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ABSTRACT Cancer gene expression data is of great importance in cancer subtype diagnosis and drug
discovery. Many computational methods have been proposed to classify subtypes using those data. However,
most of the previous computational methods suffer from poor interpretability, experimental noises, and low
diagnostic quality. To address those problems, multiobjective ensemble cuckoo search based on decom-
position (MOECSA) is proposed to optimize those four objectives simultaneously including the number
of features, the accuracy, and two entropy-based measures: the relevance and the redundancy, classifying
the cancer gene expression data with high predictive power for different cardinality levels under multiple
objectives. A novel binary encoding is proposed to choose gene subsets from the cancer gene expression
data for calculating four objective functions. Furthermore, an effective ensemble mechanism blended in the
cuckoo search algorithm framework is applied to balance the convergence speed and population diversity in
MOECSA. To demonstrate the effectiveness and efficiency of the proposed algorithm, experiments on thirty-
five benchmark cancer gene expression datasets, four independent disease datasets, and one sequencing-
based dataset are carried out to compare MOECSA with the six state-of-the-art multiobjective evolutionary
algorithms and seven traditional classification algorithms. The experimental results in different perspectives
demonstrate that MOECSA has better diagnosis performance than others at multiple levels.

INDEX TERMS Classification, feature selection, cancer subtype diagnosis, multiobjective optimization.

I. INTRODUCTION
Cancer diagnosis across gene expression data analysis has
emerged as an active area of research over the past decades
in medicine. High-throughput sequencing enables us to mea-
sure the related gene expression levels simultaneously [1].
Since the characteristics of the cancer gene expression data
are high-dimensional, noisy, and sample-imbalanced, it is
difficult to carry out the diagnosis task in an efficient way.
Therefore, the demanding job on the cancer gene expres-
sion data is to develop effective methods for classifying
the samples into subtypes accurately with a small subset of
informative genes. It makes sense that feature selection [2] is
considered as a necessary pretreatment process to analyze the
cancer gene expression data for reducing the dimensionality
of the data.

In fact, the main purpose of cancer diagnosis is to find the
high predictive accuracy using small number of genes [3].
It means that these two specific objectives are maximizing
the classification accuracy and minimizing the number of
features in the subsets. Since the two objectives are con-
flicting, it would be better to treat the classification problem
as a multiobjective problem rather than a single objective
problem. In the past decades, a plethora of data classifying
multiobjective approaches [4] have been proposed to trade
off the discriminating power and the number of features.
Ke et al. [5] presented a multi-objective ant colony opti-
mization algorithm (MOACO) based on pareto dominance
for selecting informative features and diagnosing the genes
accurately and competitively. In [6], a multiobjective genetic
algorithm (MOGA) was proposed, which aimed to search the
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subsets of features effectively by combining different filter
approach criteria. It made use of the general characteristics
of the data to feature correlation. Bhattacharyya et al. [7]
proposed a classification method based on archived multi-
objective simulated annealing in order to predict miRNA
promoters in the use of the classifier of SVM with RBF
kernel. In [8], a multiobjective binary biogeography based
optimization (MOBBO) and SVM with the leave-one-out
cross-validation method used as a classifier were applied to
optimize these two objectives simultaneously. In particular,
MOBBO blended the non-dominated sorting method and the
crowing distance with the BBO framework. However, these
evolutionary algorithms always suffer from the unexpected
balance between the exploration and exploitation, poor gener-
alization ability, and too much computation time. Therefore,
it is necessary to develop superior evolutionary algorithms to
alleviate the shortcomings.

Cuckoo search algorithm (CSA) is a nature-inspired evolu-
tionary algorithm imitating the behaviours of cuckoos, a kind
of parasitic birds, for optimization problems developed by
Yang and Deb [9]. Thanks to the fast convergence and the
diversity in the distribution of solutions, it has been applied
to many different real-world problems. What is more, numer-
ous types of multiobjective cuckoo search algorithms are
conducted on various research fields. Yang and Deb [10]
proposed a multiobjective cuckoo search for design opti-
mization in engineering. In [11], a cuckoo search algorithm
was given to solve a multiobjective job shop scheduling
problem using a pareto archive to keep all nondominated
solutions. A multiobjective cuckoo search algorithm based
on Duffing’s Oscillator was introduced by Coelho et al. for
Jiles-Atherton vector hysteresis parameters determination of
hysteresis models [12]. Syberfeldt Anna proposed [13] a
multiobjective cuckoo search to maximize machine utiliza-
tions and minimize the tied-up capital simultaneously in the
real-world manufacturing process. Liang and Kwan [14] put
forward a multiobjective cuckoo search algorithm to opti-
mize the filter coefficients of FIR lowpass and bandpass
digital filters. Moreover, a mutiobjective fractional cuckoo
search was proposed by George et al. to cluster high dimen-
sional data accurately [15]. Zhang et al. [16] proposed a
hybrid multiobjective cuckoo search on benchmark MOPs of
the multiobjective function optimization problem. Although,
multiobjective cuckoo search algorithm has been applied
on a variety of research fields so far, the multiobjective
cuckoo search algorithm to solve the multiobjective classi-
fication problem is still in infancy. As a result, in this paper,
the multiobjective ensemble cuckoo search algorithm based
on decomposition (MOECSA) for cancer subtype diagnosis
is proposed to optimize the four objective functions, including
the number of feature, the accuracy and two entropy-based
measures: the relevance and the redundancy simultaneously.
ComparedMOECSAwith other existingmultiobjective algo-
rithms, the main new contributions of MOECSA can be
summarized as follows:

• Based on the objective functions of each solution, a gene
subset is required firstly. Hence a novel binary encoding
method is proposed to select the gene subsets for calcu-
lating the fitness of potential solutions.

• Inspired by the differential evolutionary algorithm (DE),
two improved search methods are proposed to trade off
the exploitation and exploration based on the current
individual and its neighbors.

• An effective ensemble mechanism is designed to help
the algorithm extract the intrinsic complexity informa-
tion from the cancer gene expression data. In this ensem-
ble mechanism, those two improved search methods are
updated with the help of the successful experience from
the previous generations for searching highly qualified
potential solutions.

In order to verify the performance of the multiobjective
ensemble cuckoo search algorithm (MOECSA), experimen-
tal results are presented and compared with six state-of-the-
art multiobjective evolutionary algorithms and seven clas-
sification algorithms. We also conduct the time complexity
analysis, the parameter analysis, and extended experiments to
demonstrate the efficiency and robustness of MOECSA from
different perspectives.

