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ABSTRACT This paper implements logistic regression models (LRMs) and feature selection for creating a
predictive model for recovery form hemorrhagic shock (HS) with resuscitation using blood in the multiple
experimental rat animal protocols. A total of 61 animals were studied across multiple HS experiments, which
encompassed two different HS protocols and two resuscitation protocols using blood stored for short periods
using five different techniques. Twenty-seven different systemic hemodynamics, cardiac function, and blood
gas parameters were measured in each experiment, of which feature selection deemed only 25% of the them
as relevant. The reduced feature set was used to train a final logistic regression model. A final test set accuracy
is 84% compared to 74% for a baseline classifier using only MAP and HR measurements. Receiver operating
characteristics (ROC) curve analysis and Cohens kappa statistics were also used as measures of performance,
with the final reduced model outperforming the model, including all parameters. Our results suggest that
LRMs trained with a combination of systemic hemodynamics, cardiac function, and blood gas parameters
measured at multiple timepoints during HS can successfully classify HS recovery groups. Our results show the
predictive ability of traditional and novel hemodynamic and cardiac function features and their combinations,
many of which had not previously been taken into consideration, for monitoring HS. Furthermore, we have
devised an effective methodology for feature selection and shown ways in which the performance of such
predictive models should be assessed in future studies.

INDEX TERMS Hemorrhagic shock, logistic regression, critical care, cardiovascular function.

I. INTRODUCTION

Trauma remains a major source of morbidity and mortality in
the United States and world-wide. The World Health Organi-
zation estimates that over 5.8 million people die each year
because of injuries. This accounts for 10% of the world’s
deaths, 32% more than the number of fatalities that result
from malaria, tuberculosis and HIV/AIDS combined [1].
In the United States, traumatic injury is the fifth most fre-
quent cause of death, with roughly 10% of the population
suffering from some type of traumatic injury in any given
year [2]. After a major trauma, early and accurate assessment
of shock state is necessary to provide appropriate interven-
tions to decrease morbidity and mortality. Currently, specific
triage criteria such as blood pressure, respiratory status, shock
index, and mechanism of injury are used to categorize trauma
patients and prioritize emergency and trauma responders.
Early resuscitation includes control of bleeding, restoration
of circulating blood volume, blood pressure, and restitution

of oxygen carrying capacity. Therapy is generally guided by
the rate of bleeding and changes in hemodynamic parameters
such as, systolic blood pressure (SBP), hear rate (HR), and
blood chemistry and gases. Significant improvements in HR
and MAP may occur during resuscitation such that the indices
approach “normal” limits, but the organism in shock may
have persistent hypoperfusion. Inadequate resuscitation with
persistent hypoperfusion can result in higher mortality rates
from HR.

The normal ratio of HR to SBP is generally < 0.7. This
ratio is elevated in the setting of acute hypovolemia and
circulatory failure and is referred to as the shock index (SI)
[3], [4]. The SI has been demonstrated to be a useful guide
for diagnosing early acute hypovolemia in the presence of
normal HR and blood pressure [5]. It has also been used as
a marker for severity of injury and poor outcome in trauma
patients [6], [7], as an indication of ongoing hemorrhage
during gastrointestinal bleeding [8], and as an early signal
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of rupture and intra-abdominal hemorrhage during ectopic
pregnancy [9]. Measurement of the SI may be more useful
in predicting early shock than either the HR or the SBP alone
and has been shown to correlate with other indices of end-
organ perfusion such as central venous oxygen saturation and
arterial lactic acid concentration [10].

Predictors for survival after HS have been explored exten-
sively. Significant interest has been placed in parameters such
as lactate, which is are commonly associated with organ
damage after trauma and has been shown to correlate with
mortality during HS [3]-[5], [10]-[12]. Other parameters
such as HR and MAP are also commonly used for predicting
mortality during HS, often in the form of combined parame-
ters such as the SI [6]—[8]. However, these parameters do not
necessarily lead to a holistic description of the physiology
during HS, and with the advent of novel therapeutics, blood
substitutes and blood storage techniques, a more comprehen-
sive description during the state of shock might be necessary
for proper survival estimation. An alternative could involve
the incorporation of functional cardiovascular data, as has
been shown before [9], however, the problem now becomes
how to incorporate all of these parameters into an effective
predictive model able to forecast outcome.

