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ABSTRACT The effective use of data within intensive care units (ICUs) has great potential to create new
cloud-based health analytics solutions for disease prevention or earlier condition onset detection. The Artemis
project aims to achieve the above goals in the area of neonatal ICUs (NICU). In this paper, we proposed an
analytical model for the Artemis cloud project which will be deployed at McMaster Children’s Hospital
in Hamilton. We collect not only physiological data but also the infusion pumps data that are attached to
NICUbeds. Using the proposed analytical model, we predict the amount of storage,memory, and computation
power required for the system. Capacity planning and tradeoff analysis would bemore accurate and systematic
by applying the proposed analytical model in this paper. Numerical results are obtained using real inputs
acquired from McMaster Children’s Hospital and a pilot deployment of the system at The Hospital for Sick
Children (SickKids) in Toronto.

INDEX TERMS Health informatics, data management, real-time analytics, analytical modeling, capacity
planning, cloud computing.

I. INTRODUCTION
High speed physiological data together with high speed
data from other medical support devices such as ventilators,
infusion pumps and in the case of neonatal intensive
care, incubators, is a largely untouched resource in
healthcare [1]. While monitoring these forms of data has
origins in the support of critical care medicine only, the
growth of personalized medical sensing devices available in
increasing numbers to a diverse range of consumers is quickly
changing this paradigm. Opportunities abound for significant
medical discovery and quality improvement in healthcare that
lead to improvements in productivity together with reduced
morbidity and disability rates through the establishment
of systemic approaches for the acquisition, transmission,
processing, analytics and storage of these forms of Big Data.
In addition, the maturing of cloud based platforms naturally
lends itself as the technology of choice to provision Big Data
platforms for use in healthcare. While Big Data in healthcare
exists beyond critical care, critical care still presents one of
the most complex settings where multiple high speed streams
of data are generated per patient and need to be brought

together in various ways concurrently for new approaches
to bedside care. To enable the use of Big Data platforms
at bedside, we must understand the nature of their usage
requirements and create a model for how to determine the
potential load requirements for their provision in a cloud
computing setting. One of the most complex settings to build
such a model is that of neonatal intensive care.

Premature birth defined as birth before 37 weeks gesta-
tional age, has been identified as one of the most important
health problems resulting in a high chance of long term
morbidity impacting not only the child and caregivers but
wider society in industrialized nations. Neonatal Intensive
Care Units (NICUs) provide critical care for premature and
ill infants. Premature infants in NICUs can be as young as
23 weeks gestation [2].

The data generated by medical devices in neonatal inten-
sive care is a big data problem. Vital sign monitoring
together with ventilation support and nutrition or drug
titration through smart infusion pumps all generate large
volumes of data at high frequency. A two channel electro-
cardiogram can generate 1000 readings a second. Heart rate,
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respiration rate and blood oxygen are displayed each second
resulting in 86,400 readings each per day. A premature new-
born infants heart beats more than 7000 times an hour which
is approximately 170,000 times a day. A newborn infants
neurological function could also be monitored resulting in
multiple waveforms each generating tens of millions of data
points per patient per day. Drug and nutrition infusion data
from smart infusion pumps can yield more than 60 different
fields provided every 10 seconds. Given that these infants
can have more than 10 infusions concurrently, infusion can
generate more than 1GB of drug infusion data from a single
patient per day [3].

Infusion drug data has been used for real-time analyses
for the past 10 years most commonly in the anesthesia field
with the integration of physiological data and drug dose
to automatically control anesthesia for short term surgical
windows of time. However, the use of infusion pumps, is not
just for short term operations but can continue for months
or even years in neonatal, paediatric and adult intensive care
units as well as in paediatric hospitals where they are used for
all infusions. This real-time data in the clinical environment
represents a relevant aspect if properly translated into infor-
mation to advise clinicians and health practitioners during
day-to-day care [4], [5].

Recent research is building a strong case for the benefits
of real-time data analysis, with clinical events such as late
onset neonatal sepsis (LONS) [6] exhibiting early warning
signs in physiological data before clinical signs become
apparent. However, that research takes a condition specific,
patient specific or physiological data stream type specific
approach [7], [8].

