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ABSTRACT Single-image super resolution is a process of obtaining a high-resolution image from a set
of low-resolution observations by signal processing. While super resolution has been demonstrated to
improve image quality in scaled down images in the image domain, its effects on the Fourier-based image
acquisition technique, such asMRI, remains unknown.We performed high-resolution ex vivo late gadolinium
enhancement (LGE) magnetic resonance imaging (0.4 × 0.4 × 0.4 mm3) in postinfarction swine hearts
(n = 24). The swine hearts were divided into the training set (n = 14) and the test set (n = 10), and in
all hearts, low-resolution images were simulated from the high-resolution images. In the training set, super-
resolution dictionaries with pairs of small matching patches of the high- and low-resolution images were
created. In the test set, super resolution recovered high-resolution images from low-resolution images using
the dictionaries. The same algorithm was also applied to patient LGE (n = 4) to assess its effects. Compared
with interpolated images, super resolution significantly improved basic image quality indices (P < 0.001).
Super resolution using Fourier-based zero padding achieved the best image quality. However, the magnitude
of improvement was small in images with zero padding. Super resolution substantially improved the spatial
resolution of the patient LGE images by sharpening the edges of the heart and the scar. In conclusion, single-
image super resolution significantly improves image errors. However, the magnitude of improvement was
relatively small in images with Fourier-based zero padding. These findings provide evidence to support its
potential use in myocardial scar imaging.

INDEX TERMS Image processing, image quality, magnetic resonance imaging, myocardial scar.

I. INTRODUCTION
Late gadolinium enhancement (LGE) MRI can visualize the
regions of fibrosis or scar in the heart, mainly from previous
myocardial infarction (MI) [1]. Recent evidence suggests that
the complex geometry of the scar determines the propensity
to ventricular arrhythmia [2], and predicts death [3]. Our pre-
vious work using high-resolution ex vivoMRI demonstrated a
critical link between the complex scar geometry and electrical
circuits of ventricular arrhythmia [4]. However, the spatial
resolution of clinical cardiac MRI is not sufficiently high to
allow reconstruction of the complex scar geometry. Improved
resolution of clinical cardiac MRI would allow qualitative
assessment of the scar and more appropriate utilization of

clinical image data to predict lethal arrhythmia, guide therapy
and prevent death.
To improve the spatial resolution of an imaging system,

one straightforward approach is to directly acquire a high-
resolution image. This solution, however, may not be feasible
due to higher noise levels associated with high-resolution
image acquisition, longer acquisition time and higher hard-
ware cost such as in high and ultra-high field system. Another
approach is to accept the image degradations, and use sig-
nal processing to post-process the captured images, to trade
off computational cost with the hardware cost. These tech-
niques are referred to as super-resolution reconstruction.
Specifically, super resolution is the process of obtaining
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a high-resolution image from a set of low-resolution obser-
vations, thereby increasing the high-frequency components
and removing the degradations caused by the process of
inherently blurred image acquisition. There are a number of
methods to perform super resolution while preserving edges
and small details [5].

In this work, we applied an algorithm for single-
image super resolution [6] to myocardial scar imaging to
quantitatively assess its effects. The algorithm uses sparse
representation and operates by training a pair of low- and
high-resolution dictionaries, using either training images or
exploiting a lower-resolution version of the same image to
be handled. While this algorithm of super resolution has
been demonstrated to improve image quality in scaled down
images in the image domain [6], its effects on the Fourier-
based image acquisition technique such as MRI remains
unknown. To investigate the effects of single-image super res-
olution on Fourier-based and image-based methods of scale-
up, three separate data analyses were conducted using the
same sets of images.