II. METHODS
A. CUCKOO SEARCH ALGORITHM (CSA)
Cuckoo search [9] is a novel nature-inspired evolutionary
algorithm by imitating the obligate parasitism behaviors of
some cuckoos that lay their own eggs in the nest of other
host birds for searching the optimal solutions. Firstly, each
cuckoo can lay only one egg and drop its egg in a selected nest
randomly. Therefore each egg can be treated as an individual
(a solution). Then, the better egg with the better fitness value
can enter to the next generation. After that, the egg of a
cuckoo can be found by the host bird with a probability, which
leads the laid egg to be thrown away or the host bird to build
a new nest. The cuckoos search the entire decision space to
find the optimal solutions by recording the fitness value of all
the candidate solutions.

In the search process, there are a fixed number (NP) of
nests (the initial population) placing in the search space.
Besides, solutions in the population should cover the whole
decision space as much as possible. The initial population
P = {S1, . . . , SNP} , Si =

{
s1i , . . . , s

D
i

}
(i ∈ {1, . . . ,NP})

is uniformly randomly chosen from the minimum and
maximum bounds Smin =

{
s1min, . . . , s

D
min

}
and Smax ={

s1max , . . . , s
D
max
}
. Each individual within the search space at

generation t is generated by:

ski (t) = skmin + r × (skmax − s
k
min) (k ∈ {1, 2, . . . ,D}) (1)

Where r is a random number generated in [0,1].
After that, in the cuckoo search the new solution Si(t + 1)

at t + 1 generation for the cuckoo Si(t) (i ∈ {1, . . . ,NP})
is generated by the Lévy flight in the search process.
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A Lévy flight is employed as follows:

Si(t + 1) = Si(t)+ α ⊕ Lévy(β) (2)

Where the product ⊕ represents entry-wise multiplications.
The Lévy flight shown as below is a random walk that
observes a Lévy distribution, which has an infinite variance
with an infinite mean. Thus the consecutive steps of a cuckoo
generate a random walk process that obeys a power law
length distributionwith a heavy tail. The process of producing
new solutions can be also regarded as a Markov chain by a
stochastic equation for random walk.

Lévy ∼ µ = t−1−β (0 < β 6 2) (3)

Besides, α > 0 is a real number indicating the step size
and it should be related to the scales of the problem of interest.
Since the step size using the Lévy flight is not trivial, a simple
scheme [9] for producing Snewi can be calculated as following
equations:

α = α0 × Stepi × (Si − Sj) (i, j ∈ {1, . . . ,NP}) (4)

Stepi =
µi∣∣∣v1/βi

∣∣∣ (i ∈ {1, . . . ,NP}) (5)

µ ∼ N (0, σ 2
µ), v ∼ N (0, σ 2

v ) (6)

σµ =
{

τ(1+β)sin(πβ/2)
τ [(1+β)/2]β2(β−1)/2

}1/β
, σv = 1 (7)

Snewi = Si + α × randn [D] (8)

Where τ is the standard Gamma function and randn[D] is a
standard normal distribution with the size [1,D]. α0 can range
from 0.01 to 0.5. The Lévy exponent β can be 0.5, 1, 1.5, and
2.

After generating the new individual Snewi , the objective
value of Snewi is compared with the fitness of Si. If the fitness
of Snewi is better than that of Si, Snewi replaces Si and is
accepted as a new individual to enter to the t + 1 generation.
Otherwise, Si is retained in the population.

Then, a fraction (pa ∈ (0, 1)) of nests can be found by
host birds. As a result, a simple way to build a new nest Snewj
replacing the discovered nest Sj can be described as:

Snewj = Sj + r × (Sj1 − Sj2 ) (9)

Where r is a random number drawn from [0,1] and j1, j2 are
random integers in the range [1,NP]. The crossover operator
to select nests is performed as follows, where randj is a
random number ranged from 0 to 1:

Sj(t + 1) =

{
Snewj If randj < pa
Sj(t) If randj > pa

(10)

When the egg of a cuckoo is much more similar to the
egg of a host bird, it is more difficult to be found in the
real world. Hence it is worth noting that the main reason to
use a random walk with some step sizes randomly is that
the objective function value is closely connected with the
difference between the host bird’s egg and the cuckoo’s egg.

In this paper, to understand the variables in the cuckoo
search algorithm easily, a nest or an egg represents a solu-
tion or an individual. A solution indicates a gene represen-
tation chosen from the genes of the cancer gene expression
data using the binary encoding. The genes of the cancer gene
expression data are denoted as the search area. Therefore,
a population includes NP individuals is generated to conduct
the proposed algorithm.

B. MULTIOBJECTIVE CLASSIFICATION BY ENSEMBLE
CUCKOO SEARCH ALGORITHM (MOECSA)
1) MULTIOBJECTIVE OPTIMIZATION
In multiobjective optimization problems, there are multiple
(two or more) various and conflicting objectives being opti-
mized together. In mathematics, a multiobjective optimiza-
tion problem can be defined as follows:

min {f1(x), . . . , fM (x)} (x ∈ X ) (11)

Where M is the number of objectives, x is a D-dimensional
decision vector with D variables, X is the decision space
of all the available decision vectors. Besides, multiobjective
optimization is concerned with some important concepts that
are dominance, pareto set (PS), and pareto frontier (PF). For
instance, in a minimization problem, if a feasible solution
x1 can dominate another feasible solution x2, then only if
fi(x1) 6 fi(x2) for each i, and there exits at least one i,
fi(x1) < fi(x2) (i ∈ {1, . . . ,M}). A set of all the nondominated
solutions is called a pareto set. Then, a nondominated point
is an image of the objective vector in terms of a nondomi-
nated solution in objective space. The pareto frontier, which
exhibits different tradeoff curves of the conflicting objectives,
is a set of all nondominated points.

2) OBJECTIVE FUNCTIONS
A suitable choice of objective functions takes important part
in multiobjective classification. The tradeoff between the
number of features (cardinality) and the classification perfor-
mance of the model formed by the selected features has been
an emerging trend for multiobjective classification. However,
the two entropy-based measures namely the relevance and the
redundancy for selected features are often ignored [17]. The
measure of relevance is employed to assess the discriminating
power of the chosen features and the redundancy measures
the level of similarity among them [18].

Under a comprehensive consideration of these four objec-
tive functions, the cancer gene expression data can be more
adequately interpreted than that using the two objectives. This
algorithm with four objectives makes sense to find a set of
subsets having high predict power for different cardinality
levels. In this paper, let xi is a set of candidate features/genes,
y is the target label, a subset of xi is call X , those objectives
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can be defined as follows:

f1(X ) = max

∑
xi∈X

SU (xi, y)

 (12)

f2(X ) = min

 ∑
xi,xj∈X ,i<j

SU (xi, xj)

 (13)

f3(X ) = min {|X |} (14)

f4(X ) = max
{

tp+ tn
tp+ tn+ fp+ fn

}
(15)

Where SU (a, b) stands for the symmetric uncertainty
between a and b [17], [19]. tp, tn are true positives, true
negatives. On contrary, fp, fn represent false positives, false
negatives.