Through our research we have proposed the Artemis
platform that provides data acquisition and storage of phys-
iological data and clinical information for the purpose of
real-time analytics, retrospective analysis and visualization.
Artemis is not an acronym; it is named after the Greek
Goddess associated with protecting child-bearing women and
young children. Artemis enables concurrent multi-patient,
multi-stream and multi-diagnosis through temporal analysis
to support real-time clinical decision support and clinical
research [7]. We have designed an expanded Artemis Cloud
platform to service multiple healthcare facilities. This has
many benefits especially given the new computing tools such
as stream computing that are used to analyze the data in real-
time and the lack of skills at each hospital to support such
platforms. However, to be able to correctly size implemen-
tations on a per hospital basis, based on the number of beds
and patient characteristics, the creation of an analytical model
to enable capacity planning for the usage of such a platform
is required. Analytical models within the context of cloud
based big data solutions is currently an under researched area,
especially within the context of its use in healthcare [9].

In this paper we present a method to design and evaluate
an analytical model to enable more accurate estimation of
storage, memory and computation power for the real-time
and retrospective analytics components of ourArtemis Cloud.

The model utilizes realistic patient population distribution
based on gestation age characteristics and condition onset
probabilities within those contexts. Both of these variables
dictate the predicted length of stay for that infant. In this work
we model the Artemis Cloud deployment at McMaster Chil-
drens Hospital taking into account all exogenous parameters
including all types of patients, infusion pumps, online/offline
analytics and other requirements specific to this environment.
The results of this workwill be an important input for the final
deployment of the platform at McMaster Childrens Hospital
NICU and an important aspect for translational engineering
research for the deployment of Big Data solutions in
healthcare.

II. RELATED WORK
Current cutting edge health informatics research projects aim
to discover new condition onset behaviors that are evident in
physiological data streams earlier than traditional detection of
conditions in critical care data [7]. To do this, some hospitals
may participate in pilot programs that aim to collect real-
time patient data from network enabled monitoring devices.
This collected data is then analyzed to extract relevant tem-
poral behaviors and usually stored for future data mining and
analysis operations.

Historically physiological stream monitoring of ICU
patients has been provided by regulatory body approved
medical devices located at the patients bedside. While there
has been a growing body of biomedical engineering and
clinical research over the past 20-30 years proposing newer
approaches for advanced physiological waveform monitor-
ing they still predominantly have either a physiological
stream, clinical condition or patient centric approach [7].
Zhang et al. [10] have discussed the implementation of a
Health Data StreamAnalytics System called the Anaesthetics
Data Analyzer (ADA). The ADA has been developed to
provide anaesthetists with the ability to monitor and query
trends in physiological signals data, a kind of stream data
from the health care domain.

Bressan et al. demonstrated the use of drug dose data
when synchronized with physiological data streams in a
contextualized system had a strong correlation with heart
rate variability, weigh and maturation in the premature
infants population. The design and deployment of a
Pharmacokinetic/Pharmacodynamics simulator for the
Artemis platform combining it with physiological data will
allow for the development of an advanced decision support
tool to aid clinicians in developing personalized drug dossing
for infants in the neonatal intensive care unit [11].

The multi-patient, multi-stream and multi-diagnosis struc-
ture of Artemis Cloud enable the inclusion of infusion drug
data into medical algorithms. In a recent study [12], the
late onset Sepsis algorithm by [13] was improved with
the addition of morphine concentration. The infusion drug
data contextualized the physiological data resulting in 100%
of accuracy to identify false positives in the late-onset of
neonatal sepsis (LONS) Risk Score. The analytical modeling
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described in this paper provides a better understanding of the
computational requirements to include infusion devices into
the streaming process of Artemis Cloud and how efficiently
deploy infusion drug data into medical algorithms.

Cloud computing has attracted considerable research atten-
tion, but only a small portion of the work completed so far
has addressed performance issues, and a rigorous analyti-
cal approach has been adopted by only a handful among
these [14]–[17]. Many research works have carried out a
measurement-based performance evaluation of the Amazon
EC2 [14], [18], IBM Blue Cloud or other cloud providers
in the context of scientific computing [14], [16], [19].
Khazaei et al. [20] proposed various analytical models
for performance evaluation of cloud computing centers;
however, the authors investigated performance metrics
related to generic cloud centers as opposed to a cloud-based
solution for a specific domain.

