were created through the use of displacement and strain graphing. A Gaussian Mixture Model with an
expectation–maximization clustering algorithm was applied in three dimensions with an error of 16.667%.
The results of this paper have been substantial when using phantom data. There are no equivalent comparisons
yet in 3D x-ray elastographic tomosynthesis. Tomosynthesis with and without physical modulation in the 3D
elastograph can identify feature groupings used for biopsy. The studies have potential to be applied to human
test data used as a guide for biopsy to improve accuracy of diagnosis results. Further research on this topic
could prove to yield new techniques for human patient diagnosis purposes.

INDEX TERMS Elastography, 3D X-ray, mammogram, tomosynthesis, and strain.

I. INTRODUCTION
Elastography is an imaging technique that is now introduced
to detect the tumors in the breast in addition to mammograms,
which are the standard of care. Cancer tissues have different
stiffness and elastic properties than that of normal breast
tissue. It is due to this difference that elastography can be
a powerful tool for detecting breast cancer. Elastography is
particularly advantageous in 3D mammography because it
is performed routinely as part of breast cancer screening.
Further, breast tumors are often heterogeneous and a biopsy
can easily miss sampling the diseased tissue, which results in
a misdiagnosis [1].

Previous methods to acquire elastography can be cat-
egorized into several imaging platforms: Ultrasonography
(US) [1]–[4], and others such as Magnetic Resonance Imag-
ing (MRI) [9], Tactile Imaging [8], and Optical Coherence
Elastography [10]. We summarize these methods for compar-
ison in Table 1 and Table 2. Table 1 shows existing elastogra-
phy methods using ultrasonography. First, Strain Imaging [1]
is a technique in which compression from outside the body
is applied to the tissue. An ultrasound is used to take images
of the tissue before and after the compression happens. The
stiffness of the materials can be determined by how much
the compression deforms the tissue. The least deformed are
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TABLE 1. Existing elastography methods using ultrasonography (US).

TABLE 2. Existing elastography using other types of imaging.

the stiffest. There are limitations to this technique, due to the
fact that the objects can move out of range of focus when the
compression is applied. It also cannot be used on organs that
are not close to the surface.

Second, Acoustic Radiation Force Impulse Imagining
(ARFI) [4] is a technique in ultrasound used to create a
2-D map of stiffness of material. Unlike the previous Strain
Imaging, ARFI uses an internal ‘push’ inside the tissue in
order to measure the stiffness of the material. The more that
the tissue is pushed, the less stiff the tissue.

Third, Supersonic Shear Imaging [2], [3] is a type of ultra-
sonic imaging that can provide the user with a 2-D, real time
map of tissue stiffness. This is done by creating a source of
shear waves from inside the tissue of interest. This allows the
viewer to see full time as the wave propagates through the
tissue.

Table 2 shows existing elastography using other types of
imaging. Magnetic Resonance Elastography (MRE) is per-
formed by applying amechanical vibrator to the surface of the
patient’s body. The vibrations create shear waves that propa-
gate down through the tissue. An image acquisition sequence
measures the velocity of the waves before and after the wave
bounces off tissue. This allows a computer to generate a full
3-D of the target area [9]. Tactile Imaging is a technique that
translates the sense of touch into a viewable digital image.
A probe with a pressure sensor array mounted on its face is
used to deform soft tissue. The probe measures changes in the

pressure pattern to create the image [8]. In Optical Coherence
Elastography, images are made by mapping a mechanical
property of the target tissue. The elastogram is formed on the
microscale, showing the intermediate between that of cells
andwhole organs [10]. Phase Contrast Imaging (PCI) uses the
refraction of x-ray beams off of tissue structures to determine
the stiffness of different tissues [12], [13].

3-dimensional mammogram (3D-MMG), also called
tomosynthesis, started developing in the last 5 years as a
common screening procedure [14]. Elastography, however,
has not been used for 3D-MMG. The resolution of 3D-MMG
is much higher than traditional x-ray computed tomogra-
phy (CT) and US, and the cost is less than MRI [30].
We hypothesize that 3D-MMG has a possibility to distin-
guish cancer types by utilizing the density/elasticity model
and identification of specific Region of Interests (RoI) in
3D-MMG images. Elastography of breast tumors is underex-
plored and has the potential to provide novel biomarkers that
can help to diagnose breast tumors. The idea of using elastic
property difference to differentiate the cancerous tissue from
normal breast tissue is quite innovative. If implemented
successfully, the proposed technology can offer an effective
way to diagnose breast cancer and help guide biopsy in the
clinic.

