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ABSTRACT A large number of alarm sounds triggered by biomedical equipment occur frequently in the
noisy environment of a neonatal intensive care unit (NICU) and play a key role in providing healthcare. In this
paper, our work on the development of an automatic system for detection of acoustic alarms in that difficult
environment is presented. Such automatic detection system is needed for the investigation of how a preterm
infant reacts to auditory stimuli of the NICU environment and for an improved real-time patient monitoring.
The approach presented in this paper consists of using the available knowledge about each alarm class in the
design of the detection system. The information about the frequency structure is used in the feature extraction
stage, and the time structure knowledge is incorporated at the post-processing stage. Several alternative
methods are compared for feature extraction, modeling, and post-processing. The detection performance is
evaluated with real data recorded in the NICU of the hospital, and by using both frame-level and period-level
metrics. The experimental results show that the inclusion of both spectral and temporal information allows
to improve the baseline detection performance by more than 60%.

INDEX TERMS Acoustic event detection, alarm detection, neonatal intensive care unit, sinusoid detection,
non-negative matrix factorization, neural networks.

I. INTRODUCTION
Very low birth weight preterms usually spend the first several
weeks or even months of life receiving specialized care in
a Neonatal Intensive Care Unit (NICU), what is crucial for
their survival. In the acoustically rich environment of a typical
NICU numerous sounds coming from various human activi-
ties and biomedical equipment [1], [2] often take place simul-
taneously and contribute to high sound pressure levels [3].
It is well known that such a noisy environmentmay negatively
affect the growth and neurodevelopment of the premature
infants [4]–[7] and is of great medical concern.

Equipment alarm sounds provide alerts about the changes
in preterm infant’s condition to the medical staff and occur
frequently in a NICU environment. In fact, a large num-
ber of triggered alarms are not related to any clinically

relevant and/or emergency event [8], which may lead to alarm
fatigue. Smart alarming systems are being designed [8], [9]
to improve the alarm handling process in NICUs and reduce
noise levels. Such systems use alternative alerting modalities
and only allow the most critical alarms to sound. Unfortu-
nately, in the majority of the NICUs such systems are not
developed yet.

This paper presents our work on the development of an
automatic system for detection of alarm sounds, which can
be useful for medical application in two ways.

First, for detecting the sounds that are potentially harmful
for a preterm infant due to their particular spectro-temporal
structure (i.e. beats, tones and specially high frequencies).
The effects of a NICU acoustic environment on a preterm
infant could be revealed by the infant reactions to auditory
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stimuli from it, which can be investigated by relating the
presence of specific sounds (i.e. sound identities and their
situation in time) with the preterm physiological variables.
Such investigation can complement greatly the work already
reported in the literature, in which only the sound pressure
level is considered (e.g. in [10]), and requires big amounts
of labelled audio data, which can hardly be obtained without
using automatic detection from audio signals.

Second, for assisting the medical staff in their work and
facilitate the reaction to events. E.g. in [11] a sound-activated
light device was implemented for alerting the staff members
when the sound pressure level exceeded a predefined value.
The automatic alarm detection system can be a part of a
more sophisticated notification system allowing smart alarm
handling algorithms, which could be designed to warn about
triggering of particular alarms, to take into account their
clinical relevance and urgency, etc.

The automatic alarm sound detection was previously inves-
tigated for the purposes of hearing impaired assistance
and hearing support in noisy conditions [12]–[14]. To our
knowledge, research on the topic was first reported in [15],
where the detection of various real-world alarm sounds was
addressed. In that work, two different approaches were pre-
sented: a genericmodel-based approach that employs features
capturing the global properties of the spectrum and neural
networks, and a non-model-based approach that employs
sinusoid modelling and separation and exploits the specific
time-frequency structure of alarms. While the model-based
approach is also followed in [12], most of the posterior
works adhere to the non-model-based approach. For instance,
a simple signal processing basedmethodwas reported in [13],
where an autocorrelation function, used to exploit the long-
term periodicity of alarms, is compared to a threshold. In [14]
amplitude periodicity in a specific frequency bandwidth is
detected using a decision tree based on zero-crossing rate of
the autocorrelation of the signal envelope. In [16] the decision
is made by comparing the presence probability to a prede-
fined threshold, where the probability is constructed based
on pitch detection in specific frequency bands. Differently,
in [17] the spectrogram is treated as an image and part-based
models are trained in the spectro-temporal domain, providing
flexibility in time and in frequency.