Hayes et al. [21] proposed an analytical model for a
proposed infrastructure which is supporting an in-house
deployment of Artemis. Khazaei et al. [9] modeled a version
of Artemis project deployed at SickKids Hospital in Toronto;
however that modeling is specific to SickKids’s NICU
which has different types of patients, monitors, and analytics

compared to McMaster Children’s Hospital. In addition, that
work did not incorporate load testing that included smart
infusion pump data.

Artemis is a unique system that permits multi device
analysis and interpretation of the data at the rate it is gen-
erated. Previous approaches have been either data stream
centric such as only processing electrocardiogram, condition
centric, such as focusing on a condition such as late onset
neonatal sepsis or patient centric to enable monitoring of the
onset of patient instability. Artemis is a Big Data platform
that is multi-dimensional catering for all these requirements
simultaneously. In addition, it is unique as nearly all other
systems use down sampled data and can not combine data
from multiple sources. e.g. monitor, pumps and ventilator
to produce new information that has not previously been
available.

III. METHOD
Artemis is an approach for online health analytics of high
speed physiological data bootstrapped with historical ana-
lytics that had been performed on various patients’ medical
data. Table 1 describes the acronyms and terms that we used
in Figs. 1, 2 and in the text. We also describe the studies

FIGURE 1. The high level architecture of Artemis Cloud. The hospital environment on the top left; realtime processing platform on top right; Data archival,
data mining and knowledge discovery on bottom right; and visualization of live and historic data on the bottom left.
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TABLE 1. Descriptions of acronyms and algorithms.

(i.e., algorithms) that have been developed by leveraging
Artemis platform.

Now we describe the architecture of Artemis with respect
to Fig. 1. Artemis Cloud is capable of gathering physiological
and infusion pump data from a vast variety of medical
devices and monitors (top left box) in a secure way.
Anonymization and potential transformation are performed
on the data before transmitting from the hospitals. Artemis
Cloud also has an interface for communicating with a hospital
clinical information management system in order to obtain
complementary information about patients. Artemis Cloud
utilizes a Hospital Interface (top middle box) which per-
forms the extraction, transformation and load of data
(i.e., ETL capabilities) on the one hand, and on the other hand
facilitates the management of hospitals’ connections to the
back end cloud. This interface improves the extendability and
modularity of the cloud based Artemis.

The core of Artemis Cloud’s real-time functionality is a
stream computing middleware component (top right box),
IBM InfoSphere Streams (Streams, hereafter), which pro-
vides scalable processing ofmultiple streams of high-volume,
high-rate data. Streams provides Artemis Cloud with a very
extendable real-time execution environment. An application
in Streams, consists of a set of operator nodes interconnected
in a graph. Each operator node inputs one or more streams
and produces one or more output streams.

In addition to real-time analytics capabilities, Artemis
Cloud is able to provide at-rest analytics (i.e., retrospective
analysis) for stored data (bottom right box). Incorporating
IBM InfoSphere BigInsights (IBM distribution of Hadoop
ecosystem), offers great power of analysis as well as
persistence storage. Researchers can apply data mining
techniques [13], machine learning algorithms and statistical
modeling, against vast amount of stored information and
find new rules which may help provide earlier detection
of diseases. Such new rules or modified parameters can
be deployed to the real time analysis platform seamlessly.

FIGURE 2. Types of patients (preterm and surgical term babies) at
McMaster NICU. Neonates have been classified based on their
Gestational age.

The deployment server is responsible for applying new rules
and parameters to the real-time environment.

Artemis Cloud also utilizes a relational database in
the data integration component which is interfaced with
Streams to store the fresh data arriving from hospitals
(Data Integration box). Research user interface and visualiza-
tion components (bottom left box) visualize the real-time and
historical data. Fig. 1 shows the architecture of the Artemis
Cloud that is currently being deployed at McMaster. As IBM
is one of the partners in this research, we have realized the
architecture by IBM products.

One of the key benefits of Artemis Cloud is that it is
automated and requires almost no staff input for gathering
the data. The output of information from this system will
require both research and systematic education however,
with the graphical interfaces that are being designed to do
this it should require no more education than a bedside
medical device. As a result such a system when delivered
through the cloud will require only one or two experts such as
medical/computing engineers to maintain the local system
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TABLE 2. Estimate of patients and their infusion pumps statistics in McMaster’s NICU. This estimates are based on expert opinion and data from
the last 3 months of the unit.

and this level of training is the same as any hospital computer
system. By careful design of the output we mitigate the
need for long term extensive on site training and improve
acceptance.