3) MULTIOBJECTIVE ENSEMBLE CUCKOO SEARCH
ALGORITHM FOR CANCER SUBTYPE DIAGNOSIS
In this section, we raise a multiobjective algorithm to blend
the improved CSA framework with an ensemble mechanism
regarding to the four objectives for diagnosing the cancer
data. The framework of MOECSA and the effective subdi-
vision techniques are stated below in detail.

a: Structure of MOECSA
In MOECSA, the tchebycheff approach is employed to
decompose this multiobjective classification problem with
four objectives into a number of scalar classification sub-
problems. It is a less expensive approach computationally to
solve multiobjective problems. In detail, we apply a weight
vector λ =

{
λ1, . . . , λM

}
, and

∑M
k=1 λ

k
= 1, λk > 0

(M is the number of objectives) on the proposed algorithm to
compute the single objective function of a subproblem shown
in Eqs.(16).

gte(x|λ, z∗) = max
16k6M

{
λk
∣∣fk (x)− z∗k ∣∣} (16)

where z∗ =
{
z∗1, . . . , z

∗
M

}
is the reference point. z∗k is the

best value of each objective fk (x) found at present [20].
Besides, if there exists NP weight vectors {λ1, . . . , λNP} and
each weight vector has M dimensions, a cancer subtype
diagnosis problem with M objectives is divided into NP
cancer subtype diagnosis subproblems. Each weight vector
λ
j
i(i ∈ {1, 2, . . . ,NP} , j ∈ {1, 2, ..,M}) is assigned to a sub-

problem with M objectives. By Eqs.(16), each subproblem
i is integrated into a single objective gte(x|λji) to update the
individuals in the population. The main loop of MOECSA is
provided by Supplementary Algorithm S1. It reflects a mul-
tiobjective evolutionary algorithm consisting of Get a new
nest section and The empty nests section in Supplementary
Algorithm S2 and S3 respectively.

As to the initial section, NP individuals, each of which is
a D-dimensional vector with random numbers from [−4, 4],
are initialized to generate a population P = {S1, . . . , SNP} in
MOECSA. It is noted that we propose to use the binary coding

FIGURE 1. Performance of MOECSA on 35 benchmark datasets for Rn in
(a) and NMI in (b). The horizontal axis denotes different datasets while
the vertical axis denotes the mean with standard deviation.

to transfer NP individuals into binary strings for evaluating
the objective functions, but the individuals encoded in deci-
mal numbers are adopted to evolve the population. NP sub-
problems are generated corresponding to NP subpopulations
and each subpopulation has four objectives. Aggregating the
four objectives using Eqs.(16), the single objective fitness
is evaluated for each subproblem. In the search process,
the solution is kept or rejected for the next generation based
on its single objective value. Next, different weight vectors
are assigned to each subproblem and Ei = {i1, . . . , iT } (i ∈
{1, . . . ,NP}) is defined in terms of the Euclidean distance
between its vector and other weight vectors. The T closest
weight vectors are created to explore the better subpopula-
tions in the neighborhood region and update the fitness of
the subproblem iteratively. In each iteration, at first for each
individual, Get a new nest section (Supplementary Algo-
rithm S2) is employed to build a new solution by Lévy flight.
It is necessary to point out that two individuals are cho-
sen randomly from T neighbourhoods. After that, the single
objective composed of the four objectives of the new solution
using λ weight vector is compared with all the neighbor-
hood individuals. If the new solution Snewi is superior to
the neighborhood SE ji

, then SE ji
and its fitness are replaced

by Snewi and better fitness value respectively. An improved
population including NP individuals with better fitness is
generated by iterations. After that, the ensemble mechanism
is provided to assign Si with a designated pa value and a
search strategy. At the last section, we apply The empty nests
section (Supplementary Algorithm S3) utilizing the improved
search methods to abandon old nests and build new ones with
pa value. If Snewi performs better than Si in the fitness of the
single objective, Si can be replaced by Snewi , thus the utilized
pa value and the search strategy are added to the candidate
pool. In addition, the number of count increases by one and
we adopt the count number to calculate the selection rate
for selecting the corresponding pa and the search method in
the next generation. All in all, a population with NP high
quality individuals replaced by better fitness individuals is
produced. In these two sections, for each objective the refer-
ence point is updated once the fitness of Snewi is less than z

∗
i .

At last, a pareto set including all nondominated individuals is
given.
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b: Binary encoding
In this paper, considering that a binary individual is required
when calculating the fitness of objective functions, a new
binary encoding is proposed to transfer an individual with
the continuous encoding to the binary encoding. To carry
out the binary encoding, we adopt the mutual information
algorithm [21] to select D (200) important features first.
In MOECSA, each individual is an D-bit binary string where
D is the number of features in the subset. For the bit value,
‘‘1’’ represents that the feature is chosen from the subset and
otherwise ‘‘0’’. The binary encoding strategy is expressed as
follows:

h =

∣∣∣∣ 2π arctan(π2 ski (t))
∣∣∣∣ (17)

BinaryCode(ski (t)) =

{
0 (If ϕ < h)
1 (If ϕ > h)

(18)

Where ϕ is drawn from a Gaussian distribution which is ϕ ∼
N (0.5, 0.12), ski (t) is a decimal dimension of an individual
vector of the population.

c: Boundary constraints
During the search of MOECSA, if some individuals denoted
as decimal vectors move out of the search space bounds and
become infeasible, the individual is assigned to a new value
within the isolated and finite space using the following reset
rule. It benefits from the repaired value to keep the population
diversity instead of trapping in the local optimum using the
boundary value replacement rule to some extent.

ski =

{
min

{
skmax , 2s

k
min − s

k
i

}
If ski < skmin

max
{
skmin, 2s

k
max − s

k
i

}
If ski > skmax

(19)

Where i ∈ {1, . . . ,NP} and k ∈ {1, . . . ,D}.

d: Improved search methods
In the standard cuckoo search algorithm, the second part
of algorithm abandons cuckoos by Eqs.(9) and Eqs.(10).
Inspired by DE [22], two novel search mechanisms and a
simple crossover operator are proposed to increase the per-
formance of MOECSA. DE is an effective population_based
stochastic search method with a simple structure. It exhibits
remarkable performance in a variety of problems. Three
operators: mutation, crossover, and selections form the basic
framework of DE. Many different strategies are used in dif-
ferent domains due to the ability to enhance the diversity
and speed up the convergence by generating a new trial
vector. Therefore, based on DE and the property of CSA [23],
two new modified search methods and a crossover operator
according to the fraction pa are employed when some nests
of cuckoos are necessary to be emptied.