In this paper, we propose X-ray Elastography to support
a Computer-Aided Diagnosis (CAD) of a breast tumor or
microcalcification. Unusual appearances of diagnostic mam-
mography are found to be benign. As a golden standard,
the biopsy procedure will be used to obtain actual tissue from
the site for the pathologist, who will examine the sample
microscopically to determine the precise cause of the abnor-
mality. There are currently no comprehensive studies to ana-
lyze the cancer heterogeneity by comparison of radiology and
pathology. Two image departments (radiology and pathology)
provide complemental cancer features. Based on microcalci-
fications of diagnostic mammogram setting by comparison of
microscopy, we can generate specific cancerous features such
as density, stiffness, and elasticity.

The rest of the paper is organized as follows: Section II cov-
ers the relevant methods, Section III describes the proposed
method in detail, Section IV discusses experimental results of
the proposed method, and Section V concludes this paper.

II. RELEVANT METHODS
There exists fundamental physics for X-ray Elastography,
and tomosynthesis (3D-MMG). In this Section, we describe
these two relevant studies for the proposed elastographic
Tomosynthesis.

A. X-RAY ELASTOGRAPHY
Fig. 1 illustrates the key modules of elasticity modeling [13].
X-ray mammography is the main imaging modality that
is clinically used for the screening of micro calcifications.
Elasticity imaging is used to measure the response of tissue
as it reacts to a force or ‘push’ applied to the RoI, where
two most prevalent methods, either a physical normal force,
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FIGURE 1. X-ray elastography method using an ultrasonic wave to create
the force on the region of interest. This diagram shows how an
elastogram is captured for viewing.

such as compression, or ultrasonic waves cause such a force
through the tissue. The force is generated from directly inside
the organ. The resulting displacement between resting and
deformed is captured and is used to see the elasticity of
different tissues [13]. This method is useful for identifying
irregular growths, as the growth will generally have a differ-
ing elasticity from the surrounding tissue as shown in Fig. 1.
The below equation models how a mechanical body moves in
Cartesian coordinates:

3∑
j=1

∂σij

∂xj
+ fi = ρ

∂2ui
∂t2

, i = 1, 2, 3, (1)

where σij are components of the stress tensor, µi are com-
ponents of displacement vector, fi is the body force per unit
volume in the xi direction, ρ is the density in the media, and
t is time [16].

B. TOMOSYNTHESIS (3D-MMG)
Fig. 2 illustrates the recent techniques on 3D-MMG [14], [15].
Digital x-ray tomosynthesis is a technique that uses slice
images from basic x-ray to create a 3D picture. This method is
prevalent in 3D-MMG and is used in a normal clinical setting.
The slices are taken by having the x-ray tube rotate around
the RoI and capture several slices. The slices are then digitally
combined to produce a 3D model of the RoI.

The equation for x-ray attenuation of the overlying tissue
is shown in (2).

Itomo = I0e−µnd + I0e−µnd−µtD (2)

where d and µn are the diameter and attenuation coefficient
of the nodule. D and µt are the approximate thickness and
attenuation coefficient of the overlaying tissue. I0 is the orig-
inal intensity and Itomo is the intensity exiting the tissue. The
slice of 3D structure must be processed in order to compile all
images from reduced view angles in tomosynthesis [14], [15].

FIGURE 2. Concept of Tomosynthesis:. The tube rotates around to capture
slices in a circle at a desired angle. The elements shown above can be
seen in (2) and (3). Image receptors and X-ray Tube can vary in size and
number.

The slices from tomosynthesis are digitally combined
using iterative reconstruction techniques [14]. Iterative recon-
struction is a means to create a 3D object from the 2D images.
Eq. (3) below shows how to combine the 2D images.