IV. MODELING OF McMaster NICU
In order to model the NICU at McMaster hospital we tried
to use real data as much as possible. In this section, we
describe the patient journey and infusion pumps statistics
obtained directly from McMaster’s NICU. All these inputs
are required for characterizing the target infrastructure at
McMaster’s NICU.

Fig. 2 and Table 2 show the patient journey and infusion
pumps statistics for the NICU at McMaster Hospital
respectively. These two describe the NICU as follows.

As can be seen (Fig. 2), McMaster Children’s Hospital
has 47 NICU beds including different types of patients.
A new patient will be accommodated to NICU once per
hour on average. Patients are categorized based on their
ages and conditions into preterm/term and complex/standard
respectively. Forty percent of patients, including term and
preterm babies, are referred to McMaster’s NICU for surgical
purposes. Approximately, surgical babies stay at hospital for
6–12 weeks and 9 medical algorithms will be applied for
after-surgery monitoring. The rest of patients, i.e. preterm
babies, are classified into four categories; babies who are born
in 37–40+, 32–37, 27–32 and 23–27 weeks of their gestation
age. All these patients will be monitored by 8 or 9 real-time
medical algorithms.

Table 2 shows that the complex surgical patients (i.e., 10%)
requires 6 pumps for 14 days and then 3 pumps for 60 days;
they also need 2 pumps for 14 days which are operating only
2 hours a day. If a surgical baby is indicated as standard
patients (i.e., 30% of the whole patient population), they will
be in need of 3 pumps for 15 days continuously, and one
pump for 10 days for 1 hour a day intermittently. The first
group of preterm babies (i.e., 37–40+) will be hospitalized
for 3–5 days; in case of complex patients, 3 infusion pumps
operates for 10 days and then 1 pump for 5 days continuously.
Also 2 pumps for 14 days will complement the injection
for only 2 hours a day. If they are standard patients, they
require 3 pumps for 5 continuous days and one pump for
5 intermittent days, activated only for 1 hour per day. It worth
noting that Artemis platform does not intend to control and/or
automatically calculate drug dosing in infusion pumps.

As Fig.2 suggests, McMaster NICU can be modeled as
a single heterogeneous finite queue with multiple service
facilities which are working in saturation regime. Each type
of patients has distinct characteristics in terms of service
duration and number of algorithms. Algorithms are also dif-
ferent in terms of required computational resources. Each
class of patients needs a different number of infusion pumps
for various length of stay continuously or discreetly. The
McMaster NICU receives more admission requests that it has
space for so that the NICU is always full and there is rarely
any vacant bed - and this assumption has been used for the
model.

In order to characterize medical algorithms, we use the
real data obtained from a previous pilot deployment at
SickKids Hospital NICU. Provided that, we are able to model
the infrastructure at McMaster and predict the amount of
computational capacity, storage andmemory that are required
to support a reliable real-time monitoring followed by storing
all relevant data for further analysis. (The clinical data pro-
vided in this paper is from expert opinion based from summa-
rized data about the NICU stays and as a result research ethics
board approval was not deemed required for this research.)

Algorithms for the Artemis platform are developed
either using data mining techniques or identifying patterns
described in the medical literature that have not previously
been detectable using automated methods. These algorithms
are validated in robust clinical trials before being used to
provide decision support for clinicians. Examples of this
include our research using Artemis for late onset neonatal
sepsis [22], apnoea of prematurity [3], [23], premature infant
pain [24], anemia of prematurity [25] and sleep wake cycling
detection [26] in neonates. For example, the clinical rule
‘‘If a pause in breathing occurs for greater than 20 seconds, or
a pause in breathing that is associated with a change in heart
rate, or blood oxygen saturations happens’’, then a reportable
condition of apnea is present [3].