II. METHODS
A. ANIMAL STUDY PROTOCOL
The animal protocol was approved by the Animal Care and
Use Committee of the Johns Hopkins University School of
Medicine. In domestic swine (25 to 35 kg, n=24), the mid–
left anterior descending coronary artery was occluded for
150 minutes using a balloon angioplasty catheter (2.7 Fr) via
a carotid artery to create MI under general anesthesia [4].
Ten to twelve weeks after MI, high-resolution ex vivo MRI
[4] was conducted to visualize myocardial scar geometry.
Fifteen minutes after intravenous administration of heparin
5,000 IU and Gd-DTPA (Magnevist, gadolinium diethylene
triamine pentaacetic acid, Berlex) at 0.20 mmol/kg, the ani-
mals were euthanized, and the hearts were removed and
filled with vinyl polysiloxane. Each heart was scanned in a
1.5-Tesla scanner (Avanto, Siemens Medical Solutions) with
a 3D gradient recalled echo (GRE) sequence to visualize
the myocardial scar (bandwidth, ±130 Hz/pixel; flip angle,
20◦; echo time/repetition time, 4.02/9.7 ms; field of view,
100× 100 mm2; image matrix, 256× 256; spatial resolution,
0.4 × 0.4 × 0.4 mm3).

B. DATA ANALYSIS
The high-resolution image data sets (0.4 × 0.4 mm2 in-
plane) from swine ex vivo imaging were divided into the
training set (n=14) and the test set (n=10). In both sets, the
image data from each heart consisted of 100 short-axis (SAX)
images and 50 long-axis (LAX) images (= total 150 images
per heart) to only include the ventricles. MATLAB R2013a
(Mathworks, Inc., Natick, MA) was used for data analysis.
The single-image super-resolution algorithm (available at
http://www.cs.technion.ac.il/∼elad/software/) was modified
to fit the objectives of the study and the specific computa-
tional environment (3.4 GHz Intel Core i7×4, 32GB RAM
and 3TB hard drive).

C. TRAINING SET
The details of the original algorithm are described in
Zeyde et al. [6]. Briefly, in the training sets (n=14 hearts, total
1,400 SAX images and 700 LAX images), the high-resolution
image {yjh}j (a 256 × 256 matrix) was blurred and scaled-
down by a factor of s (Fig. 1).

zjl = Hyjh + vj (1)

where H represents an operator to create the low-resolution
image {zjl}j (a 64 × 64 matrix) from the high-resolution

image {yjh}j (a 256 × 256 matrix), and v an additive white
Gaussian noise. In this study s=4 was chosen because the in-
plane resolution of clinical myocardial scar imaging (∼ 1.6×
1.6 mm2) is approximately 4 times lower than that of the
high-resolution image data sets (0.4 × 0.4 mm2). The low-
resolution image {zjl}j (a 64 × 64 matrix) was then scaled-up
by a factor of 4 to the original size (a 256 × 256 matrix) by
an interpolation operator Q.

yjl = Q
(
Hyjh + vj

)
= QHyjh+Qvj = Lallyjh + ṽ

j (2)

The methods of scale-up and scale-down are described in
the following section (‘‘E . Three comparative analyses’’).
Both the high-resolution {yjh}j and interpolated images {yjl}j
were pre-processed with high-pass filters, and were divided
into small overlapping patches pkh and pkl , and the pairs of
matching patches were extracted to form the training dictio-
nary P = {pkh, p

k
l }k . Each of these patch-pairs underwent a

pre-processing stage that removes the low-frequency compo-
nents from pkh and extracts features frompkl . Dimensionality
reduction using principal component analysis (PCA) was
also applied on the features of pkl , making the dictionary
training step much faster. A low-resolution dictionary Al was
trained for the low-resolution patches using the K-SVD
algorithm [7], such that they could be represented sparsely.
A corresponding high-resolution dictionary Ah was con-
structed for the high-resolution patches, such that it matched
the low-resolution dictionary Al.