P (l,m, n) =
K∑

k=−K

B (l + k · tan (θ) · cos (φn,m)

+ k · tan (θ) · sin (φn, k)) (3)

whereP is the projection line integral through all voxels in the
object along a given ray. B is the density of structures in the
3D object, θ is the tomographic angle and φn is the azimuthal
angle of the n-th projection. l, m, n are used to represent the
dimensions in a 3D space. The number of images taken must
be 2K+1 [14].

III. PROPOSED METHOD: ELASTOGRAPHIC
TOMOSYNTHESIS
The proposed X-ray elastography of tomosynthesis consists
of the following three modules: Section III-A Tomosynthesis
of RoI, III-B Strain Map Extraction from 3DMGG, and III-C
Cancer Feature Modeling. The overall processes are shown
in Fig. 3.

A. TOMOSYNTHESIS OF RoI
The ability of tomosynthesis to create a 3D image of the RoI,
coupled with the elastography, will allow the user to see the
deformation in 3D. Themultiple angles of tomosynthesis also
reduces the superimposition of breast lesions by overlaying
tissues [21]. After the individual X-ray slices have been cap-
tured, the slices must be reconstructed to produce the image.
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FIGURE 3. Overall processes of the proposed method and relationship
among III-A, III-B, and III-C.

FIGURE 4. Images of the XCAT Phantom generated with the spherical
tumor placed in the left breast. The tumor has a diameter of 10mm.
(a) Shows the sagittal view while (b) shows the transverse view. The
tumor is in red color.

Reconstruction is the main aspect of digital tomosynthesis,
and is what allows a 3D model to be produced from the
mammography. A popular and effective reconstruction tech-
nique is Algebraic Reconstruction Technique (ART) [24].
Example of tomosynthesis is provided in Fig. 4.

The equation for the relationship between the 3D object
and the 2D projections for the case of circular tomographic
motion has been shown in Eq. (3) of Section II-B. The below
equation is used to compute the raysums, assuming that the
densities of the object can be estimated:

Rq,n (l,m, n) =
K∑

k=−K

Dq,n (l + k · tan (θ) · cos (φn,m)

+ k · tan (θ) · sin (φn, n)) (4)

where Rq,n is the raysum. D is the density of structures in
the 3D object, θ is the Tomographic angle and φn is the
azimuthal angle of the n-th projection. l, m, n are used to
represent the dimensions in a 3D space. q and n refer to the
q-th iteration and the n-th projection image respectively [17].
A representation of many of these variables can be found
in Fig. 2.

The error in each iteration is calculated as follows:

Eq,n (l,m, n) = P (l,m, n)− Rq,n (l,m, n) (5)

where P(l, m, n) is calculated from Eq. (3) and Rq,n is calcu-
lated from Eq. (4). Eq,n is the error of an iteration. The voxel
density is updated with each iteration using the following
equation:

Dq+1,n (i, j, k) = Dq,n (i, j, k)+
1

2K + 1
Eq,n(i− k · tan (θ)

·cos(φn) , j− k · tan (θ) · sin(φn) , n) (6)

The above algorithm uses the errors in Eq. (5) to be
back projected along each ray. The next projection image
is included, and its errors are back projected as well.

This process continues until all slices have been used and
have had their errors back projected. This is a single iteration,
and the process will continue iterating until the error drops
below a threshold as shown in Eq. (7). The threshold is set
by the user in an empirical manner [36], and will produce a
more accurate image the lower the threshold, named UDT.

UDT < Eq,n (l,m, n) (7)

where<means inequity where UDT should keep lowest. It is
through ART that a true and clear model can be obtained, due
to the fact that each iteration uses the back projected error to
refine the voxel value [25]. Fig. 5 illustrates the steps in one
iteration of the ART procedure.

FIGURE 5. Flowchart of simple ART procedure. All variables shown are for
all voxels in a RoI and can be calculated fully using Eqs. (3), (4), (5)
and (6). The iterations will cease when Eq,n is below some user defined
variable UDT, as shown in Eq. (7).