V. ANALYTICAL MODELING OF THE PROPOSED METHOD
We use Kendall notation to describe the characteristics of the
queuing systems that we focus on. The notation is of the form
‘‘A/S/s/c/p/D’’ in which A stands for the description of
the arrival process; S stands for the service time distribution,
s stands for the number of servers in the system and can be any
integer equal or larger than 1; c stands for the capacity of the
queue. If this argument is missing, then, by default, the queue
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capacity is infinity; p stands for the system population. If this
argument is missing then, by default, the system population
is infinity; D stands for the queuing discipline, which can be
FIFO, LIFO, or any other queuing discipline. If this argument
is missing, then, by default, the queuing discipline is FIFO.

We model the Artemis Cloud platform as an M/G/m/m
queuing system which (M stands for Markovian, corresponds
to homogeneous point process) indicates that the inter-arrival
time of patients arrival is exponentially distributed with the
mean value of λ, while patients’ resident time at NICU are
independently and identically distributed random variables
that follow a general distribution with mean value of µ.
The system under consideration contains m servers (i.e.,
bed spaces) that renders service in order of patients arrivals
(First-In-First-Serve, FIFS). The capacity of system is m
which means there is no extra room for queuing patients.
As the population size of newborns is relatively high while
the probability that a given newborn baby to be preterm
is relatively small, the arrival process can be modeled as a
Markovian process [20]. By such a modeling we are not only
able to characterize current McMaster NICU but also predict
the required resources in case of expansion in the future.

Since there is no indication either in academia or industry
to assume any well-known probability distribution for dura-
tion of patients’ residence in NICU, we consider a generally
distributed random variable for the patient resident time in
NICU. One possible scenario is to consider the hospital-
ization of each type of patient at McMaster’ NICU as an
exponentially distributed random variable with distinct mean
value. Therefore, the overall visiting time for all patients will
be a five-stage hyper-exponentially (HE) distributed random
variable. We assume this scenario for numerical validation.
Assuming that, the mean value of hospitalization is [20]:

E[x] =
∫
∞

−∞

xf (x)dx =
n∑
i=1

pi

∫
∞

0
xλie−λixdx =

n∑
i=1

qi
λi

(1)

in which qi and 1/λi are the probability of being patient
type i and corresponding mean value of residence time
in NICU, respectively. Thus, the queuing system that we
need to solve and obtain the performance metrics is of
type M/HE/m/m. Characterizing multiple queuing systems
with non-exponential distributed service time is not exactly
tractable [20], [27]; however, since M/HE/m/m queuing
system has no extra capacity than service facilities, it works
exactly the same as M/M/m/m queuing systems [20], for
which the steady-state probabilities (i.e., the probability of
having k patients in the NICU in equilibrium) is given by

pk =
ρk

k!∑m
n=0

ρn

n!

(2)

in which ρ = λ/mµ and m is the number of bed spaces.
Traffic intensity (aka offered load) is defined as arrival rate
over service rate. In this model, blocking refers to when an
admission request to McMaster’s results in the patient being

redirected to other hospitals. Blocking probability can be
obtained as:

Pb =
ρm

m!∑m
n=0

ρn

n!

(3)

The probability generating function (PGF) will be:

P(z) =
m∑
k=0

pkzk (4)

And the effective patients arrival rate (i.e., the rate of patients
who can get through the NICU) is

λe = λ(1− Pb)

Now, we can obtain the desired performance metrics. The
mean number of patients in NICU is the first derivative of
P(z) when z = 1.

p = P
′

(z)|z=1 (5)

By Little’s law [20], the mean patient residence time is

t =
p
λe

(6)

VI. NUMERICAL RESULTS
The analytical model presented above has been implemented
in Maple 18 [28] in order to obtain the numerical results.
First we characterize the performance metrics for the cur-
rent configuration of Artemis Cloud at McMaster which
was described in section IV. Table 3 shows the amount
of data collected from each NICU bed during 24 hours
in Megabytes [9]. Artemis collects all these physiological
data regardless of patients’ type for the sake of complete-
ness of archival. Table 4 shows the obtained performance
metrics and important exogenous parameters for the current
capacity.

The average length of stay for patients is 42 days and
each patient requires 9 algorithms on average in Streams.

TABLE 3. Type and amount of physiological data acquired by Artemis
Cloud at SickKids: for one patient during 24 hours.
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TABLE 4. Configuration parameters and performance metrics for current
capacity of McMaster NICU.