The non-model-based systems usually take advantage of
the particular properties of alarms and their performance
depends strongly on the proper choice of the decision thresh-
olds. The model-based systems, on the other hand, require
model training on a multitude of alarm samples in multiple
conditions, and the amount of training data is usually an
important factor.

In relation to the reported works, this work presents a
combination of the model and non-model based approaches
that takes advantage of both of them. The proposed detection
system employs statistical modelling of the training data,
but also uses the knowledge about spectral and temporal
alarm characteristics. The spectral information is captured
in a feature vector, which is obtained by applying either

a method for detection of sinusoids (previously published
in [18]) or the non-negative matrix factorization algorithm,
in frequency intervals corresponding to alarm-specific fre-
quencies. The temporal information is incorporated at the
post-processing stage by aggregating the frame-level poste-
rior probabilities, obtained from statistical modelling, along
the intervals corresponding to the signal and silence segments
in an alarm period, and a threshold is applied to that estimate
to perform detection at the alarm period level. A non-model-
based system that exploits the knowledge about the alarm
characteristics in a similar manner was reported in [19].
Unlike in that work, our system is able to take into account
the frequency and duration variation observed in alarms and
incorporates the alarm spectral amplitude structure, which
may be important for discrimination of the alarms that share
some frequency components.

Starting from a basic machine learning system (baseline),
which gives a very low detection performance, we introduce
improvements sequentially at each of its stages and seek to
obtain better detection results. Apart from the widely used
frame-level metrics, we present the results using a metric that
operates at the alarm period level, which is more meaningful
for the medical application.

A preliminary version of this work has been reported
in [20]. In comparison to that paper, here a more detailed
analysis of the acoustic alarm classes is presented, different
type of features and classifiers are compared, an optimised
decision threshold based on the Equal Error Rate (EER)
criterion is employed and a more comprehensive analysis
of results is provided, including the analysis of the sys-
tem performance in different Signal-to-Noise Ratio (SNR)
ranges.

The rest of the paper is organized as follows. In Section II
the produced database and the acoustic alarm classes are
described. The general scheme of the proposed detec-
tion system is given in Section III. The modelling of the
spectral and temporal structure of alarms is explained in
Sections IV and V, respectively. Section VI describes sev-
eral post-processing schemes we employed. Finally, in
Section VII we provide the information about the evaluation
setup and present and discuss the experimental results.

II. DATA DESCRIPTION
The audio database used in this work contains real-world
audio recordings made in the NICU of Hospital Sant Joan
de Déu Barcelona during ten recording sessions. Two elec-
tret unidirectional microphones connected to a linear PCM
recorder were used to make recordings. One microphone
was placed inside the incubator, close to the infant’s ear,
and the other one outside the incubator, at approximately
50 cm distance above it, usually pointing to the centre of the
room. More information about the database acquisition and a
general description of the NICU acoustic environment can be
found in [21]. The costly manual annotations cover 54.3 min
of the audio data and alarm sounds occur 19.28% of this time.
Note that each alarm signal (see Figure 1 for notation) was
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TABLE 1. Detailed characteristics of the considered alarm classes.

FIGURE 1. Graphical description of terms used to denote particular alarm
properties. Only fundamental frequency is depicted for clarity of
presentation [22].

labelled separately. The recordings were downsampled from
original 44.1 kHz to 24 kHz.

Observing the audio data collected in the NICU we found
16 different types of acoustic alarms generated by diverse
biomedical equipment (cardiorespiratory monitors, infusion
pumps, ventilation devices, incubators, etc). From those,
7 types were selected in our tests under the criteria of being
the most represented in the annotated data and being relevant
from the medical point of view (see Table 1). The general
properties of the alarms can be described as:

1) They are periodic in time. Each alarm period consists
of signal and silence intervals of established durations
(see Figure 1).

2) The signal interval may consist of one or several con-
secutive stationary signals (tones), each containing one
or several simultaneous frequency components, which
may or may not be harmonically related.