B. STRAIN MAP EXTRACTION FROM 3D-MMG
The first step in the proposed method is to extract the key
feature of the RoI. This key feature is the strain on the tissue
under compression, which is consistent with the mechanical
properties of a tissue’s elasticity. This feature is extracted by
constructing a comparative strain graph. The strain calcula-
tion used to construct the graph is dependent on the defor-
mation of an elastic tissue when exposed to some force or
‘push’ [19]. Strain can be calculated using the displacement
of tissue in a respective dimension. The equation used is
shown:

εijk =
1
2

(
∂ui
∂xj∂xk

+
∂uj
∂xi∂xk

+
∂uk
∂xi∂xj

)
(8)
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where, ui, uj and uk are the displacement component in the
i-th, j-th and k-th directions. xi, xj and xk are the spatial axes.
εijk is the strain in 2D. The equation given is just an example
and the strain is calculated in 3D through a gradient system.

Strain on a tissue is directly related to the stress on a tissue
when under force. The coefficient used to define the linear
relationship between stress and strain is the elastic property
of a material. This is shown below:

E =
NL0
A01L

(9)

where E is the Young’s modulus, N is the force exerted on
an object under tension, A0 is the actual cross-sectional area
through which the force is applied, 1L is the amount by
which the length of the object changes, and L0 is the original
length of the object. While there are other moduli of elasticity
that can be used to describe an elastic material, the standard
use is the Young’s modulus due to its straightforward equa-
tion and definition. Most other modulus can be calculated
using Poisson’s ratio and Young’s modulus [20]. The shear
modulus of elasticity is roughly equal to a third of Young’s
modulus in soft tissue [18].

Stress on a tissue is calculated as a relation between the
strain on the area and the material’s modulus of elasticity.
The strain is how much a material moves when it is under
force, and the elastic coefficient describes how much a mate-
rial should be deformed under a force. The relationship is
described in the equation shown:

σijk = E ∗ εijk (10)

where σijk is the stress in 3D, E is the Young’s modulus that
is constant for a homogeneous material, and εlmn is the strain
in 3D. Both the stress and Young’s modulus are in units of
Pascals and strain is a dimensionless unit [18].

It is not simple to calculate the Young’s modulus in a het-
erogeneous body, which is what the objective of this proposal
is pertaining to. Due to this fact, the Young’s modulus and
therefore stress are never calculated. It is possible however,
to show strains on different areas of the RoI with pixel track-
ing. This is done through the use of a fast Fourier transform
algorithm [28]. In the Fourier domain, the normalized cross-
correlation is given to find displacement, shown:

ρijk =
I−1 [F ∗ G]− 6f6g

N√(
6f 2 − 1

P (6f )
2
) (
6g2 − 1

P (6g)
2
) (11)

where P is the number of pixels in the template or interrogate
block, g(i, j, k) is the interrogate image block, f (i, j, k) is
the template image, and F and G are their Fourier transforms
respectively.

In order to compute the displacement in subpixel resolution
in a given direction, the center gravity method is used [27].
For an example, the x-direction is used, shown:

δi =
ρi+1,j,k − ρi−1,j,k

ρi−1,j,k + ρi,j,k + ρi+1,j,k
(12)

where δi is the x-directional subpixel increment from the
i-th pixel of maximum correlation. The other directions can
be calculated in the same manner finding δj and δk .

Table 3 shows the key features to be extracted in order to
calculate the strain map. The formulas show how the features
are related to one another.

TABLE 3. Key features to be extracted.

When the tissue is compressed, tissues with a higher
Young’s modulus will be displaced a different amount than
that of the tissue with a lower Young’s modulus. This dis-
placement, which is calculated using Eq. (11) and then sub-
sequently Eq. (12), can be used to create a comparative strain
map. The comparative strain map is created in order to show
how the different tissues reacted to the force. It is from this
difference in displacement or strain that we can see which
tissues have different elastic properties from each other. The
mapping of the displacement and strain is done by taking the
gradient of the subpixel resolution displacement vector.