Machine learning and logistic regression models (LRMs)
can provide a potential avenue for incorporating multiple
parameters. The use of machine learning for hypovolemic
shock and HS recovery prediction has been explored exten-
sively in the literature [5], [13]-[19]. Nonetheless, many of
these models rely on small sample sizes and limited parame-
ters. Furthermore, they often use neural networks or Support
Vector Machines (SVMs) with radial basis functions, both
of which suffer from interpretability and effective feature
relevance estimation, yielding very little information about
the usefulness of the features used in the model. Alternatively,
LRMs are often much simpler and allow for effective feature
importance estimation by using the corresponding feature
weights. The use of LRMs with multiple features in HS
recovery prediction has been explored previously by only a
few studies [16]. However, this study does not incorporate
cardiovascular parameters and is based on a single experi-
mental group.

In this study we developed a LRM to assess the abil-
ity of different parameters measured during shock in clas-
sifying successful HS recovery in rats, as determined by
infused volume. Twenty-seven (27) different systemic hemo-
dynamics, cardiac function, and blood gas parameters were
measured from 61 experiments of HS resuscitation, with
5 different experimental groups, each consisting of differ-
ent blood storage techniques. Different groups were used to
simulate potential variability in resuscitation fluid. A Monte
Carlo-like approach was used for feature selection, and three
different classifiers, one with all the features, one with a
reduced set of features and one with only MAP and HR,
were created. Performance was assessed through accuracy,
the Cohen’s kappa statistic and receiver operating character-
istics (ROC). This study aimed at identifying physiologically
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relevant parameters that could be predictive of HS survival,
primarily in combination with LRM, but with potential to
extrapolate to other ML learning and regression models.

Il. METHODS

The data used for this study was acquired over a series of hem-
orrhagic shock experiments at the University of California,
San Diego from 2016 to 2018. In summary, the experiments
cover a total of two HS protocols, two resuscitation protocols
and 5 different types of stored blood used for recovery. What
follows is a brief description of the animal preparation and
the experimental protocols used. The retrospective use of
data from multiple experiments allows to create a model that
adapts to the inherent variability present in clinical cases of
HS, where depending on the specifics, different treatment
routes will take place. In the proposed methodology, no label-
ing is made based on the HS shock or resuscitation protocol,
or on the infused blood storage type, creating a model that is
agnostic to the specifics of the HS.

A. ANIMAL PREPARATION

Studies were performed in 200-250g male Sprague-Dawley
rats (Harlan Laboratories, Indianapolis, IN). Animal handling
and care followed NIH Guide for Care and Use of Laboratory
Animals and all protocols were approved by the UC San
Diego Institutional Animal Care and Use Committee. Ani-
mals were initially anesthetized with isoflurane (Draegerwerk
AG, Luebeck, Germany) at 5% to induce deep anesthesia.
Anesthetic was subsequently reduced to 2.5% for the remain-
der of the experiment, and animals were placed in the supine
position on a heating pad to maintain core body temperature
at 37°C. Catheters were placed in the left femoral artery
and left jugular vein. Animals were then instrumented with
a 2F pressure-volume (PV) conductance catheter (SPR858,
Millar Instruments, TX) inserted into the left ventricle (LV)
via the right common carotid artery. For certain experimental
protocols, a tracheostomy was performed, and animals were
mechanically ventilated (TOPO ventilator, Kent Scientific,
Torrington, CT).

B. HEMORRHAGIC SHOCK RESUSCITATION PROTOCOL

After cessation of surgery, animals recovered for 30 min-
utes before baseline measurements were taken. Both HS and
resuscitation procedures were performed under 2.5% isoflu-
rane. HS was induced via one of two methods: 1) 50% of
blood volume is removed over 30 minutes and hypovolemia
is maintained for 30 minutes, 2) 40% of blood volume is
removed over 30 minutes and hypovolemia is maintained
for 30 minutes, followed by additional 5% hemorrhages
every 15 minutes until plasma lactate is within a range of
8-12 mMol. Resuscitation was then implemented via one
of two methods: 1) An additional 25% of blood volume is
removed (150 uL/min) while 50% of the test blood is simul-
taneously infused IV (300 uL/min), followed by additional
transfusions to maintain the animals MAP at 90% of the pre-
hemorrhage MAP, 2). Blood is transfused IV (300 uL./min) to
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TABLE 1. Description of animal placement.