D. TEST SET
In the test image sets (n=10 hearts, total 1,000 SAX images
and 500 LAX images), as in the training set, low-resolution
images (a 64 × 64 matrix) were also constructed from
the high-resolution images (a 256 × 256 matrix) by scale-
down by a factor of 4, and the low-resolution images
(a 64 × 64 matrix) were scaled up to the destination size
(a 256 × 256 matrix) by interpolation. Pre-processed low-
resolution patches pkl were extracted from each location, and
then sparse-coded using the trained low-resolution dictio-
nary Al. The representations {qk} found in the low-resolution
dictionary Al were then used to recover the high-resolution
patches pkh by multiplying them with the high-resolu
tion dictionary Ah (pkh = Ahqk ). The recovered high-
resolution patches {pkh were merged by averaging in the over-
lap area to create the resulting image (a 256 × 256 matrix).
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FIGURE 1. Algorithm of single-image super-resolution using sparse representation. The details of the algorithm are described in Zeyde et al. [6]. A. Training
set (n=14 hearts, total 2,100 images). In the original high-resolution late gadolinium enhancement (LGE) image (a 256 × 256 matrix), the region of high
signal intensity (SI) (= bright pixels) indicates myocardial infarction (MI). The high-resolution image was scaled down by a factor of 4 to generate a
low-resolution image (a 64 × 64 matrix). The low-resolution image was then scaled up by a factor of 4 to the original size (a 256 × 256 matrix) by
interpolation. The methods of scale-up and scale-down are shown in Fig. 2. Both the high-resolution and interpolated images were divided into small
overlapping patches, and the pairs of matching patches were extracted to form the training dictionary. Each of these patch-pairs underwent a
pre-processing stage that removes the low-frequency components from high-resolution patches and extracts features from low-resolution patches.
Dimensionality reduction using principal component analysis (PCA) was also applied on the features of the low-resolution patches, making the dictionary
training step much faster. A low-resolution dictionary Al was trained for the low-resolution patches using the K-SVD algorithm [7], such that they could be
represented sparsely. A corresponding high-resolution dictionary Ah was constructed for the high-resolution patches, such that it matched the
low-resolution dictionary Al. B. Test set (n=10 hearts, total 1,500 images). As in the training set, low-resolution images (a 64 × 64 matrix) were also
constructed from the high-resolution images (a 256 × 256 matrix) by scale-down by a factor of 4, and the low-resolution images (a 64 × 64 matrix) were
scaled up to the destination size (a 256 × 256 matrix) by interpolation. Pre-processed low-resolution patches were extracted from each location, and then
sparse-coded using the trained low-resolution dictionary Al. The representations found in the low-resolution dictionary Al were then used to recover the
high-resolution patches by multiplying them with the high-resolution dictionary Ah. The recovered high-resolution patches were merged by averaging in
the overlap area to create the resulting image (a 256 × 256 matrix).

E. THREE COMPARATIVE ANALYSES
In this study, to compare the effects of super resolution
on different methods of scale-up, three separate data anal-
yses were conducted using the same sets of LGE images
(Fig. 2). Separate sets of dictionaries were created for each
analysis. A. Zero-padding. Because MRI is a Fourier-based
image acquisition technique and the image data are acquired
in k-space, the most logical method to simulate a low-
resolution image from a high-resolution image is to remove
coefficients in k-space. A fast Fourier transform (FFT)
was applied to the high-resolution image to compute the

high-resolution k-space (a 256 × 256 matrix). The
low-resolution k-space was simulated by extracting the cen-
tral, low-frequency components (a 64 × 64 matrix) of the
high-resolution k-space. The magnitude of the low-resolution
k-space was corrected by a factor of 16 (=4 × 4) and
smoothed by a Fermi window to simulate a low-resolution
acquisition. The low-resolution image (a 64 × 64 matrix)
was obtained as an FFT of the low-resolution k-space. The
interpolated image (a 256 × 256 matrix) was obtained by
padding zeros around the low-resolution k-space to restore
the original size (a 256 × 256 matrix), and by applying
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FIGURE 2. Three comparative analyses. A. Zero-padding. A fast Fourier transform (FFT) was applied to the high-resolution image to compute the
high-resolution k-space (a 256 × 256 matrix). The low-resolution k-space was created by extracting the central, low-frequency components (a 64 × 64
matrix) of the high-resolution k-space. The magnitude of the low-resolution k-space was corrected by a factor of 16 (= 4 × 4) and smoothed by a Fermi
window to simulate a low-resolution acquisition. The low-resolution image (a 64 × 64 matrix) was obtained as an FFT of the low-resolution k-space. The
interpolated image (a 256 × 256 matrix) was obtained by padding zeros around the low-resolution k-space to restore the original size (a 256 × 256 matrix),
and by applying inverse FFT to the zero-padded k-space. This is mathematically equivalent to convolution with a sinc function. B. Bicubic 1. The
low-resolution image (a 64 × 64 matrix) was created as in the zero-padding group. The interpolated image (a 256 × 256 matrix) was created by applying
bicubic interpolation to the low-resolution image. C. Bicubic 2. The low-resolution image (a 64 × 64 matrix) was created by spatially averaging the
high-resolution image (a 256 × 256 matrix). The interpolated image (a 256 × 256 matrix) was created by applying bicubic interpolation to the
low-resolution image.