The particular characteristics of the selected alarm classes
are presented in Table 1. The alarm-specific frequencies,
signal and silence interval durations were carefully analysed
using the recordings made both in the NICU and in a quiet
room. The alarm-specific frequency values (with a resolution
of 1 Hz) and period durations were obtained by visual inspec-
tion of alarm samples. The reported signal interval durations
are an average over the annotated samples. Except of one
alarm class (a3), all the alarms have a simple ‘‘tone-silence’’
structure. Several alarm classes (namely, a1, a3, a7 and a10)

show some variation in the frequency and duration values
across device units of the same model. Since for the medical
staff such alarms are perceived alike, they are referred to as
different versions of the alarm class. According to clinicians,
the most important classes are a1, a6 and a7.

Depending on the alarm class, the amount of audio data
annotated as belonging to that class was from 1.24 to 5.02%
of the total annotated data duration, and the signals of 2, 3 or
4 alarms sounded simultaneously for 6.81%, 0.70% or 0.07%
or it, correspondingly.

III. OVERVIEW OF THE ALARM DETECTION SYSTEM
This section outlines the overall structure of the proposed
alarm detection system. The system consists of a set of detec-
tors operating in a parallel manner. Each individual detector
is devoted to deal with a particular alarm class and consists
of the following blocks: i) modelling of the alarm spec-
tral structure; ii) modelling of the alarm temporal structure;
iii) post-processing and decision. The overall structure of the
system and of individual detectors is depicted in Figure 2.
In an individual alarm detector, the block on modelling of the
alarm spectral structure provides probabilities of the presence
of the specific type of alarm at the frame level. This block
includes feature extraction and statistical modelling stages
and the description of the techniques we employed is given
in Section IV. The modelling of the alarm temporal structure
is based on aggregating the output of class-specific detectors
over time and is described in Section V. Finally, the post-
processing and decision stages account for assessment at the
frame level and at the alarm period level, and their details are
provided in Section VI.

IV. MODELLING OF THE ALARM SPECTRAL STRUCTURE
A. FEATURE EXTRACTION
Wehave explored several ways of extracting features from the
signal and these are described in the following subsections.
All types of feature extraction are performed in the spectral
domain. The acoustic signal is split into frames and the dis-
crete Fourier transform (DFT) is applied on each frame. The
frame-length of N = 2048 and frame-shift of L = 1024 were
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FIGURE 2. Automatic system for alarm detection: (a) set of parallel
detectors, one per class, and (b) diagram of an individual detector.

found a suitable compromise between the time and frequency
resolution.

1) BASELINE
The features we used as the baseline are referred
to as frequency-filtered logarithmic filter-bank energies
(FF-LFBEs) [23]. These are generic features used in speech
and audio pattern processing. They cover the entire frequency
bandwidth. These features were obtained by passing the DFT
output through a bank of Mel-scaled triangular band-pass
filters [24] and taking the difference between the LFBE of the
following and preceeding band-pass filter. We used 18 Mel-
scaled filters and the obtained FF-LFBEswere appendedwith
their temporal derivatives, resulting in 36 dimensional feature
vector per frame.

2) SINUSOIDAL DETECTION BASED
This feature extraction scheme is based on the fact that
the alarms we are dealing with consist of only sinusoidal
components. As such, we employ a method for detection
of sinusoidal signals. There have been a variety of methods
proposed for detection of sinusoidal signals – for instance,
a review of methods used in audio processing is presented
in [25]. The method we employed here was introduced
in [18]. It considers the sinusoid detection as a pattern recog-
nition problem. We employed this method in our recent
research on recognition of bird species from their vocalisa-
tions [26], [27] and its earlier form, presented in [28], for
analysis of speech [29].