Blood P . Surgical Hemorrhage Resuscitation
00¢ Troccessing Status Protocol Protocol

Fresh blood Not-Ventilated 2 2 7

1-week old conventional Ventilated 1 1 7

1-week old Anaerobic Ventilated 1 1 14
. Ventilated 1 2 6

3 week old conventional Not-Ventilated 5 5 3
. Ventilated 1 2 13

3 week old anaerobic Not-Ventilated 3 3 3

TABLE 2. Measured parameters.

Parameter Name Parameter Abreviation Units

Cardiac Output co WL /min

Stroke Work SW (mmHg)(uL)

Stroke Volume NY% uL

Ejection Fraction EF %

Arterial Elastance Ea mmHg

Heart Rate HR BPM

Mean Arterial Pressure MAP mmHg

Systemic Vascular Resistance SVR mmHg /WL /min

End Systolic Pressure Pes mmHg

End Diastolic Pressure Ped mmHg

Isovolemic Contraction (contractility) dp/dtmax mmHg/s

Isovolemic Relaxation dp/dtmin mmHg/s

Isovolemic Contraction End Diastolic Volume Ratio dp/dt/Ved mmHg/s/uL

Hematocrit het %

Plasma Lactate lactate mmol /L

Plasma Glucose Glucose mg/dL

Hemoglobin HB g/dL

Arterial Saturation A %

Venous Saturation v %

Plasma Hemoglobin Plasma g/dL

Potassium Concentration K+ mEq/L

Sodium Ton Concentration Na+ mEq/L

Calcium Ion Concentration Cat++ mEq/L

Chloride Ion Concentration Cl- mEq/L

pH pH

Arterial Partial Pressure of Oxygen PO2 mmHg

Arterial Partial Pressure of Carbon Dioxide PCO2 mmHg

bring the animal to and maintain MAP at 90% of the baseline
MAP. The 5 different types of blood transfused were: 1) Fresh
blood, 2) 1-week old conventionally stored blood, 3) 1-week
old anaerobically stored blood, 4) 3-week old convention-
ally stored blood, 5) 3-week old anaerobically stored blood.
All stored blood was processed following AABB guidelines.
The use of multiple experimental protocols serves to test
the robustness of the proposed approach by attempting to
simulate the large variability in HS cases present in clinical
settings. Table 1 outlines the surgical group, hemorrhage pro-
tocol, resuscitation protocol, blood processing method, and
sample size for each combination. All parameters measured
are presented in Table 2.

C. GROUP ASSIGNMENTS

In order to treat recovery prediction as a binary classifica-
tion problem, two groups were created based on the percent
resuscitation at the end of recovery (%Res 60) of each animal,
regardless of experimental procedure or infused blood type.
This quantity corresponds to the cuamulative percentage of the
animal’s original blood volume that was infused at the end
of the recovery period to reach the goal blood pressure. The
threshold was set at T = 50% (equivalent to approximately
5 units of blood), where animals with a %Res 60 of more than
50% were classified as one group (class 0), while those with a
YoRes 60 of less than 50% were classified as a second group
(class 1). Animals belonging to class O are deemed to have
had a successful recovery from HS, while those belonging to
class 1 are deemed to have had an unsuccessful recovery.
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The groups were further divided into training and testing
sets, with the training set containing 70% of the animals
(n = 42), and the test set 30% (n = 19). The ratio between
animals belonging to the two recovery groups was kept con-
sistent between training and test set.

D. FEATURE PREPARATION

Throughout this study the term measured parameter, or just a
parameter, is used to describe a quantity that was measured in
an experiment. The term feature is used to describe a parame-
ter measured at a given timepoint, which is used as an input to
the classification model. The feature names used in this study
are presented in a parameter_timepoint format. Furthermore,
since this study includes data from experiments performed
under different protocols, only parameters measured in all
experiments at the same timepoints were used as features. The
only exception was the timepoint ShEnd, which represents
the end of shock (i.e. the timepoint right before infusion),
which happened at different times in some protocols.