Each algorithm is approximately consuming 110 MB of
memory which indicates the requirement of at least 41 GB
of memory for the stream computing cluster. Note that this
amount of memory is just for application hosts and the man-
agement hosts require at least 2 more GBs of memory. As can
be seen, the amount of minimum storage for Hadoop cluster
in order to only support the accommodation of raw physio-
logical and infusion pump data for one year is 40 Terabytes.
Depending on data schema design on BigInsights cluster,
additional storage might be required for the metadata.
Moreover, the storage required for non-physiological data
such as patient information, lab results and other related
medical data should be added on top of these calculations.

Fig. 3 shows the amount of storage for BigInsights cluster,
for 20, 47, 80, 110, 140 and 170 beds in the NICU.

FIGURE 3. Required storage for BigInsights cluster for different
configurations.

FIGURE 4. Blocking probability for different configurations.

These capacities are as sample extensions of the NICU in the
future. Note that this amount is only for raw physiological and
infusion pump data acquired from NICU. As can be seen, the
amount of storage increases linearly with respect to NICU
capacity up to 80 beds. However, afterward, since the traffic
intensity, which is the ratio of arrival rate to service rate, gets
decreased, the amount of required storage does not increase
sharply. Also, as can be noticed for more than 110 beds
the amount of required storage remains unchanged which
indicates the departure rate of patients is more than patients
arrival rate. In other words, for one year, 40 TB of storage
is sufficient for the McMasters NICU regardless of NICU’s
capacity (i.e., the number of bed spaces).

We are also interested in studying the number of patients
that get blocked, i.e. redirected to another NICU, due to the
capacity limitations of the NICU of interest. To this end, we
characterize the blocking probability for the NICU with the
capacity of 30 to 170 beds. As can be seen (Fig. 4), for the
current capacity of McMaster’s NICU (i.e., 47 beds) %44.8
of patients get blocked. However, by increasing the capacity
to 110 beds, the blocking will be less than a percent.

We also investigated the amount of memory and compu-
tation power for the stream computing cluster for different
configurations. Fig. 5 shows the trend of required memory
and number of CPU cores with respect to number of beds.
Up to 110 beds there is a linear dependency between the
required memory and capacity; however, as can be seen,
results show that 75 GB of memory will suffice for the
Streams cluster based on these arrival and departure rates. Our
calculation for computation power is based on the standard
CPU cores, i.e., 2.00GHz core, on IBMSoftlayer [29] and our
experiments that revealed that for each group of 20 algorithms
we need a dedicate standard CPU core. As can be seen, the
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FIGURE 5. Required memory and cpu cores for Streams cluster.

trend for computation power is almost similar to memory
which explained above. Therefore a cluster comprising of
40 cpu cores can handle the required computation for
McMaster NICU. We shall repeat the fact that this amount of
memory and computation power are just for application hosts
and depending on the deployment of management servers,
extra resources might be needed.

VII. CONCLUSION
We have described and modeled the Artemis cloud deploy-
ment at McMaster’s hospital. In light of the proposed archi-
tecture and patient journey, the corresponding analytical
model has been designed and developed. Using the perfor-
mance model, important performance metrics such as mean
number of patients in NICU, mean patient residence time,
mean number of required medical algorithms and blocking
probability were characterized and discussed. Based on our
pilot project at SickKids, we identified the amount of required
storage, memory and computation power for analytics and
real time components respectively. We obtained interested
performance indicators and design parameters for different
configurations. Provided that, capacity planning and what-if
analysis can be attainable for big data growth introduced by
extension of the NICU at McMaster hospital.

Analytical modeling described in this paper is generaliz-
able to other NICUs. We only need to identify the capacity
(i.e., no. of beds), types of patients, statistics of infusion
pumps and arrival rate of patients. This approach can be
applied to other ICUs beyond the NICU such as the pediatric
and adult ICUs with the new profiling information for patient
populations within those ICUs. In the long run, this work
supports our implementation of the expanded Artemis Cloud
as a commercial offering to healthcare facilities in Canada

and worldwide to provide a cloud computing service to
critical care.

Please note that medico-legal aspects of the use Big Data
techniques to acquire, process and store high frequency
physiological data and its impact on assessment of liability
are beyond the scope of this paper. Our current deployments
are all researched based and as such do not impact liability
of clinicians as the data is not available to the public and
is provided by parents for the sole use of research. In the
future our architecture enables individual healthcare facilities
to determine the data retention and use policies to support
their needs.
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