These functions are used to deriveMatlab code. This code’s
objective is to produce a comparative strain graph, which
is used in place of an absolute strain graph. Through the
use of normalized cross correlation and sub-pixel tracking,
the displacement ρijk is calculated. Using Eq. (12), we are
able to find δi, δj and δk , the separated displacement in each
direction. These correlated values are stored in a 3xM matrix
‘‘d_vector’’, where M is the number of displacement data
points in a given direction. Eq. (12) is then applied to find the
strain in all directions. This is done through a gradient system
based on the displacement in a direction over all directions.

FIGURE 6. The general appearance of lesions. The images represent the
different elasticity scores from 1-5 with increasing chances of malignancy.

C. CANCER FEATURE MODELING
The general appearance of lesions is categorized in one of five
images with elasticity scores 1, 2, 3, 4, and 5 [22], as shown
in Fig. 6. Score 1 shows negative findings. Scores 2 and 3
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show benign findings in oval areas surrounded by normal
tissues. Score 4 shows suspicious abnormality for malig-
nancy within the oval areas. Score 5 is highly suggestive of
malignancy.

As the malignant cells begin to increase in number, they
aggregate into 3D clusters [23]. This type of pattern motivates
us to visualize the malignant cells with elastic feature.We can
model these malignant cells by clustering the extracted elastic
feature. The elastic feature can be positioned in 2D space.
After computing the similarities between the feature data
points, the similarity matrix can be sparsified only with fea-
ture data. In order to unite the elastic features which have
strong correlation between each other and remove the noise
generated from the elastic feature, we calculate the total
strength of links coming out of the point. If two points have
each other in the k most nearest neighbors list, it constructs
the unweighted shared nearest neighbor (SNN) graph with
links between two points.

Other possible modeling techniques can be used. A pop-
ular and widely used modeling technique is the Gaussian
mixture modeling with Expectation Maximization (EM)
approach [23].

arg maxθ EqC [logPϒ,C(y,C; θ )] (13)

Eq. (13) above shows the maximizing of the log likelihood as
respect to theta, or distance.

In order to better classify the difference in the key features
of the mechanical features of IDC and DCIS, a finite mixture
model (FMM) is used. A FMM is useful for categorizing
a data set as belonging to a previously identified category
(in this case type of cancer). The advantage is that a FFM
is able to categorize data within a probability.

The FMM is able to provide a representation of hetero-
geneity in a finite number of latent classes. It is able to be
used to model a statistical distribution by a mixture of other
distributions.

IV. EXPERIMENTAL RESULTS
A. DATA
1) PHYSICAL PHANTOM
Data for a physical phantom was provided to us by a uni-
versity in Korea. The physical phantom was generated with
a cube of dimensions 50 × 50 × 50 mm in a rigid cylinder
of 10mm length by 8mmdiameter placed in the center, which
mimics breast cancer. The cube was imaged by methods of
CT scanning under different amounts of pressure. A slice of
the phantom is shown below in Fig. 7 (b). It can be seen that
the rigid cylinder is visible in the center [27].

2) PHANTOM IN SILICO
We used 4D extended Cardiac-Torso (XCAT) phantom to
validate the proposed method. The 4D XCAT phantom offers
a realistic model of the human torso with control over cardiac
and respiratory motion, which has been used in simulation
of many studies [21]. Fig. 8 shows one of 16 frames of the
generated phantom model. Its size is 256×256×201 voxels.

FIGURE 7. (a) Shows a diagram of the dimensions of the coronal view of
the phantom and shows the method by which the phantom was
compressed [27]. (b) Shows a slice of the coronal view of the physical
phantom through the use of Computational Tomography.

FIGURE 8. The difference in breathing through pixel level subtraction. The
difference in the tumors is boxed in red and is zoomed in.

To get the 3D-MMG images of the phantom, Tomobox
Matlab toolkit was used [26]. The size of the created 4D
images was 256×256×201 pixels for each scan. The full scan
was created by using 360◦ rotations. 720 projections were
created with 0.5◦ angle increments. Breathing phases were
altered to provide the movement to make an elastography.

Fig. 9 shows both phantom in the transverse, coronal,
and sagittal view as samples. Table 4 shows the comparison
between physical phantom and phantom in silico in several
parameters for the experimental data.