inverse FFT to the zero-padded k-space. This is mathemat-
ically equivalent to convolution with a sinc function. The
process of zero-padding in k-space is the typical interpolation
routine used in MRI systems. B. Bicubic 1. This analysis
was conducted to compare the effects of super resolution
between zero-padding and bicubic interpolation, a commonly
used interpolation method outside the MRI field. The low-
resolution image (a 64 × 64 matrix) was simulated as in the
zero-padding group. The interpolated image (a 256 × 256
matrix) was created by applying bicubic interpolation to
the low-resolution image. C. Bicubic 2. This analysis was
conducted to serve as a positive control of the super resolution

technique. Spatial averaging as a method of scale-down and
bicubic interpolation as a method of scale-up are commonly
used to evaluate the effects of super-resolution techniques [6].
The low-resolution image (a 64 × 64 matrix) was created by
spatially averaging the high-resolution image (a 256 × 256
matrix). The interpolated image (a 256× 256matrix) was cre-
ated by applying bicubic interpolation to the low-resolution
image.

F. ERROR ANALYSIS
To measure the differences between the original high-
resolution image and the interpolated image or the super
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FIGURE 3. Pixelwise absolute error vs. high-resolution image. Each column shows pixelwise absolute error in SI between the high-resolution
image and the interpolated image (‘‘Interpolation’’) or the super resolution image (‘‘Super Resolution’’). The bottom row represents the
absolute difference in SI between the interpolated image and the super resolution image. The columns indicate the results from three
comparative analyses, including A. Zero-padding, B. Bicubic 1, and C. Bicubic 2.

resolution image, we used 4 separate indices: mean absolute
error (MAE), root mean square error (RMSE), peak signal-to-
noise ratio (PSNR) and universal image quality index (UIQI)
[8], [9].

MAE between a reference image r(x, y) and a test image
t(x, y) of the size nx × ny is defined as

MAE =
1

nx · ny
·

nx∑
i=1

ny∑
j=1

∣∣r (xi, yj)− t(xi, yj)∣∣ (3)

RMSE is defined as

RMSE =

√√√√ 1
nx · ny

·

nx∑
i=1

ny∑
j=1

[
r
(
xi, yj

)
− t(xi, yj)

]2 (4)

PSNR (in dB) is defined as

PSNR = 10 · log10

 max
[
r
(
xi, yj

)]2
1

nx ·ny
·

nx∑
i=1

ny∑
j=1

[
r
(
xi, yj

)
− t(xi, yj)

]2


= 10 · log10

[
max

[
r
(
xi, yj

)]2
RMSE2

]
(5)

UIQI is defined as

UIQI =
4σxyr̄ · t̄

(σ 2
x + σ

2
y )(r̄2 + t̄2)

(6)
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FIGURE 4. Error measurements vs. high-resolution image. Values are mean ± SD. Black and white bars represent interpolated and super resolution
images, respectively. The sample size was n=1,000 for short-axis (SAX) images, and n=500 for long-axis (LAX) images. *: P<0.001 vs. Interpolation;
#: P<0.001 vs. zero Padding.

where

r̄ =
1

nx · ny
·

nx∑
i=1

ny∑
j=1

r
(
xi, yj

)
(7)

t̄ =
1

nx · ny
·

nx∑
i=1

ny∑
j=1

t
(
xi, yj

)
(8)

σ 2
x =

1
nx · ny − 1

·

nx∑
i=1

ny∑
j=1

[
r
(
xi, yj

)
− r̄

]2 (9)

σ 2
y =

1
nx · ny − 1

·

nx∑
i=1

ny∑
j=1

[
t
(
xi, yj

)
− t̄
]2 (10)

σxy =
1

nx · ny − 1
·

nx∑
i=1

ny∑
j=1

[
r
(
xi, yj

)
− r̄

] [
t
(
xi, yj

)
− t̄
]

(11)

G. PATIENT PROTOCOL
We applied the super resolution algorithm to clinical MRI
of the patients with ischemic heart disease (n=4). The
study was approved by the Institutional Review Board
of the Johns Hopkins Medical Institutions. The patients
underwent cardiac MRI with LGE on a 1.5-Tesla scanner