On one hand, to enhance the population diversity on
breadth, a new search strategy expressed as Eqs.(20) is
used. On the other hand, the technique shown as Eqs.(21) is
employed to improve the exploitation capability of searching
new optimal solutions. The illustration of the two search

FIGURE 2. Illustration of two search methods. (a) Illustration of Eqs.(20).
(b) Illustration of Eqs.(21).

methods to produce a new trial vector respectively in min-
imization optimization with two objectives is summarized
in Fig. 2.

Snewj (t) = r1 × (Sj1 − Sj(t))+ r2 × (Sj2 − Sj3 ) (20)

Snewj (t) = (1− r1)× Sj1 + r1 × Sj2 (21)

Where r1 is a random number chosen from [0,1] and r2
is a number drawn from a Gaussian distribution with the
standard deviation ‘‘0.01’’ and the mean ‘‘0.1’’. Sj1 , Sj2 , Sj3
are mutually exclusive individuals selected randomly from
the current population and Sj(t) is the current individual.
In addition, the crossover operator combined the search

strategy with the abandon fraction pa, for the current individ-
ual generating a target individual embedded into the empty
nests section of MOECSA is defined below. It can get a
balance on the exploration and exploitation of searching good
quality solutions. Meanwhile this operator can make a good
preparation for the follow ensemble mechanism.

Sknewj (t + 1) =

{
Sknewj (t) If randkj < paj
Skj (t) If randkj > paj

(22)

e: The ensemble mechanism
In this part, the ensemble mechanism is proposed to select
the suitable search method and its corresponding pa value in
the proposed algorithm. Since the candidate search methods
in the pool should have distinctive characteristics to exhibit
distinct performance capability in the entire search process.
Therefore we choose the above two effective search methods
in the pool since their distinct performance characteristics.
Then, the value pool of pa is taken in the range from 0.4 to
0.7 in the step of 0.1 to get appropriate solutions. If the pa
is too small then the search strategy poses little effect on
searching unexplored solution regions, while if the pa is a
little large then a restart operatormay be performed randomly.

As depicted in Supplementary Algorithm S1, for the
ensemble mechanism, we assign each individual to a pa
value and a search method randomly chosen from distinct
pools. At first iteration, the pa value and the search method
are generated from the respective pools randomly. At other
iterations, if a random number generated between 0 and 1 is
less than the selective probability and the candidate pool
is not empty, we adopt the pa value and the search strat-
egy chosen randomly from the candidate pool. Otherwise,
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the samemethod to generate those two components is applied
as the first iteration. After that, the selective probability is
computed by the average value among the better individuals
count percentage of NP individuals in each iteration for all
the current iterations. Besides, the better pa value and search
strategy are added to a candidate pool based on the selective
probability. In conclusion, we assign the pa value and the
search strategy to each individual chosen either from the
combination candidate pool according to the replacement
probability or the respective pools randomly. In this way,
it is noted that the better pa and search method can pass to
the next generation for building high quality solutions with
an increased probability. Meanwhile, it is also responsible
for diversity because of the selection randomness in the cor-
responding pools. In addition, time complexity analysis is
provided in the first section of Supplementary.

C. EXPERIMENTS
1) DATA SOURCES
In this paper, 35 cancer gene expression datasets are
employed as the benchmark datasets. The truth label
information of these datasets are all achieved from [24].
Supplementary Table S1 shows these 35 benchmark can-
cer gene expression datasets [25], [26]. As demonstrated in
Supplementary Table S1, the number of samples is ranged
from 22 to 248 for all benchmark datasets; the number of
features/genes is varied from 85 to 4553 in the data and
the number of classes is varied from 2 to 14. Besides, from
Supplementary Table S1, we see that some datasets are from
the same data source. For example, Alizadeh-2000-v2 and
Alizadeh-2000-v3 use the same source which the last one
has one more class than the first one; Golub-1999-v1, Golub-
1999-v2 and Yeoh-2002-v1, Yeoh-2002-v2 are also from the
same source with different number of classes respectively;
Armstrong-2002-v1 and Armstrong-2002-v2 have the same
number of samples; Tomlins-2006-v1 and Tomlins-2006-
v2 are the same as Lapointe-2004-v1 and Lapointe-2004-
v2 which they have distinct numbers of samples and genes
but the first one has one more class respectively.

2) PARAMETER SETTING
35 cancer gene expression datasets are used to compare the
performance of different algorithms. In terms of MOECSA,
when producing a set of weight vectors, each component of
a weight vector selects the values from {(0/H ), . . . , (H/H )},
where H is an integer setting to 7 and the number of weight
vectors NP = CH+M−1

M−1 is 120, where M = 4 is the number
of objectives. And the neighborhood weight vector number
T for each weight vector is 50. The essential components α0
and β for Lévy flight are set to 0.1 and 1 respectively. They
are all the best algorithm settings discussed in Section 2.3.7.
To show a reasonable comparison, the number of fitness eval-
uation is set as the stopping criterion rather than generation
times or CPU time. We set 1000 times of objective function
evaluation (FE) for each dataset to run each algorithm. At the

same time, for achieving the statistical significance, each
multiobjective evolutionary algorithm runs 30 times inde-
pendently on each dataset. Therefore, an average result on
30 independent runs is calculated to analyze the performance
of MOECSA on each cancer gene expression dataset.

3) EVALUATION METRICS
In order to measure the diagnosis results, we compare the
labels obtained by the classification algorithms with the truth
labels of all the samples. The normalized mutual informa-
tion (NMI ) and normalized rand index (Rn) are used to evalu-
ate the diagnosis performance of all the compared algorithms,
which can compute the similarity between the classification
labels and the ground truth labels. Therefore the results of
these two metrics with higher values are better than other
results in cancer subtype diagnosis.
NMI is ranged from 0 to 1, which represents no mutual

information (MI) to a perfect correlation, for presenting the
normalization of MI. It can be computed as follows:

NMI =

∑
i,jni,jlog

n·ni,j
ni+·n+j√

(
∑

ini+log
ni+
n )(

∑
jnj+log

n+j
n )

(23)