We process each frame l of the signal independently. The
peaks in the short-time magnitude spectrum Sl are considered
as potential sinusoidal components. Let us denote by kp the
frequency index of a spectral peak. The peak is characterised
by a feature vector y = (y1, y2), where y1 captures the mag-
nitude shape and y2 the phase continuity and both are formed
using M points of the short-time spectrum around the peak.
The y1 contains values of the short-time magnitude spectrum

around the peak kp, each normalised by the magnitude value
of the peak, i.e., y1 = (|Sl(kp − M )|/|Sl(kp)|, . . . , |Sl(kp +
M )|/|Sl(kp)|). The y2 is calculated as the difference between
the short-time phase of the current φl and previous φl−1
frame, with the shift between the frames being accounted
for, i.e., y2 = (1φl(kp − M ), . . . ,1φl(kp + M )), where
1φl(k) = φl(k)− φl−1(k)− 2πkpL/N .
A statistical model is built for features representing sinu-

soidal signals and noise. In this paper, we employed a mixture
of multivariate Gaussian distributions to obtain the model for
spectral peaks corresponding to sinusoidal signals, denoted
by λs, and to noise, denoted by λn. We found through experi-
mental evaluations the following parameter setup to perform
well: rectangular window was used to split the signal into
frames, which were then padded with 2048 zeros for the DFT
calculation; the parameter M was set to 6 frequency bins;
Gaussian mixture models (GMMs) for both the sinusoidal
signals and noise consisted of 32 mixture components; sinu-
soidal signals were corrupted by noise at the signal-to-noise
ratio of −7 dB to obtain the sinusoidal model λs; temporal
segments of a detected sinusoidal component shorter than
3 frames and segments whose average energy was below
40 dB of the maximum average segment energy in a given
recording file were discarded. Figure 3 depicts an example
of a spectrogram of an audio recording and the detected
sinusoidal components. Note that the binary decision about
each peak based on the difference p(y|λs)−p(y|λn) is shown.
It can be seen that even weak sinusoidal components (e.g.
around frequency index 200) are detected well. More thor-
ough evaluations of the detection performance of the method
can be found in [18].

In this paper, we form a feature vector consisting of the
log-likelihood values log p(y|λs) and log p(y|λn) obtained
from the sinusoidal detection within the frequency regions
around each alarm-specific frequency, as indicated in Table 1,
with the tolerance δ = ±20 Hz. We further refer to these
features as SD LLH (see Table 2). For each alarm frequency
region, only the peak that achieves the maximum likelihood
on the sinusoidal model is used. A low log-likelihood value
is assigned in a case there was no peak in the frequency
region. In some experiments, we also incorporate the ampli-
tude structure of the alarms (features SD LLH & Amp). This
is performed by including in the feature vector the magnitude
values at individual alarm-specific frequency regions. These
magnitudes are normalised by the sum of the magnitudes of
all the alarm-specific frequencies in order to disregard the
effect of the varying alarm amplitude.

3) NMF-BASED FEATURES
Non-negative Matrix Factorization (NMF) [30] is a linear
decomposition technique that attempts to approximate an
input non-negative matrix as a product of two non-negative
matrices. In audio signal processing, NMF is usually applied
to the magnitude spectrogram S of the signal [31], i.e.,

SN×T ≈ WN×R · HR×T , (1)
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FIGURE 3. An example of a spectrogram (a) of audio recording and the detected sinusoidal components (b).

where N and T correspond to the number of frequency bins
and number of frames, respectively, and R ≤ N controls the
rank of the approximation. The columns of W are usually
referred to as bases, and the rows ofH are their corresponding
weights or activations in time.

The problem of minimizing the divergence between the
input matrix and its approximation needs to be solved:

arg min
W ,H

D(S||WH )+ β · |H |1 W ,H ≥ 0 (2)

whereD is a cost function (in this work, the Kullback-Leibler
divergence), and the parameter β ≥ 0 is used to impose a
sparsity constraint on the activations. The minimization is
achieved by iteratively updating W and H with multiplicative
factors (derived using the gradient descent algorithm) until
convergence [32].

A supervised NMF approach is used where the bases
matrixW is trained beforehand on the training data, and only
the activations matrix H is estimated at the source separation
step. The bases matrix consists of the bases corresponding
to alarm and non-alarm classes W = [WA;WNA]. The alarm
basesWA are trained for each class separately using the alarm
signal intervals and the non-alarm bases WNA are trained
using the data segments that do not contain any alarms.