(Avanto, Siemens Medical Solutions) with the standard
6-element cardiac phased-array receiver coil and the spine
coil. Ten to twelve contiguous short-axis slices were pre-
scribed to cover the entire left ventricle. LGE images were
acquired 15 to 30 minutes after an intravenous injection
of Gd-DTPA at 0.20 mmol/kg with a standard non-phase-
sensitive inversion recovery sequence. Representative imag-
ing parameters were as follows: repetition time 1 heartbeat
(∼700-1000 ms), echo time 3.32 ms, in-plane spatial res-
olution 1.25-1.9 mm, 10-mm slice thickness, 0-2-mm gap,
inversion time 175 to 280 ms (adjusted to null the signal
of normal myocardium), flip angle 25◦ and a GRE read-
out. Each image acquisition was ECG gated, and the image
was acquired during a single, typically end-expiration, breath
hold.

H. SUPER RESOLUTION IN PATIENT IMAGES
The original, standard clinical MRI (low-resolution) images
were scaled up to the destination size by a factor of 4
using the zero padding and the bicubic 1 methods described
above. Bicubic 2 was not used because there was no original
high-resolution patient image available from which to create
a spatially averaged image. Using the respective dictionaries
created using the swine training sets, high-resolution images
were reconstructed as described above.
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FIGURE 5. Error measurements vs. high-resolution image (continued). Values are mean ± SD. Black and white bars represent interpolated
and super resolution images, respectively. The sample size is n=1,000 for short-axis (SAX) images, and n=500 for long-axis (LAX)
images. *: P<0.001 vs. Interpolation; #: P<0.001 vs. zero Padding.

I. STATISTICAL ANALYSIS
Values are means ± standard deviation (SD). A Student’s
t-test was used to compare super-resolution and interpolated
images for each error index. A Student’s t-test was also used
to compare zero-padding and two other interpolationmethods
(bicubic 1 and bicubic 2). A P value <0.05 is considered
statistically significant. Statistical analysis was performed
using MATLAB (Statistical Toolbox, MathWorks, Inc,
Natick, MA).

III. RESULT
A. COMPUTATION TIME
Training of each set of dictionary took approximately
1.5 hours. The process of super resolution took less than
2 seconds per image.

B. QUALITATIVE PIXELWISE ERROR ANALYSIS
In Fig. 3, each column shows pixelwise absolute error in
signal intensity (SI) between the high-resolution image and
the interpolated image or the super resolution image. The
bottom row represents the absolute difference in SI between
the interpolated image and the super resolution image. The
columns indicate the results from three comparative analyses,
including zero padding, bicubic 1, and bicubic 2. In zero
padding (left column), the absolute error of the interpolated
image was relatively low (top row). The region of high error
was concentrated at the edges of the heart and was evenly
spread out throughout the heart. The absolute error of the

super-resolution image was equally low (middle row) and
there was only small difference between the interpolated and
the super-resolution images (bottom row). In contrast, in bicu-
bic 1 (middle column), the absolute error of the interpolated
imagewas substantially higher at the edges, particularly in the
scar region (septum), reflecting the blurring effect of image-
based interpolation (top row). The absolute error of the super-
resolution image was visually lower overall (middle row),
particularly in the scar region (septum), making the differ-
ence between the interpolated and super-resolution images
relatively high (bottom row). In addition, the absolute error
of the super resolution image (middle row) was somewhat
higher compared to that of the super-resolution image in zero
padding. In bicubic 2 (right column), the absolute error of the
interpolated image (top row) appears slightly higher than that
of zero padding. The regions of high errors were spotty and
not contiguous. This is likely the effect of image-based spatial
averaging to create a low-resolution image from the high-
resolution image. The absolute error of the super-resolution
image (middle row) was visually similar to that of the inter-
polated image and there was small difference between the
interpolated and the super-resolution images (bottom row),
except in the scar region.

C. QUANTITATIVE ERROR ANALYSIS
Figs. 4 and 5 show the results of quantitative error analy-
sis using the indices described above. The sample size was
n=1,000 for SAX images, and n=500 for LAX images.
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TABLE 1. Magnitude of improvement by super resolution. Percent improvement is based on the mean values of each index. SAX, short-axis; LAX,
long-axis; MAE, mean absolute error; RMSA, root mean squared error; PSNR, peak signal-to-noise ratio; UIQI, universal image quality index.
*: P<0.001 vs. interpolation.