Rn is expressed as the selection index to evaluate the
agreement between two categories, which can be calculated
as follows:
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∑
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4) OTHER RELATED METHODS FROM LITERATURE
In one aspect, to validate the performance of multiob-
jective algorithms, multiple effective multiobjective evolu-
tionary algorithms are compared with our proposed algo-
rithm. They are nondominated sorting genetic algorithm II
(NSGA-II) [4], multiobjective differential evolution
(MODE) [27], region based pareto envelope based selection
algorithm (PESA-II) [28], multiobjective particle swarm opti-
mization (MOPSO) [29], grid-based evolutionary algorithm
(GrEA) [30], and hypervolume-based algorithm (HypE) [31].
In order to demonstrate the effectiveness of MOECSA, they
represent different algorithmic paradigms. Under the per-
spective of multiobjective evolutionary optimization algo-
rithms, the proposed algorithm MOECSA is a multiobjec-
tive algorithm built on the foundation of decomposing a
multiobjective problem into several single objective opti-
mization problems. NSGA-II adopts strategies including the
nondominated sorting method and the crowding distance
strategy. MODE applies the differential evolution algorithm
to the multiobjective problems. PESA-II is a multiobjective
evolutionary algorithm using the mechanism of genetic algo-
rithm with region-based selection based on pareto envelope.
Besides, MOPSO is a multiobjective algorithm using the
strategy of sharing information and moving towards global
best particles and their own local best memory like PSO.
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GrEA and HypE are grid-based and hypervolume-based
algorithms respectively.

In another aspect, several traditional classification meth-
ods including K-nearest neighbors algorithm (KNN) [32],
extreme learning machine (ELM) [33], support vector
machine (SVM) [34], Baysian classification, general-
ized learning vector quantization classification (GRLVQ),
Adaboosting, and artificial neural network (ANN) [35] are
employed to compare the efficiency with our proposed algo-
rithm. Under the perspective of different classification algo-
rithms, they indicate different classification theories. They
are all supervised learning algorithms. KNN is a simple clas-
sification algorithm on the basis of measuring the distance
between different eigenvalues which is adopted in MOECSA
to obtain the classification accuracy. ELM is a learning
algorithm based on the random input weight and hidden layer
biases for classifying. SVM uses a model that is finding the
best separating hyperplane in the feature space to maximize
the intervals between the positive and negative samples on
the training set. Baysian is a classification algorithm based on
the Bias theorem. GRLVQ applies a winner-take-all Hebbian
learning-based approach on classification. Adaboosting is a
kind of boost method using a series of classifiers. ANN uses a
nonlinear adaptive information processing system including
a large number of processing unit to classify samples.

For gaining empirical insight into the comparison in statis-
tic, we compute the paired Wilcoxon’s signed rank test to
measure the performance between pairs of algorithms sig-
nificantly. There are three symbols ‘‘−’’, ‘‘+’’, and ‘‘≈’’
to express this typical nonparametric statistical hypothesis
test method. The ‘‘+’’ indicates that our proposed algorithm
performs better than the other algorithms while the ‘‘−’’ is
shown the compared algorithm is superior to our algorithm.
The ‘‘≈’’ denotes that the compared algorithm is not different
significantly in terms of the other algorithm. The p-Valuewith
less than 0.05 means that there is a significant comparison
between the two algorithms and then it is worthy to carry out
this test.

5) EVALUATION ON BENCHMARK CANCER
GENE EXPRESSION DATA
This section is designed to investigate the better performance
of MOECSA from the multiobjective algorithm perspec-
tive by comparing with different multiobjective evolution-
ary algorithms. Six existing state-of-the-art algorithms on
35 benchmark cancer gene expression datasets are employed
including NSGA-II [36], MODE, PESA-II, MOPSO, GrEA,
and HypE in order to validate the effectiveness of MOECSA.

To compare different multiobjective evolutionary algo-
rithms fairly, the classifier KNNwith 10-fold cross-validation
to evaluate the accuracy and the binary encoding proposed in
this paper are adopted in the same way in these algorithms.
Each algorithm runs 30 times independently on each cancer
gene expression dataset. Supplementary Table S2 and S3
conclude the comparative results of those seven algorithms.
In the last row of each table, it is given the statistical results

by Wilcoxon’s signed rank test. It is worthy noting that
Fig. 1 shows the robustness of MOECSA on 35 benchmark
datasets. From Fig. 1, in terms of both Rn and NMI , it is
concluded that MOECSA exhibits high robustness in cancer
subtype diagnosis on 35 cancer gene expression datasets.

1) For the evaluation metrics Rn, it can easily be found
that MOECSA presents the better performance than other
algorithms as shown in Supplementary Table S2. Several
observations can be concluded as follows. a) The pro-
posed algorithm MOECSA outperforms other algorithms in
most datasets while NSGA-II provides the worst solutions.
b) MOECSA can obtain the best Rn result ‘‘1’’ on seven
datasets numbered 2, 7, 15, 16, 17, 20, 23, with the same
performance of HypE in getting the best Rn result ‘‘1’’. For
other algorithms NSGA-II, MODE, PESA-II, MOPSO, and
GrEA, there are 1, 2, 3, 1, and 5 best Rn results respec-
tively. c) MOECSA is worse than HypE on Garber-2001,
Risinger-2003 and GrEA on Bredel-2005 and Garber-2001.
For Armstrong-2002-v1, HypE obtains the same result with
MOECSA. d) MOECSA provides the better results on 34, 33,
32, 34, 28, and 25 datasets compared with NSGA-II, MODE,
PESA-II, MOPSO, GrEA, and HypE respectively according
to the statistical results on the last row of Supplementary
Table S2. e) Fig. 3(a) shows the diagnosis performance of
different multiobjective evolutionary algorithms on 35 cancer
gene expression datasets which is measured by Rn boxplot.
It illustrates a better overall performance of MOECSA com-
pared with other multiobjecitve algorithms intuitively.