Similarly to works reported in [33] and [34], the fea-
ture representation employed in this paper is based on the
activations obtained after NMF separation. The activations
matrix H is normalised in each frame such that it sums to 1
and only activations corresponding to alarm bases HA are
used as features.

In our work, the implementation of NMF described in [32]
is used with the following parameter setup: the input matrix S
is a magnitude spectrogram computed on Hann-windowed
frames. Only the spectral points within frequency regions
around each alarm-specific frequency with a tolerance δ are
used for NMF processing. We train R = 4 and 15 bases
per alarm and non-alarm classes, respectively. The sparsity
parameter β is set to 1. At the training and testing time we
use up to 20 iterations.

B. STATISTICAL MODELLING
To perform classification based on the spectral structure fea-
tures described in the previous subsection we employed both
the generative and discriminative approaches, specifically,
GMM and Neural Networks (NN).

For each alarm class, a GMM-based detector consists of a
model for alarm and a model for non-alarm. Each model is
a single Gaussian probability density function with diagonal
covariance matrix as, in our experiments, this provided better
detection performance than using more mixture components.

The unsupervised pre-training of NN [35] is performed
using a Gaussian-Bernoulli RBM [36]. After pre-training, a
label layer is added on the top of the network and a supervised
backpropagation training is performed, resulting in a discrim-
inative model. Due to the scarcity of data, only networks with
one hidden layer are explored in this paper. The hidden and
the output layers have 32 and 1 neurons, respectively, and the
logistic activation function is used. The training is performed
using minibatches, with the size of each minibatch set to 10
and the inputs are randomly distributed among minibatches.
The input vectors are mean-variance normalised before being
fed to the network; the mean and variance values calculated
on the training data are also applied to the testing data. The
training data is balanced with regards to classes by randomly
selecting samples of the predominant class. The learning
rate (α), the number of epochs (NoE), the momentum, and
weight decay are set, respectively, to 0.001, 80, 0.9, and
2× 10−7 during the unsupervised and to 0.001, 50, 0.9, and
1.2× 10−4 during the supervised training stage.

V. MODELLING OF THE ALARM TEMPORAL STRUCTURE
In this block, the longer-term time structure of alarms is incor-
porated as follows. First, for each frame, the log-posteriors
of the alarm and the non-alarm class are computed. The
logarithm is taken after the probabilities obtained from the
statistical models described in Section IV are normalised to
sum up to one. Then, these frame-level log-posteriors are
aggregated over the intervals corresponding to durations of
signal and silence segments in every alarm period. At each
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frame t , the probability of it being the first frame of the alarm
period is calculated as

Pperiod (t) =
t+Lsig−1∑

i=t

(PA − PNA)+
t+Lsig+Lsil−1∑
i=t+Lsig

(PNA − PA)

(3)

where PA and PNA are log-posteriors of the alarm and non-
alarm class, Lsig and Lsil are, respectively, the duration of
signal and silence segments in an alarm period.

FIGURE 4. The output of the period probability estimation. Circles
correspond to the estimated period timestamps after applying a
threshold and crosses are the reference period timestamps.

An illustration of the output obtained from computing that
aggregated probability is given in Figure 4. According to the
defined expression, each peak of the curve corresponds to the
first frame of the estimated alarm period.

VI. POST-PROCESSING AND DECISION
Two alternative methods have been considered for the last
step in the detection process depicted in Figure 2(b), which
include both post-processing and decision.

In the first method, with the likelihoods obtained from
the models, each frame is classified either as alarm or non-
alarm using the decision threshold that is chosen based on
the Equal Error Rate (EER) criterion, so assuming that both
miss and false alarm errors are equally important at the frame
level. Then the resulting sequence of hypothesized labels is
smoothed by means of majority voting. The length of the
voting window is set to be the minimum of the signal and
silence interval length in an alarm period. For the period-
level evaluation, which is described later in Section VII, the
beginning of each frame sequence of consecutive alarm labels
is regarded as the detected alarm period label. Also, hereafter
a constraint of minimal distance between detected periods is
applied. That minimal distance is taken equal to 75% of the
period duration.