An overview of the feature selection and training pipeline
for the proposed model is shown in Figure 1. With 31 mea-
sured parameters across multiple timepoints during both
shock and resuscitation, a total of 240 features were available
per animal. Since we are interested in predicting recovery
using parameters obtained during the shock period, all fea-
tures measured during resuscitation were discarded, resulting
in a feature vector with 69 features per animal.

Prior to training the LRM, each feature vector was normal-
ized to have a unit L2-norm. This prevents features with a
larger magnitude from dominating over smaller, but poten-
tially equally, or more informative, features.

E. LOGISTIC REGRESSION MODEL

The open source Python library scikit-learn [20] was used,
together with Python 3.6 to apply the LRMs to the data.
Logistic regression is a predictive model that uses the stan-
dard logistic function where the exponential parameter is
determined by a linear combination of features [21]. The
weight of each feature in the linear combination is determined
by minimizing a cost function. In this study, an L2-norm cost
function was chosen, as it performs superior to an L1-norm
if the number of irrelevant features is kept low [22], which is
in line with the objectives of this study.

F. FEATURE SELECTION
A Monte Carlo-like approach was used to extract the most
informative features to be used in the final model. A total
of 400 logistic regression classifiers were trained using dif-
ferent random subsets of data containing 30 instances from
the training set. The absolute value of the weights, or coeftfi-
cients, for each of the features in the classifier were summed
across all 400 iterations and ranked according to their camu-
lative weight.

To select the optimal number of features, each feature
was removed iteratively, and the performance of a classifier
trained with the reduced number of features was assessed.
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Hemorrhagic Shock .
Rat Model — | Baseline
Experiments
(n=61)
Y Y Y
Cardiac Function Systemic Blood Gases f f
Hemodynamics —— Timepoints
Y
240 Features
» (across all timepoints, [«
for each rat)
171 Resucitation 69 Shock ~ Initial Logistic ~ Most Informative ~ Final Logistic
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l Iterations . _
XDiscarded (n=400) Final Predictions

FIGURE 1. Diagramatic representation of the feature extraction and model training pipeline. Timepoints legend: Sh: Shock, R: Resuscitation; numbers
represent the time in minutes since the beginning of shock or resuscitation. Sh End corresponds to the end of shock, and its time since the beginning of

shock varies with each experiment.

For this approach, a single random subset of 30 instances
from the training set was used for training the classifier in
each iteration. 11 instances, also from the training set, were
used for testing each classifier. The accuracy of each classi-
fier was assessed by the ratio of correct predictions to total
predictions in the reduced testing subset (a more appropriate
metric of performance is introduced later for the final model).
Furthermore, the same subset of features was used for each
new classifier to ensure the accuracy could be compared.
Each feature was iteratively removed, in order, from smallest
cumulative weight to largest cumulative weight. The reduced
feature set that yielded the largest accuracy was then chosen
to train a final classifier using the full training set and tested
on the full test set.

A Dbaseline classifier was created by using the heart
rate (HR) and the mean arterial pressure (MAP) at all avail-
able shock timepoints as features (a total of 8 features). These
two parameters were chosen because they are often said to
be good predictors of HS recovery [6]-[8]. The training and
testing instances of this classifier were the same as those for
the final classifier.

G. EVALUATION OF PERFORMANCE

A total of three classifiers were assessed for performance. The
first classifier was trained with all available features and will
be referred to as the Initial Classifier. The second classifier
was trained with the reduced feature set, obtained after the
feature selection process described above. This classifier will
be referred to as the Final Classifier. Finally, the performance
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of the baseline classifier described in the previous section will
also be addressed. This classifier will simply be referred to
as the Baseline Classifier. The training and testing instances
in all three classifiers were the same, what changed was the
features used by each classifier.

It has been shown that performance assessment in machine
learning models can vary significantly depending on the type
of classification, the type of data and the way the metrics are
computed [23]. To obtain a comprehensive understanding of
performance, each classifier was assessed in three ways. First,
the accuracy, as measured by the ratio between the number of
correct predictions and the total number of predictions was
determined. The accuracy in the training set was measured
by taking the average of all accuracy scores after a 10-fold
cross-validation. The accuracy in the test set was determined
through a single accuracy score. Second, the Receiver Oper-
ating Characteristics (ROC) of the classifiers in both the
training and test data were assessed, and the area under the
ROC curve (AUC) was determined [24]. Since the training
set is expected to perform well, as it is predicting on the
same data it was trained on, the ROC curve is only shown
for comparison and as a validation that training took place.
The optimal threshold and its performance based on the ROC
analysis of the classifiers on the test set was also determined
using the Younden’s J statistic. This metric calculates the
tradeoff between the true positive rate and the false positive
rate at a specific threshold of the ROC curve, and is calculated
as shown in Equation 1