2) For the evaluation metrics NMI , we can find that
Supplementary Table S3 shows different performance of dif-
ferent multiobjective evolutionary algorithms. Our proposed
algorithm MOECSA surpasses other algorithms obviously.
From the average results running 30 times on each dataset
in Supplementary Table S3, several observations can be pro-
vided. a) The proposed algorithm MOECSA can obtain the
best results among all the algorithms in most datasets while
NSGA-II obtains the worst results. b) MOECSA can give the
best NMI result ‘‘1’’ on seven datasets, namely Alizadeh-
2000-v2, Bittner-2000, Gordon-2002, Khan-2001, Laiho-
2007, Liang-2005, and Nutt-2003-v3. The performance of it
is equal to HypE in getting best NMI result ‘‘1’’. Regarding
to other algorithms, NSGA-II and MOPSO can both obtain
the best NMI result ‘‘1’’ on Nutt-2003-v3; MODE, PESA-II,
GrEA can obtain the best NMI result ‘‘1’’ on 2, 3, 5 datasets
respectively. c) MOECSA is worse than GrEA on Bredel-
2005 and Garber-2001. For HypE, it is better than MOECSA
on Garber-2001. In terms of Armstrong-2002-v1, HypE and
MOECSA can get the same result 0.9801. d) MOECSA can
give better results on 34, 33, 32, 34, 28, and 26 datasets com-
pared with the other algorithms, NSGA-II, MODE, PESA-II,
MOPSO, GrEA, and HypE respectively on the basis of the
last row of Supplementary Table S3. e) Fig. 3(b) demonstrates
the cancer subtype diagnosis performance of different multi-
objective evolutionary algorithms measured by NMI boxplot.
It is clear that better NMI values are distributed centrally
across the 35 cancer gene expression datasets in MOECSA.
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To show the level of the algorithm in minimizing the
number of genes in cancer subtype classification, the com-
pared results about the accuracy and the number of genes
of different multiobjective evolutionary algorithms, includ-
ing NSGA-II, MODE, PESA-II, MOPSO, GrEA, and HypE,
are shown in Supplementary Table S13 and Supplementary
Table S14 respectively. We apply 35 cancer gene expres-
sion datasets to each algorithm and each algorithm runs
30 times independently on each dataset. Meanwhile, the sta-
tistical results by Wilcoxon’s signed rank test are concluded
in the last row of each table. For the accuracy, from Sup-
plementary Table S13, MOECSA performs better accura-
cies than NSGA-II, MODE, PESA-II, MOPSO, GrEA, and
HypE on 31, 33, 32, 34, 30, 28 datasets out of 35 cancer
gene expression datasets respectively. In terms of NSGA-II,
it outperformsMOECSA in Lapointe-2004-v2, Ramaswamy-
2001, Su-2001, andYeoh-2002-v2. For other algorithms, they
perform equal to MOECSA on 2, 3, 1, 5, and 7 datasets
respectively. In addition, Supplementary Fig. S5 shows the
overall performance of multiobjective algorithms intuitively
by boxplots. For the number of genes, from Supplementary
Table S14, regarding to NSGA-II, GrEA, and HypE, there
is an apparent enhancement in minimizing the number of
genes between the algorithm and the proposed algorithm.
However, compared withMODE, PESA-II, andMOPSO, our
proposed algorithm is slightly better than them in minimizing
the number of genes. Since four objectives are adopted in our
proposed algorithm, it is still a big improvement in decreasing
the number of genes. Moreover, from Supplementary Fig. S6,
an overall performance of cardinality using boxplots is given
to demonstrate the level of minimization the number of genes
for multiobjective algorithms. It can be seen that MOECSA
can achieve less number of genes in cancer diagnosis on
the 35 cancer gene expression datasets compared with other
effective multiobjective algorithms.

Compared with GrEA and HypE, there are two main
advantages of our proposed algorithm MOECSA. On one
hand, in terms of minimizing the number of genes, MOECSA
is superior to GrEA andHypE obviously according to Supple-
mentary Table S14 and Supplementary Fig. S6. It is apparent
that MOECSA has high ability to decrease the number of
genes in cancer subtype diagnosis compared with GrEA and
HypE. On the other hand,MOECSAhasmuch simpler frame-
work and more time-saving than GrEA and HypE according
to the time complexity analysis provided in the first section
of Supplementary. As GrEA is a grid-based algorithm and
HypE is a hypervolume-based algorithm, much computa-
tion time has been consumed when calculating the grid-
dominance relation and hypervolume values respectively.
However, MOECSA is inspired by the simple structure of
cuckoo search algorithm and it is based on decomposition,
thus it saves much time in computing the dominant relation-
ship. In summary, MOECSA outperforms GrEA and HypE
not only in the performance of four objectives but also in time
computation.

FIGURE 3. Comparison performance of different multiobjective
evolutionary algorithms on 35 benchmark datasets. The performance is
measured by Rn in (a) and NMI in (b).

Based on the experimental results, it is claimed that the
proposed algorithm MOECSA can produce better diagno-
sis performance with high efficiency than other multiobjec-
tive evolutionary algorithms on 35 cancer gene expression
datasets.

6) COMPARED WITH OTHER CLASSIFICATION ALGORITHMS
In this section, MOECSA is employed to classify cancer
gene expression data into different subtypes. We compare
our proposed algorithm with seven classification algorithms,
namely KNN, ELM, SVM, Baysian, GRLVQ, Adaboosting,
and ANN. 35 cancer gene expression datasets are adopted to
test the performance of MOECSA. We run each algorithm
30 times independently on each dataset. The experimental
results are provided in Supplementary Table S4 and S5.
Besides, the last rows of Supplementary Table S4 and S5 sum-
marize the statistical results by the Wilcoxons signed rank
test.

1) For the evaluation metrics Rn, Supplementary
Table S4 shows the Rn results of eight effective algorithms.
Each method carries out 30 runs independently. As provided
in Supplementary Table S4, multiple observations can be
summarized. a) MOECSA is superior to KNN, ELM, SVM,
Baysian, GRLVQ, Adaboosting, and ANN on 34, 34, 34, 35,
35, 32, and 35 datasets respectively. b) Adaboosting outper-
forms our proposed algorithm on Ramaswamy-2001, Singh-
2002, and Yeoh-2002-v2. For Yeoh-2002-v1, SVM performs
the best among all the compared classification algorithms.
c) MOECSA can get the best result ‘‘1’’ on seven datasets
numbered 2, 7, 15, 16, 17, 20, and 23. For KNN, it can only
get one best result ‘‘1’’ on Khan-2001. While ELM obtains
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FIGURE 4. Comparison performance of different classification algorithms
on 35 benchmark datasets. The performance is measured by Rn in (a) and
NMI in (b).

one best result ‘‘1’’ on Nutt-2003-v3. d) Fig. 4(a) plots the
diagnosis performance of different classification algorithms
with respect toRn on 35 cancer gene expression datasets using
boxplots. A better overall performance in Rn of MOECSA
compared with other traditional classification algorithms is
provided by Fig. 4(a) intuitively.

2) For the evaluation metrics NMI , Supplementary
Table S5 proves the high effectiveness of MOECSA on
35 cancer gene expression datasets with the average NMI
results carrying out 30 independent runs for each classifica-
tion algorithm. a) MOECSA can produce the best results on
most datasets of all the compared classification algorithms.
It is superior to other classification algorithms KNN, ELM,
SVM, Baysian, GRLVQ, Adaboosting, and ANN, on 34, 34,
34, 35, 35, 34, and 35 datasets respectively. b) In terms of
KNN and ELM, they can obtain the best result ‘‘1’’ on Khan-
2001 and Nutt-2003-v3 respectively. While our proposed
algorithm produces the best result ‘‘1’’ on Alizadeh-2000-v2,
Bittner-2000, Gordon-2002, Khan-2001, Laiho-2007, Liang-
2005, and Nutt-2003-v3. It is demonstrated that MOECSA
has better performance in generating the best results ‘‘1’’.
c) Concerning the inferior performance of MOECSA, SVM
outperforms MOECSA on Yeoh-2002-v1 and Adaboosting
performs better than MOECSA on Yeoh-2002-v2 respec-
tively. d) Fig. 4(b) shows the diagnosis performance of dif-
ferent classification algorithms for NMI across 35 bench-
mark datasets with a good visualization by boxplots. From
Fig. 4(b), it can be directly found that MOECSA beats other
compared classification algorithms with better overall NMI
results.