The second method employs the temporal modeling from
Section V. The period probability function Pperiod (t) from
equation (3) undergoes a class-specific thresholding along the
frame index and the peaks of the curve above the threshold are
chosen as the detected alarm periods (circles in Figure 4), and

are directly used to evaluate at the period level. That class-
specific threshold is chosen so as to provide the best period-
level performance. To obtain the corresponding frame-level
decisions, Lsig frames after each of the detected alarm periods
are assigned to the alarm class.

A third decision method that results from combining in
parallel the previous two methods is also tested in our exper-
iments. In it, if an alarm event (a frame sequence of consec-
utive alarm labels) detected with the first method does not
coincide with any of the alarm periods detected by the second
method with a tolerance±Lsig/2, the frames of that event are
assigned to the non-alarm class.

VII. EXPERIMENTAL EVALUATION
A. EVALUATION SETUP
As the dataset is relatively small, a 10-fold cross-validation
scheme was applied to obtain more statistically relevant
results. On each data fold, 9 sessions were used for training
and 1 session for testing. For each metric, after accumulating
the results for each class over all 10 folds, the overall metric
scores were obtained by averaging along classes. The same
cross-validation scheme was also applied for NMF-based
feature extraction, where 9 sessions were used for training the
bases, which were applied to process 1 testing session. Only
recordings made with the microphone situated outside the
incubator were used in the experimental evaluations to keep
homogeneous experimental conditions, and also because this
microphone is closer to the alarm sources.

During system development, the performance of the detec-
tion system was evaluated at the frame level, with two met-
rics: the Missing Rate (MR) and the False Alarm Rate (FAR),
which are defined as

MR =
NM
NA

, FAR =
NFA
NNA

, (4)

where NA and NNA respectively are the total number of alarm
and non-alarm frames, and NM and NFA are the number of
misclassified frames for the alarm class (misses) and for the
non-alarm class (false alarms), respectively.

Along with those frame-level metrics, we propose an
event-based metric that can offer to clinicians a more mean-
ingful interpretation of the system performance. With that
purpose, we chose as event the signal interval inside every
alarm period, since it is a naturally perceived acoustic unit.
This way, we define the Period-Based ERror Rate (PB-ERR)
as a complementary of F1-score as

PB− ERR = 1− F1 = 1−
2 · NC

2 · NC + NFA + NM
(5)

where NC is the number of correctly detected reference alarm
periods, NM and NFA are the number of missed and falsely
inserted periods, respectively. A reference period is correctly
detected if there is a detected alarm period in the tolerance
interval [Tref − Ttol;Tref + Ttol], where Tref is the reference
period timestamp and Ttol is the tolerance interval duration.
Note that Ttol must be less than half the alarm period dura-
tion; otherwise two reference periods may be associated to
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one detected period, so counting both of them as correctly
detected.

B. COMPARISON OF FEATURE EXTRACTION SCHEMES
First of all, the proposed feature extraction techniques were
experimentally evaluated at the frame level, so only GMM
modeling of spectral structure was included in the detec-
tion system. The post-processing steps were left for subse-
quent experiments, where GMMmodelling is also employed
unless explicitly stated otherwise. Results reported in Table 2
correspond to both MR and FAR metrics having the same
value (EER).

TABLE 2. Alarm detection performance obtained by a system modelling
the spectral structure only.

As it can be seen in Table 2, features based on sinu-
soidal detection (SD) and on non-negative matrix factoriza-
tion (NMF), which exploit the knowledge of alarm properties,
can significantly outperform the conventional baseline fea-
tures. The relative improvement obtained is equal to, corre-
spondingly, 62.12% and 45.01%.

The second part of the Table 2 (rows 2-4) shows results
when SD is applied for feature extraction. In this case the
feature vector can be formed either using the log-likelihood
ratio between the sinusoidal model and the noise model
(LLH ratio) or using these two log-likelihoods separately
(LLH). The performance of the detection system employing
the latter features is clearly better as more information is
provided to classifiers. To better model the alarm amplitude
structure, the LLH features are further combined with the
normalized magnitude values (row 4), bringing an additional
relative improvement of 7.92%. In fact, the information about
the amplitude structure may be helpful for distinguishing
between alarms that show very similar frequency compo-
nents.