B. TOMOSYNTHESIS OF RoI CALCULATION
After the two phantoms are reconstructed, it is possible to
calculate the error in our reconstruction methods using pixel
value difference between the ideal version and our recon-
structed version. The error is calculated by using the standard
root mean square error (RMSE), as shown by Eq. (14).

RMSE =

√∑n
i=1

(
ŷi − yi

)2
n2

(14)

where yi is the pixel value of the original dataset, ŷi is the
pixel value of the reconstruction on a n by n image slice.
The error taken using Eq. (14) above was also divided by

the number of pixels per slice in order to calculate the average
error on a pixel by pixel basis. Even though the physical
phantom has farmore pixels, the error in them far outstrips the
in silico phantom. This suggests that with a larger the data set,
in regard to the total number of pixels, a higher average error
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FIGURE 9. The 3D Tomosynthesis of both the physical phantom and the
phantom in silico. The top row shows the middle slice of 3D physical
phantom, where (a) is the transverse view, (b) is the coronal view, and
(c) is the sagittal view. The bottom row shows the middle slice of 3D
phantom in silico, where (d) is the transverse view, (e) is the coronal view,
and (f) is the sagittal view.

TABLE 4. Experimental data.

can be expected. Another way that error was explored was by
changing the total number of x-ray projections used for the
reconstruction process. In order to map the change in total
error vs the number of projections used, Eq. (14) was used to
find the error in each slice and then the average of all errors
across all slices was taken. This process was repeated several
times while varying the number of projections available for
reconstruction.

The error results for the physical phantom can be viewed
in Fig. 10 below. Fig.10 is useful for examining how error
changes throughout the reconstruction process in response to
relevant parameters. Fig. 10 (a) shows how error generally
increases as the slice count increases. Fig. 10 (b) shows how
the total error of the reconstruction decreases as the number of
projections available for reconstruction increases. Increasing
the number of projections used could potentially be useful for
reducing the RMSE of reconstruction. Other potential sources
of error for reconstruction are the breast slice thickness and
projection angle used. These findings around the parameters
of the study could be used to reduce error at reconstruction
for future studies [31], [32].

Table 5 shows the difference between the average RMSE
between the physical and in silico phantoms when a similar

FIGURE 10. Reconstruction error for the physical phantom. (a) shows the
Average RMSE per slice when the phantom is reconstructed using
30 projections. (b) shows the overall average RMSE of all slices when the
number of projections used is varied.

TABLE 5. Experimental data.

FIGURE 11. A vector map of the displacement in both the physical
phantom as compression is applied and the in silico phantom as
breathing occurs. (a) the vector map is placed over a slice of the coronal
view of the uncompressed phantom. (b) the vector map is placed on the
exhaled phantom.

reconstruction technique is used. The table shows the massive
difference in the resolution and the resulting RMSE between
the two phantoms. The error in the in silico phantom is
negligible, which is why a figure similar to Fig. 10 is not
shown for the in silico phantom. The reason that the error
for the in silico phantom is significantly lower is that the in
silico phantom is of much lower resolution.
It can be seen that the difference in error is quite large

between the in silico phantom and the physical phantom, even
though the same method was used to calculate the error. This
is most likely due to the fact that the physical phantom was
of much higher resolution and more difficult to reconstruct
accurately. The same goes for the human data, as the data
involved slightly higher resolution.

C. STRAIN MAP EXTRACTION
For an effective strain map to be created, the phantom must
undergo some force or ‘push’ to the tissue. This force is what
causes the tissue to be mapped by stiffness coefficient.

The forces that are used on the two phantoms are shown
above in Fig. 11. The force used on (a), the physical phantom,
is provided through compression of the gelatinous material.
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The in silico phantom, shown in (b), due to the limitations of
the simulation software was unable to have an outside force
act upon it. By having the in silico phantom breath a small
breath, a force is simulated and a strain map can be created.

The force is dispersed in 3D in the both of the phantoms
due to their three-dimensional natures. For the physical phan-
tom, the force is largely in the same direction as the com-
pression, which is the k-direction referenced in Eqs. (8), (11)
and (12). The component of displacement directly in parallel
with the k direction is more prominent in the areas that are
close to the point of compression, i.e. the largest value of k
and the higher values of the transverse slice shown in Fig. 12.
The displacements near to the lowest k values are shown to
move out toward the i and j directions, as the material pushes
out due to compression and the bulk modulus of elasticity.
This all can be seen in the four layers of displacement vector
in Fig. 12.