As evidenced by the above analyses, MOECSA is a
highly competitive and effective multiobjective algorithm

for cancer subtype diagnosis on thirty-five benchmark can-
cer gene expression datasets among the multiple traditional
classification algorithms.

7) PARAMETER ANALYSIS
a: Effect of T in MOECSA
T is an indispensable parameter for MOECSA. To validate
the sensitivity to T in the proposed algorithm on 35 cancer
gene expression datasets, a T value set {30, 50, 70, 90} of dif-
ferent settings is provided for each dataset. An average NMI
with 30 runs on each dataset is used to test the performance
of different T values. Results of the averageNMI are summa-
rized in Supplementary Table S6 and Supplementary Fig. S1.
As exhibited clearly in Supplementary Fig. S1, T=50 can
produce high quality results statistically on these datasets in
average.

b: Effect of Lévy exponent β in MOECSA
This section provides the comparative experiments by dif-
ferent settings of β in Lévy flight. Thanks to the descrip-
tion of the range for β in Section 2.1, β is varied over the
set {0.5, 1, 1.5, 2} usually. We measure the results for each
setting with the average NMI generating by 30 MOECSA
runs on 35 cancer gene expression datasets. The results are
concluded in Supplementary Table S7 and Supplementary
Fig. S2 regarding to the average NMI . As shown in Sup-
plementary Fig. S2, β=1 works well for MOECSA on these
datasets with a better average NMI result.

c: Sensitive of α0 in MOECSA
α0 is an essential parameter to Lévy flight in generating new
individuals randomly. Because of the range limitation about
α0 in Section 2.1 in usual, we select α0 from a decimal set
{0.05, 0.1, 0.15, 0.2}. Using the average NMI evaluated on
these 35 datasets with 30 independent runs, Supplementary
Table S8 and Supplementary Fig. S3 summarize the compar-
ative performance by experiments. It can be easily observed
from Supplementary Fig. S3 that α0=0.1 is superior to the
other settings for the 35 cancer gene expression datasets with
the higher average NMI .

d: Sensitive of D in MOECSA
To investigate how number of genes used in the model can
effect the performance of the proposed algorithm, this section
gives the comparative experiments using different numbers
of D, which is the pre-selected number of dimension to carry
out the binary encoding. The number of the feature ranges
from the set {50, 100, 150, 200, 300, 400, 500}. We use the
average NMI on 35 cancer gene expression datasets to eval-
uate the performance of each number in the set. Each dataset
runs 30 times independently. The results are summarized
in Supplementary Table S12 and Supplementary Fig. S4.
From Supplementary Table S12, it is shown that D = 200
can obtain a better overall performance with better aver-
age NMI across all the datasets for MOECSA. Meanwhile,
we can find that various D maybe produce different perfor-
mance for each dataset; for instance, for D = 50, it can
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obtain better result on Alizadeh-2000-v1, Singh-2002, Yeoh-
2002-v1, Yeoh-2002-v2. D = 300 can produce better
results on Bhattacharjee-2001, Bredel-2005, Nutt-2003-v1,
Tomlins-2006-v1. While for D = 400 and D = 500, they
have better performance on Armstrong-2002-v2, Chowdary-
2006, Lapointe-2004-v2, Pomeroy-2002-v1 and Armstrong-
2002-v1 respectively. Therefore, we can conclude that
D = 200 is not always the best setting for all datasets. From
Supplementary Fig. S4, it is also shown that a NMI devel-
oping trend is generated across the 35 benchmark datasets.
With the decrease of the numberD, some informative features
could be eliminated and the smaller features cannot cover all
the dataset. Conversely, when D becomes larger, the algo-
rithm could not effectively choose the informative features
from the numerous features. Therefore, D = 200 is more
suitable than other settings for the proposed algorithm.

D. EXTENDED PERFORMANCE COMPARISIONS
WITH CASE STUDIES
1) EVALUATION ON BENCHMARK CANCER GENE
EXPRESSION DATA WITH THREE OBJECTIVES
Further studies with three objectives including the relevance,
redundancy, and cardinality of the subsets are conducted to
validate the efficiency of our proposed algorithmsMOECSA.
Under the perspective of different multiobjective algorithms,
in this section six efficient multiobjective algorithms, includ-
ing NSGA-II, MODE, PESA-II, MOPSO, GrEA, and HypE,
are applied to validate the superior performance of MOECSA
with three objectives on 35 benchmark datasets.

For the evaluation metrics Rn. Supplementary Table S9
shows the high performance of MOECSA comparing with
other multiobjective evolutionary algorithms on 35 cancer
gene expression datasets by the measurement Rn. MOECSA
performs best among these multiobjective algorithms on
35 benchmark datasets while NSGA-II performs worst.
From the statistical results of the last row in Supplementary
Table S9, MOECSA performs better than NSGA-II, MODE,
PESA-II, MOPSO, GrEA, and HypE on 32, 27, 33, 33, 22,
and 22 datasets respectively. While MOECSA is inferior to
other algorithms on 2, 6, 1, 1, 10, and 10 datasets respectively.
All the multiobjective evolutionary algorithms can provide
the best result ‘‘1’’ on Nutt-2003-v3 maybe because of the
small size of samples. The diagnosis performance measured
byRn across 35 benchmark cancer gene expression datasets is
depicted in Fig. 5(a) of different multiobjective evolutionary
algorithms in boxplot. It is clearly shown that MOECSA can
perform better than other compared algorithms generally.

For the evaluation metrics NMI , the experimental results
are summarized in Supplementary Table S10 on 35 cancer
gene expression datasets. For NSGA-II, it can provide the
best result ‘‘1’’ on Nutt-2003-v3 and MOECSA can obtain
better results on 33 datasets except for Nutt-2003-v2 and
Nutt-2003-v3. For MODE, it is inferior to, equal to, superior
to our proposed algorithm MOECSA on 27, 6, 2 cancer
gene expression datasets respectively. In terms of PESA-II,
MOECSA performs better than it on 33 datasets while

FIGURE 5. Performance of different multiobjective evolutionary
algorithms on 35 benchmark datasets with three objectives. The
performance is measured by Rn in (a) and NMI in (b).