The last part of the table presents the results for the
NMF-based features and it can be seen that they do not out-
perform the SD-based features. Actually, their performance is
45.18% relatively worse, which may be explained by the fact
that the spectral information captured by NMF-based features
is less accurate. In fact, the NMF framework is based on an
approximation, which is performed both at the training and
the source separation (i.e. feature extraction) steps. While
the SD algorithm treats each spectral point independently, in
NMF processing, the spectral structure of alarms is captured
as a whole by the trained bases. Also, unlike the SD-based
features, the activations obtained from NMF processing can
be sensitive to the amplitude of the signal.

The alarm occurrences which are most difficult to detect
are likely those associated with low SNR values. The effect
of such alarm stimuli on the preterm infant is very small, so
a more adequate measurement of the detection error may be
obtained by discarding the alarm occurrences with low SNR
values.

C. ASSESSING THE PERFORMANCE OF THE SYSTEM
ACCORDING TO THE QUALITY OF ALARM SAMPLES
In this section we explore the performance of the system con-
sidering the quality of the labelled alarms, which is assessed
by calculating the local Signal-to-Noise Ratio (SNR) value.
The idea is that the effect on the preterm infant of the auditory
stimulus due to an alarm is noticeable only if its SNR is suf-
ficiently high. The SNR value is calculated using the record-
ings made with the microphone placed inside the incubator,
so it measures what the preterm infant was receiving. For
each alarm sample, the local SNR is calculated around alarm-
specific frequency bins fb. Both the signal and noise powers
are estimated by averaging the spectrum both in frequency
(with a margin ±δ for the signal and ±100 Hz around the
signal margin for the noise) and in time.

FIGURE 5. Histogram of SNR values over all labelled alarm samples.

Figure 5 shows the distribution of the alarm samples as
a function of their local SNR value. This distribution is
exponentially modified Gaussian with the exponential decay
towards higher SNR values.

The whole range of SNR values over the labelled database
was further divided in 5 dB intervals and all alarm samples
were grouped according to these intervals. These groups
were evaluated independently and the evaluation results are
presented in Table 3 as an average over the considered alarm
classes. It can be clearly seen that the system performance
improves as the SNR becomes higher and so the quality of
the evaluated alarm samples increases. Note that the models
used for this evaluation were trained using the whole set of
alarms from the database, which means that the models were
trained on multiple conditions.
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TABLE 3. Alarm detection performance obtained over the SNR intervals.

We further explored how the performance of the detection
system changes in case the lowest quality alarm samples are
discarded from the evaluation. Table 4 shows the evolution
of the detection error with regards to the threshold placed on
the SNR values, where alarms with SNR below this threshold
are not included in the evaluation. Notice that there is a drop
in the detection error when alarm samples with SNR value
below 5 dB are discarded, and in that case the detection error
(MR = FAR) becomes 10.55%.

TABLE 4. Alarm detection performance obtained by discarding the alarm
samples below the SNR threshold.

FIGURE 6. The DET graphs for different statistical models. Circles
correspond to points closest to EER.

D. COMPARISON OF STATISTICAL MODELS
In this work, we explore two different statistical models
described in Section IV. As in the previous subsection,
no post-processing schemes are applied, and the best-
performing feature extraction setup, namely SDLLH&Amp,
is employed. The Detection Error Tradeoff (DET) graphs for
the GMM-based and NN-based statistical models are shown
on Figure 6. The curves were obtained by varying a threshold
on the log-likelihood ratio and averaged over the considered

alarm classes. It can be seen that the GMM-based models
outperform the NN-based ones at almost all the operating
points of the curve, even though the NN-based models are
discriminatively trained. This behaviour may be explained by
the fact that a very limited amount of data is available for
model training, which reduces the generalization capability
of the networks and may cause overfitting.

E. COMPARISON OF POST-PROCESSING SCHEMES WITH
APPLICATION-SPECIFIC EVALUATION
Table 5 shows the results when post-processing is included
before detection in terms of either smoothing (S), temporal
modelling (TM) or a combination of both, as described in
Section VI. It can be seen that none post-processing scheme
improves MR scores compared to not performing any post-
processing at all, but all schemes improve the FAR metric
scores to a large extent (up to 87.8% relative improvement
in the best case). Moreover, all the post-processing schemes
are able to improve the PB-ERR scores. Note that for the
PB-ERRmetric calculation the parameter Ttol was set to 49%
of the alarm period duration. In fact, according to what is
explained in Section VII-A, this is a largest value the Ttol can
take on. In this case, the system is expected to detect an alarm
in the tolerance interval that has the duration of almost one
alarm period, which is acceptable for the medical application,
taking into account that the period duration of most of the
alarm classes is quite short.