FIGURE 12. The displacement vector map in three dimensions for the
physical phantom. This data is similar to the data in Fig. 11 (a) with an
added dimension. Referring to the standard directions of orientation as
used in Eqs. (8), (11) and (12), the coronal axis corresponds to the i
direction, the sagittal axis corresponds to the j direction, and the
transverse axis corresponds to the k direction.

Fig. 13 is an elastograph and is a plot of strain values
at all location of the physical phantom near the RoI. It can
be seen in the figure that the RoI is distinguished from the
surrounding tissue. The RoI is made of a ridged plastic that
does not have, or has low, elastic properties. The surrounding
tissue, however, has a high elastic property and moves when
the phantom is compressed. This is why the areas around the
plastic insertion has a much higher strain value than that of
the plastic insertion itself.

Fig. 14 is similar to Fig. 13 in that it is an elastograph
of the physical phantom. The figure shows instead the strain
images at different slices of the phantom. It can be seen from
the figure that the plastic insert can be more or less easily
identified based on the strain direction and the slice of the
plane that is viewed. The in silico phantom has a much more
basic and linear displacement vector map than that of the
physical phantom. As can be seen in Fig. 15, the chest of
the phantom expands as the phantom inhales. This motion
simulates compression or manipulation of the tumor. There
is no displacement in the k direction of the in silico phantom,

FIGURE 13. Absolute Strain Value Images in the xy plane (top), yz plane
(middle), and xz (bottom) of the physical phantom from displacement in
the i, j, and k direction. All images are of the middle most slice of the
physical phantom.

FIGURE 14. Absolute Strain Value Images in the xy plane (top), yz plane
(middle), and xz (bottom) of the physical phantom from displacement in
the k direction. The first column is slice z (top) = x (middle) =

y (bottom) = 20. The second column is slice z (top) = x (middle) =

y (bottom) = 40. The third column is slice z (top) =

x (middle) = y (bottom) = 60.

as the chest expands freely. The k direction in this case runs
normal to the transverse plane in an anatomical model. The
displacement of the phantoms is used to create our strain
maps. The strain maps are computed using the methods from
section above.

The pixel level subtraction shown in Fig. 16 shows that
there is a definite change in position of the RoI. While this
is not a true elastography and is not a suitable replacement
for one, it does serve as a rough representation of how an
elastograph is created. The combination of the movement
vectors and the pixel level subtraction allows us to create an
image that is representative of the elastic properties of the
tissues. The phantoms both exhibit the same patterns when
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FIGURE 15. The displacement vector map in 3D for the in silico phantom.

FIGURE 16. A pixel subtraction of the physical phantom and in silico
phantom after tomosynthesis of the uncompressed and compressed data
sets of the physical phantom. The view shown is the coronal view (a) and
transverse view (b). The RoI is boxed in red.

FIGURE 17. The 2D phantom Elastography that was used in the feature
clustering. This particular plot is the absolute strain in the z direction as
viewed from the coronal plane. The elasticity feature extracted in red with
the SNN clustering algorithm applied.

the pixel subtractions are viewed. The RoI is outlined in
black, specifically in the area on the opposite side of the RoI
that force was applied. This is due to the fact that the RoI
is ridged and would not change in structure nearly as much
as the surrounding tissue. Conversely, the soft tissue directly
touching the RoI on the side opposite of the applied force is
lightly colored. This points to the fact that the surrounding

FIGURE 18. The Gaussian mixture model with EM technique when
applied to the data in Fig. 17. The maximum allowed groups of data was 5,
but only three were found. The cancer can be seen as the red cluster.

FIGURE 19. The Gaussian mixture model with EM technique when
applied to the data in Fig. 18. The maximum allowed groups of data
was 5, but only three were found. The cancer can be seen as the red
cluster. This shows the same clustering, but overlaid onto the Elastograph.

tissue is of a lower stiffness, and would change more than
the RoI.