J = TPR — FPR 1)
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FIGURE 2. Representative distribution of feature weights in a single trained logistic regression model using all original features.

where TPR corresponds to the true positive rate and FPR to
the false positive rate of the predictions [25]. The value of
the J statistic ranges between 0 and 1, where a value of 0 is a
classifier that is indistinguishable from random chance and a
value of 1 is a perfect classifier. Finally, the Cohen’s kappa
coefficient of each classifier in the test data was assessed.
The Cohen’s kappa coefficient is a metric of performance
similar to accuracy, except it takes into consideration the
possibility of agreement occurring by chance [26], [27].
In binary classification tasks this proves particularly useful,
since unbalanced classes can results in misleadingly large
accuracies [28], [29]. The Cohen’s kappa coefficient was
computed according to Equation 2

- @)
1 —pe

where p, corresponds to the previously described accuracy,
and p, is the expected accuracy as a result of chance.
The expected accuracy is calculated as shown in
Equation 3

_ 2P xPyo+ Y P x oy
T+’

where ¥ is a binary prediction vector containing ones in the
positions where the classifier predicted an instance belonging
class 0, and yp a ground truth binary vector containing ones
in the positions of the actual instances of class 0. Similarly,
y1 and y1, but in this case for class 1. The values of the kappa
coefficient range from O to 1, with a similar interpretation to
that of the J statistic.

3)

e

VOLUME 7, 2019

Feature Selection

250

200

1504

1001

Cumulative Weight (A.U.)

50

° o ° o o ° ° Q n ° ° ) n o Q v °
c F c £ F c c c - c c c - F c c c
8% 80088 FidcFag ;4
w > n O £ v n 9 B o 0 U R I
(7] | O | | @ € | l 8 3 W 8 ®© |
o ° E + o o £ a £ o o o o
] ] 5 v O | E & ¢ | @ | | =
o a T o o = £ T X ©- 0
o Py f o % = 5 9 8 o g
3 ° a a q 2 E & &

o ° Q - =

T T B3

[-% o

k-] °

Feature

FIGURE 3. Cumulative weights of the chosen reduced feature set after
400 iterations.

Ill. RESULTS

Animals (n = 61) were entered into the HS/resuscitation
studies. Within their surgical groups (ventilated and non-
ventilated), animals were similar at baseline. Animals were
excluded from the LRM if cardiac function data was not
collected (n 1). In approximately 38% of the animals
(23 out of 61) the resuscitation required more than 50% of
the original blood volume to recover.

A. FEATURE SELECTION
The resulting weights after training a single classifier with
all 69 available shock features are shown in Figure 2.
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TABLE 3. Performance metrics.

Performance Metric Initial Classifier Final Classifier Baseline Classifier

Mean Cross-Validation 0.769 4 0.088 0.8334+0.114 0.736+0.056
Accuracy

Test Set Accuracy 0.840 0.842 0.737
Kappa 0.652 0.617 0.296

The weights appear to be exponentially distributed, support-
ing the claim that there are weights that contribute signifi-
cantly more to the model than others.

The feature subset with the best accuracy in the training
set had a total of seventeen (17) optimal features, which
corresponds to approximately 25% of all available fea-
tures (Figure 3). The corresponding cumulative weights after
400 iterations are also shown, and an exponential behavior is
observed. The distribution of the timepoints of the relevant
features was: seven (7) parameters measured at the end of
shock (ShEnd), followed by four (4) parameters measured
at baseline, four (4) parameters measured right after hem-
orrhage was completed (Sh0), and only two (2) parame-
ters measured at 15 minutes into shock (Sh15). Since some
parameters appeared in more than one timepoint, despite
having 17 chosen features, only 14 parameters were used.
The parameter with the largest number of useful timepoints
was the isovolemic relaxation (dp/dtmin), appearing relevant
in all 3 shock timepoints.