TABLE 5. Alarm detection performance obtained from different
post-processing methods.

In general, we could say that smoothing provides better
results at the frame level, while temporal modelling performs
better at the period level. This fact should bemainly attributed
to the way the results are obtained for these post-processing
schemes, as described in Section VI. Notice that, although
smoothing slightly increases MR, it brings a significant error
reduction in terms of FAR (which corresponds to−2.64% and
28.12% relative improvement). Temporal modelling, on the
other hand, reduces even stronger the FAR error (by 82.35%,
relatively) and is not performing well in terms of MR metric,
but gives better period-level score, which is more important
for the medical application. Although there is a big difference
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FIGURE 7. PB-ERR metric result as a function of the tolerance value Ttol .
The bold black line corresponds to the average over the alarm classes.
The far right points of the curves are the reported PB-ERR results using
49% tolerance, by classes (%): a1 33.33, a3 27.90, a6 38.99, a7 19.51,
a8 33.50, a10 8.50, a16 69.98.

between frame-level metrics in %, due to the significant
unbalance between the alarm and non-alarm classes, in terms
of the absolute number of frame errors the deterioration of
MR results is smaller than the improvement of FAR results.

The best PB-ERR metric score corresponds to the combi-
nation of both smoothing and temporal modelling (S & TM).
It is 52% relatively better than not using any post-processing
and yields more than 60% absolute improvement compared
to the baseline system that uses generic features. The combi-
nation of both schemes outperforms the temporal modelling
not only in terms of PB-ERR, but also at the frame level.
It is worth noticing that in this experiment the system per-
forms 7% relatively worse on segments where several alarms
overlap in comparison to segments with no overlaps, which
is mainly due to overlaps between alarms that have similar
spectro-temporal structure.

Finally, Figure 7 provides more detailed information
about the period-level performance for the combined post-
processing scheme, and shows the dependency of the results
upon the tolerance value Ttol used for the PB-ERR calcu-
lation. Note from the figure that the performance of most
detectors is not improving significantly when Ttol > 15%.
The best results are obtained for classes a3, a7 and a10,
which have spectro-temporal properties quite different from
other alarm classes. The worst results, on the other hand,
are obtained for the alarm class a16, which shares its only
frequency with classes a1 and a8. The results for class a6 are
strongly dependent on Ttol and a high value is required due to
the short period duration of that alarm class.

VIII. CONCLUSIONS
The reportedwork presents an automatic system for the detec-
tion of acoustic alarms in a noisy NICU environment, which
is machine learning based but also exploits the knowledge of
their particular spectral and temporal properties. In particular,

it has been shown that the detection system benefits largely
from the introduction of both spectral and temporal informa-
tion. The experimental results show that the detection errors
obtained by the proposed system are still rather high, a fact
which may be attributed to the rich multisource, noisy nature
of a real-world NICU environment and to the scarcity of the
available annotated data.

In order to improve the system performance, some detec-
tion hierarchy could be considered, e.g. the alarm classes that
have similar spectral structure could be detected consecu-
tively, starting first with those having more frequency com-
ponents. Also, a more sophisticated algorithm for sinusoidal
detection could be employed. Hopefully, the incorporation of
much more data will allow high performance improvements.

To be implemented in the hospital environment an
enhanced staff notification technology would require two
elements: automatic detection of alarm sounds and smart
alarm notification. The robust alarm detection system would
provide an input event to the alarm notification system, and
the latter would infer the clinical relevance of that event based
on the severity and urgency of the corresponding alarm, on
the occurrence of particular alarm combinations, etc. The
overall usability of the notification system would depend
on the combination of the above-mentioned elements and
would require thorough evaluation of clinical effectiveness.
Therefore, future work would entail the development of a
complementary smart alarm notification system.
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