D. ELASTIC FEATURE CLUSTERING
Fig. 17 identifies scattered feature points rather than the main
cancer region. This shows that SNN is not appropriate choice
for feature clustering for this slide of physical phantom elas-
tography.When EM is applied rather than SNN, there is much
better detection of the cancer region as shown in Fig. 18.

Fig. 19 is the data from Fig. 18 overlaid on top of physical
phantom shows the accuracy of EM clustering. The cluster
group 1 detects the cancer and represented by the color red.

Fig. 20 shows 3D clustering features in the 5 group regions,
and Fig. 21 shows the clusters imposed on top of each other.
Each color represents each feature group. We conducted
quantitative analysis of the feature group by iterating the
log likelihood in the variable of group k. The region num-
bers k this experiment used for EM went from 2 to 10 as
shown in Fig. 22. The group with the best log likelihood
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FIGURE 20. The clustering of the elastic property in three dimensions with a max of 5 group regions.

FIGURE 21. The clustering of the elastic property in three dimensions
with a max of 5 group regions.

FIGURE 22. The log likelihood at each iteration in the variable of group k.
k ranges from 2-10.

was found to be k = 7. The log-likelihood graph shows that
maximum region number can be relatively small. Different
maximum region numbers were evaluated using clustering

TABLE 6. Experimental data.

FIGURE 23. All cluster regions overlaid on top of each other.

criteria as shown in Table 6. The three representative criteria
of Cralinski-Harabasz, Davies-Bouldin, and Silhouette are
used to evaluate the optimal number.

Cralinski-Harabasz test results are higher for a more opti-
mal k , while Davies-Bouldin, and Silhouette test results are
lower.

The maximum region number is selected as six, as at this
region number clustering most accurately groups the cancer
insert. Fig. 23 shows 3D clustering features in the 6 region
number. The cancer insert is identifiable by the large, cylin-
drical shape in the middle of the insert. The different clusters,
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FIGURE 24. The groupings of 3D clustering features in the physical phantom extracted of 6 region. The cancer insert is identified in the large cylindrical
cluster #3.

TABLE 7. Comparison to existing study.

including the one corresponding to the cancer insert, can be
easily identified in Fig. 24.

There are few studies in 3D x-ray elastographic tomosyn-
thesis, and this study is the first to perform all relevant
methods on the same dataset. Comparisons to existing studies
have been included in Table 7. Kim et al. [27] uses the same
physical phantom as this study and strain displacement maps
for comparison may be found there. The method in this study
shows a 21.5% decrease in running time per slice from the
previous study using the same dataset.

Ertas et al. [34] uses the ART reconstruction technique this
study uses on an in silico breast phantom. [35] uses the FBP
reconstruction technique on a physical phantom. The study
reports EE/N(Edge enhancement over noise ration), and as
a comparison the raw projection images they took from the
physical phantom had an EE/N of 7.64. For this error we
report the average RMSE at 30 projections. Sahiner et al. [33]
shows the sensitivity error (features falsely identified as part
of the cancer cluster) of feature clustering on a phantom
created from real patient data. Ravi et al. [37] using a neural
network based cluster-detection technique after ART recon-
struction, also obtained a 15% sensitivity error for compari-
son to our error of 16.667%.

V. CONCLUSION
In this study, we proposed the use of 3D x-ray elastographic
tomosynthesis with physical modulation guided biopsy as
a means for more accurate detection of breast cancer. Our
approach has three main steps: tomosynthesis with and with-
out physical modulation, calculation of the 3D elastograph,
and identification of feature groupings that are to be flagged
for biopsy. The data used in this study was created through
the in silico phantom creation software X-CAT and a phys-
ical phantom. The tomosynthesis and elastographic portion
were as to be expected in the physical phantom with a clear
elastograph created. The clustering algorithm was a success
with the ridged plastic insert was detected using a 3D EM
clustering algorithm. This yielded an error of 16.667%. The
finding of this paper could be better supported with the inclu-
sion of human breast cancer data. The ultimate goal of this
method is to detect not only breast cancer in general, but to
also detect the presence of heterogeneous tumors with both
malignant IDC and benign DCIS.
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