B. CLASSIFIER PERFORMANCE

A summary of the accuracy and Cohen’s kappa values for
each of the classifiers is shown in Table 3. The baseline
classifier had the lowest performance in all three metrics,
while the final classifier had the largest mean cross-validation
accuracy and test set accuracy, and the initial classifier had
the largest kappa value. The initial classifier had values of
cross-validation accuracy, test set accuracy and kappa of
0.769£0.088, 0.840 and 0.652 respectively. The final classi-
fier had values of cross-validation accuracy, test set accuracy
and kappa of 0.833 £ 0.114, 0.842 and 0.617 respectively.
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Finally, the baseline classifier had values of cross-validation
accuracy, test set accuracy and kappa of 0.736+0.056, 0.737
and 0.296 respectively.

The ROC curves for each of the classifiers are shown
in Figure 4. The initial classifier had the largest values for the
AUCS in both training and test set, with values of 1.0 and 0.88
respectively. The final classifier had AUC values for the
training and test set of 0.97 and 0.83, slightly below those
of the initial classifier. Finally, the baseline classifier had
the lowest AUCs, with values of 0.86 and 0.82 for training
and test set respectively. The optimal threshold for the initial
model was 0.62, with TPR 0.78, FPR 0.06 and
J = 0.72. The final model had an optimal threshold of 0.54,
with TPR = 0.83, FPR = 0.08 and J = 0.76. Finally,
the baseline model had an optimal threshold of 0.23 with
TPR =1, FPR = 0.38 and J = 0.61.

IV. DISCUSSION
The methods presented in this study allowed to successfully
determine a subset of useful parameters for classifying rats
into two groups based on the infused volume required to
achieve successful recovery after HS. Furthermore, the results
suggest that the methodology proposed in this study can
combine data from multiple experimental protocols and still
achieve a classification performance, as measured by multiple
metrics, that is above that of the designated baseline classifier.
This contrasts with similar studies where a single protocol is
maintained for all animals [16], therefore our results serve as
a lower limit for the performance new models should be able
to achieve. Finally, while many of the chosen features have
been independently associated with HS in one way or another,
to our knowledge, there has not been a comprehensive study
that showed their relative usefulness when they are combined.
The discussion that follows presents a physiologically rele-
vant explanation of the validity of these features and why they
might have played a role in the performance of the model.
Taking a closer look at the chosen features, physiologically
relevant explanations for their usefulness can be formulated.
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The choice of lactate concentration at the end of shock as
the most relevant parameter is no surprise. Lactate has been
shown to be a successful marker for disease mortality in
critically ill patients [30]. Furthermore, the use of lactate as a
predictor for recovery from HS has been studied extensively
[3]1-[5], [12]. The decreased oxygen delivery resulting from
the loss of blood in HS promotes anaerobic metabolism,
resulting in hyperlactataemia as the metabolic flux through
glycolysis is increased [30], [31]. The presence of the glucose
concentration and the potassium ion concentration as the
only other two relevant metabolites is also consistent with
other experimental and clinical observations. Glucose has
been studied as a marker for monitoring the severity of HS
[32], [33]. Glucose metabolism is tightly related to that
of lactate, and during conditions of increased anaerobic
metabolism, such as that expected during HS, greater glucose
utilization and lower energy production is expected [31].
Lactate itself can be converted to glucose in the liver and
kidneys through the Cori cycle, exemplifying the direct rela-
tionship between the two [34]. Furthermore, the decreased
MAP observed during HS, and also selected as an informative
feature, triggers catecholamine secretion due to barorecep-
tor stimulation, promoting glycogenolysis, and subsequent
changes in glucose concentration [32], [35]. Finally, glycol-
ysis has been linked to Na+/K+-ATPase activity in smooth
muscle and other tissues, and changes in Na+/K+-ATPase
activity have been studied in conditions of HS [36], [37],
which might explain the presence of K4 concentration as
one of the informative features. Furthermore, increased cat-
echolamine production, such as the one expected due to the
low MAP, has also been associated with increased Na-+/K+--
ATPase activity [38], [39]. The tight association of these
metabolic parameters with the state of shock is a good
validation for their choice. Furthermore, the fact that these
metabolic parameters were all chosen at the same time point,
end of shock, when the metabolic stress is expected to be at
its peak, further validates their choice.