PESA-II outperforms MOECSA on Yeoh-2002-v1. MOPSO
also performs better than MOECSA on Yeoh-2002-v1 and it
is inferior to MOECSA on 33 datasets. With respect to GrEA,
it is superior to MOECSA on 10 cancer gene expression
datasets. And it is equal to MOECSA on Alizadeh-2000-v2,
Liang-2005, and Nutt-2003-v3 while MOECSA outperforms
GrEA on 22 datasets. For HypE, MOECSA can give better
results on 22 datasets. There are 10 datasets that are supe-
rior to MOECSA showing the effectiveness of HypE. The
experimental results of GrEA and HypE show that GrEA
and HypE perform better than NSGA-II, MODE, PESA-II,
and MOPSO. Besides, Fig. 5(b) exhibits the diagnosis
performance across the 35 cancer gene expression datasets
measured by NMI boxplot of different multiobjective evolu-
tionary algorithms intuitively. It is demonstrated that the over-
all performance of MOECSA is superior to other compared
algorithms.

As can be seen in the experimental results, MOECSA can
achieve superior performance among all the compared mul-
tiobjective evolutionary algorithms for diagnosing the thirty-
five cancer gene expression datasets with three objectives.

2) EVALUATION ON OTHER CANCER
GENE EXPRESSION DATA
Four independent disease datasets [36] summarized in Sup-
plementary Table S11 are adopted to validate the performance
of MOECSA in further. All cancer gene expression datasets
are achieved from (http://portals.broadinstitute.org/cgi-bin/
cancer/datasets.cgi). We compare our proposed algorithm
with six effective multiobjective evolutionary algorithms that
are NSGA-II, MODE, PESA-II, MOPSO, GrEA, and HypE
respectively in terms of these four datasets. All algorithms
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FIGURE 6. Performance of different multiobjective evolutionary
algorithms on four independent disease datasets. The horizontal axis
denotes different datasets while the vertical axis denotes NMI in (a) and
Rn in (b). Different colors indicate different algorithms.

FIGURE 7. Performance of different classification algorithms on four
independent disease datasets. The horizontal axis denotes different
datasets while the vertical axis denotes NMI in (a) and Rn in (b). Different
colors indicate different algorithms.

carry out 30 independent runs on each dataset. The results
of the evaluating indicators NMI and Rn for different mul-
tiobjective evolutionary algorithms can be depicted clearly
in Fig. 6. It can be found that MOECSA performs better
than all the other algorithms especially NSGA-II for cancer
subtype diagnosis. Meanwhile, the experimental results of
MOECSA compared with different classification algorithms,
namely KNN, ELM, SVM, Baysian, GRLVQ, Adaboosting,
and ANN, evaluated by NMI and Rn are shown in Fig. 7.
It illustrates MOECSA can give the best solutions among
all the classification algorithms. It can be concluded that
MOECSA is more reliable to predict the exact label of differ-
ent genes. In summary, it can be observed that the proposed
algorithm MOECSA has high ability to obtain good results
for the cancer subtype diagnosis problem with distinct cancer
types.

3) EVALUATION ON COLON ADENOCARCINOMA (COAD)
DATASET FROM TCGA
We choose the colon adenocarcinoma (COAD) dataset from
TCGA (http://tcga-data.nci.nih.gov) to characterize the per-
formance of the proposed algorithm in further. Supplemen-
tary Table S15 provides the number of patients and molecular
data features of each molecular expression dataset. Each of
them has two classes. If the patient suffers from the colon
adenocarcinoma, they belong to one class and otherwise if the
patient suffers from other cancers, they belong to the other
class. In this section, our proposed algorithm is compared
with six effective multiobjective algorithms and seven clas-
sification algorithms, including NSGA-II, MODE, PESA-II,
MOPSO, GrEA, HypE, KNN, ELM, SVM, Baysian,
GRLVQ, Adaboosting, and ANN. Four molecular datatypes

FIGURE 8. Comparison performance of different algorithms on COAD in
terms of accuracy.

FIGURE 9. Comparison performance of different algorithms on COAD in
terms of cardinality.

of COAD, including CNV, gene, miRNA, and protein, are
used to evaluate the performance of each algorithm. Each
algorithm carries out 30 independent runs. The accuracy
and the number of features of each algorithm are calculated
on four COAD molecular datatypes. They are summarized
in Fig. 8 and Fig. 9 respectively. From Fig. 8, MOECSA
exhibits a good performance in gaining high accuracy on
each datatype of COAD compared with other algorithms. The
highest accuracy is gained byMOECSA on the gene datatype
of COAD while the lowest accuracy is achieved by SVM on
the gene datatype of COAD. The datatype rank of MOECSA
with descendant accuracy is the gene, miRNA, protein, and
CNV. From Fig. 9, MOECSA is significantly superior to
other algorithms in minimizing number of features. The
traditional classification algorithms all produce 400, 400,
400, and 190 features on the four molecular datatypes of
COAD respectively. For MOECSA, it wins the least number
of features on the protein datatype of CODA. For MODE,
it achieves the maximum number of features on the gene
datatype of COAD. In conclusion, it is clearly shown that
MOECSA outperforms other algorithms in predicting the
exact label of each molecular datatype on COAD with better
accuracy and less number of features. MOECSA can gain
good results on sequencing-based dataset for cancer subtype
diagnosis problems.
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III. CONCLUSION
This paper proposes multiobjective ensemble cuckoo search
algorithm, a novel decomposition multiobjective algorithm
based on the cuckoo search framework. In order to demon-
strate its robust performance, experiments are carried out on
thirty-five real cancer gene expression datasets by comparing
our proposed algorithm MOECSA with six state-of-the-art
multiobjective algorithms and seven effective classification
algorithms; the comparisons are based on the evaluation met-
rics Rn and NMI . In particular, a novel binary encoding is
applied to select a small subset of informative genes for mul-
tiobjective classification on cancer gene expression data. Four
objective functions are defined to capture and interpret mul-
tiple characteristics of the cancer gene expression data com-
prehensively. Finally the cuckoo search algorithm blended
with the efficient ensemble mechanism using the decomposi-
tion approach optimizes those four objectives simultaneously.
Through the pair-wise benchmark comparisons, it is found
thatMOECSA can obtain competitive performance balancing
between convergence and diversity for multiobjective classi-
fication on the related gene expression data for cancer subtype
diagnosis. In addition, we have created a user-friendly exec-
utive software for people to use the proposed algorithm. It is
available at https://github.com/wangyh082/MOECSA.git.
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