The presence of the two measured blood gases in the
selected parameter list is also physiologically consistent.
The use of PCO2 for monitoring HS has been explored
before [40], [41]. The expected changes in PCO2 during
HS can be attributed to respiratory or metabolic imbalances.
Changes in the PCO2 are often associated with changes
in the metabolic pH balance by action of the bicarbonate-
CO2 buffer system [42], [43]. Changes in lactate concentra-
tion, as suggested by the previous paragraph, are expected
to produce changes in the pH balance, inducing action of the
bicarbonate-CO2 buffer system. Furthermore, the fact that the
relevance of the PCO2 is at the end of shock, like the lactate
and the other metabolites described, might further suggest
the association between them. The PO2 value, on the other
hand, appears to be relevant at baseline and not at the end of
shock. This is a novel finding, and it could be attributed to
the fact that a baseline PO2 saturation might be indicative of
the inherent oxygen carrying capacity of the animal, which is
essential for recovery and survival.
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There was also a significant number of cardiac function
parameters present in the chosen feature subset, and they
range across all available timepoints. The usefulness of these
cardiac function parameters for predicting survival from HS
has been explored before [9]. However, these results that
some of these parameters are relevant not only during and
after shock, but also at the baseline of the experiment. The
presence of a significant number of baseline features might
suggest an inherent predisposition to successful or unsuccess-
ful resuscitation from HS based on the baseline status. Since
the animal inclusion criteria is based primarily on weight
and MAP, cardiac function parameters are not controlled for
at baseline. This allows for variations in cardiac function
parameters, which were likely detected by the model and used
for recovery prediction.

The state of the animal right after hemorrhage (ShO) also
seems to be relevant. Three of the four parameters selected
at this timepoint are directly related to the amount of blood
ejected by the animal’s heart. In fact, both the ejection frac-
tion and the cardiac output incorporate information from the
stroke volume [44], so their joint appearance at the same time-
point might suggest that the model is not arbitrarily choosing
features, but instead, it is taking advantage of the pre-existing
relationships between the measured parameters to make the
predictions. Physiologically, effective blood pumping at the
moment right after hemorrhage is critical for maintaining
effective oxygen delivery. Since this is the timepoint of the
experiment at which the animal’s blood volume is at its
lowest, the heart’s ability to eject blood, as measured by these
parameters, will be essential for survival.

The performance results of the different classifiers are also
promising. Both initial and final classifiers had superior per-
formance than the baseline classifier in all metrics. The pre-
dictions of this baseline classifier were not entirely random,
however, since k > 0 and the ROC analysis shows indeed
some predictive value. Nevertheless, the performance was
suboptimal and inferior to that of the other two classifiers.
Since the baseline classifier was solely created using MAP
and HR parameters, this might imply that using only these
two features is insufficient for this type of regression analysis,
despite their popular use in shock predictive metrics such as
the shock index (SI) [6]-[8]. Furthermore, since the data used
in this study involved multiple experiments, it is likely that
nuances between the different groups could not be conveyed
appropriately by solely using MAP and HR.

Another important observation is the similarity between
the performance of the initial classifier and the final classi-
fier suggests that the feature selection process did not cause
significant loss of information. In fact, the superior cross-
validation accuracy of the final classifier as compared to the
initial classifier might suggest an improved generalizability
of the reduced final classifier. In terms of test set perfor-
mance, accuracy values were almost identical between the
two classifiers. However, the kappa value of the initial clas-
sifier was slightly superior to that of the final classifier. The
discrepancy between the test set accuracy and the kappa value
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is likely due to the final classifier correctly predicting more
instances of the more populous class, making the contribution
due to chance more significant.

The ROC analysis of the classifiers also sheds light on their
predictive value. Overall, the AUCs of the initial classifier
were the greatest, followed by the final classifier and then
the baseline classifier.The ideal use of a model as the one
proposed, however, would require a minimization of the false
positive rate. Since positive predictions indicate an unsuc-
cessful recovery from shock, from a translational perspective,
incorrectly determining a positive prediction can be danger-
ous and impractical. The J statistic attempts to quantify this
tradeoff between the TPR and the FPR. A closer look at the
ROC values might suggest that the final classifier is actually
a better classifier than the initial, even when the latter has
a larger AUC. At their respective optimal thresholds, the J
statistic of the final classifier is larger than that of both
baseline and initial classifier. Furthermore, even with a FPR
of 0.08 compared to 0.07 in the initial classifier, the J statistic
shows that the TPR of the final classifier compensates for
this slightly larger FPR, suggesting an overall better classi-
fier. Finally, the AUC of 0.82 for the baseline classifier can
misleadingly suggest similar performance as that of the final
classifier. However, with a J statistic of 0.61 at its optimal
threshold, the baseline classifier’s performance is suboptimal
compared to that of the other two.

Features such as lactate, glucose, ionic imbalance and
blood gases are readily measured in a clinical setting, often
from a single blood sample. The other cardiovascular fea-
tures, however, involve relatively complex measurements
of cardiac function, which either require invasive catheter
placement or cardiac echocardiogram (echo) measurements.
Recent developments in automated left-ventricular function
characterization from 2 and 3-dimensional echocardiogram
measurements have been successful [45]-[47]. These auto-
mated approaches allow for the measurement, in a matter
of seconds, of a wide array of left-ventricular functional
parameters including EF, SV, and cardiac strain measure-
ments that can be related to contractility and relaxation. Fur-
thermore, protocols for efficient cardiac echo acquisitions in
emergency settings have been proposed previously [48]. Cou-
pling efficient echo acquisition techniques with automated
cardiac function characterization algorithms can allow for
efficient, and non-invasive, measurement of cardiac param-
eters that might be predictive of recovery in a HS setting.
However, actual coupling of echo-based measurements with
the proposed model would require integration of software
and hardware, as well as skilled personnel, which can be
hard to achieve in low resource settings. As future studies
assess the validity of the proposed parameters and model,
the practicality of such an integrated approach should also
be assessed.

While emphasis should be placed in verifying the feasibil-
ity of the proposed parameters acquired in a clinical setting,
future studies should also assess the actual accessibility of the
proposed parameters. For the easily accessible parameters,
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such as vital signs and blood-based measurements, future
implementations should aim at exploring their HS recovery
predictive ability by using more intricate machine learning
based models such support vector classifiers (SVCs). These
models might be able to further exploit the non-linear rela-
tionships between the parameters in order to come up with
equivalent predictions, without the need of the harder to
obtain measurements. Another alternative might be to modify
the current model such that the weighting of the easily acces-
sible parameters is higher under certain conditions. There-
fore, in scenarios where the harder to obtain parameters are
inaccessible, the model is still capable of carrying out the
predictions.

A clear limitation of this study is the sample size. Even
though the potential to generalize was demonstrated by the
performance of the classifiers in cross-validation and in the
test set, increasing the sample size of the training set is
expected to produce more generalizable results, and might
even lead to some changes in the small weighted chosen
features. Furthermore, studies in rats are not directly translat-
able to clinical scenarios. However, ultimate purpose of the
methodology proposed in this study is not to explicitly show
which parameters to use, but to both inform about potential
parameters that could be useful for monitoring HS in clinical
settings, and to show a way in which such parameters could be
determined in clinical studies. In addition, we do not yet fully
understand how these features would change in light of dif-
ferent interventions, or how the model predictions could dic-
tate intervention. Future studies should address how specific
interventions, such as particular drugs, can lead to parameter
changes that might modify the prediction outcome of the
model. Finally, it is important to remember that experimental
data is idealized with respect to real clinical data, and despite
attempts to include variability by including multiple experi-
mental protocols, clinical applications of the proposed model
will likely require substantially more training data as well as
small modifications to the model. The use of retrospectively
collected human data could be used to create a more clinically
applicable model, however, currently measured parameters
do not include many of the parameters described in this study.
Therefore, we hope that studies like this encourage the use
and study of these parameters in clinically relevant scenarios
of HS.

V. CONCLUSION

The results presented in this study show a successful imple-
mentation of logistic regression and feature selection for
creating a predictive model for HS recovery classification in
multiple experimental rat animal protocols. We have shown
the predictive ability of novel features and their combinations,
many of which had not previously been taken into consider-
ation for monitoring HS. Furthermore, we have devised an
effective methodology for feature selection and shown ways
in which the performance of such predictive models should be
assessed in future studies. Our results shall serve as a lower
limit for the performance newer studies should overcome.
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