Super resolution significantly improvedMAE compared with
the interpolated image in both SAX and LAX images, regard-
less of the interpolation method (P<0.001, top row, Fig. 4).
Importantly, zero padding achieved the lowest MAE in
both the interpolated and super-resolution images (P<0.001,
top row, Fig. 4). Similarly, super resolution significantly
improved RMSE in SAX images regardless of the inter-
polation method (P<0.001, bottom row, Fig. 4). However,
super resolution did not significantly improve RMSE in
LAX images in zero padding and bicubic 2. Zero padding
achieved the lowest RMSE in both the interpolated and super-
resolution images (P<0.001, bottom row, Fig. 4). Super res-
olution significantly improved peak SNR in SAX images
regardless of the interpolation method (P<0.001, top row,
Fig. 5). However, super resolution did not significantly
improve peak SNR in LAX images in zero padding. Zero
padding achieved the highest peak SNR in both the interpo-
lated and super-resolution images (P<0.001, top row, Fig. 5).
Finally, super resolution significantly improved UIQI in LAX
images regardless of the interpolation method (P<0.001, bot-
tom row, Fig. 5). However, super resolution did not signif-
icantly improve UIQI in SAX images in bicubic 2. Zero
padding achieved the highest UIQI in both the interpolated
and super-resolution images (P<0.001, bottom row, Fig. 5).

Among the indices that super resolution significantly
improved, the magnitude of improvement was the greatest in
bicubic 1 (20%-50%), and equally smaller in zero padding
(3%-10%) and bicubic 2 (1%-10%) (Table 1).

D. PATIENT IMAGES
The same super resolution algorithm was applied to patient
MRI (n=4) to assess improvement in image quality. Repre-
sentative images are shown in Figs. 6 (SAX) and 7 (LAX).
Zero padding and bicubic 1 were used for scale-up by a
factor of 4. In both zero padding and bicubic 1, interpolation
improved the spatial resolution by a factor of 4 but smoothed
edges. Super resolution created subtle but qualitatively dis-
tinct improvement in image quality. Super resolution images
showed sharper geometric features (e.g. edges between the
heart and the scar, border between the myocardium and the
blood pool). In addition, the effect of super resolution was
quantitatively analyzed by calculating the absolute difference
in SI between the interpolated image and the super resolution
image. As indicated by consistently larger absolute difference
in SI, the magnitude of improvement in image quality by

super resolution was quantitatively higher with bicubic 1
compared with zero padding. However, the image quality of
super resolution was visually better in zero padding compared
with bicubic 1. These results are consistent with Figs. 3–5.

IV. DISCUSSION
The aim of the present study was to investigate the effects of
single-image super resolution on Fourier-based and image-
based methods of scale-up.
Our results demonstrated that the current algorithm of

single-image super resolution significantly improved the
errors of the images both qualitatively and quantitatively.
Importantly, super resolution consistently provided addi-
tional error improvement regardless of interpolation methods,
which indicates that the current algorithm was successful
in recovering edges and details that tend to be blurred by
interpolation. This finding supports the validity of the cur-
rent approach of super resolution, and provides evidence to
support its potential use in myocardial scar imaging. The
importance of this study relates to the overall conservative
nature of medical image processing, where less is generally
considered better than more image processing. In this case,
however, qualitatively and quantitatively, the super resolu-
tion approach appears better than the standard approach, and
may have a direct clinical application. For example, super
resolution may be suitable for automated post-processing as
it provides edge sharpening and denoising demonstrated in
patient images (Figs. 6 and 7).
Our results also indicate that super resolution using

Fourier-based zero padding achieved the best image quality.
However, the magnitude of improvement by super resolu-
tion compared with interpolation was small in images with
zero padding. The magnitude of improvement was the great-
est in bicubic 1 (20%-50%), and equally smaller in zero
padding (3%-10%) and bicubic 2 (1%-10%) (Table I). This
was largely due to the fact that zero padding and bicubic 2
were a significantly better interpolation method than bicu-
bic 1 (Figs. 4 and 5). This finding suggests that the current
algorithm of super resolution may be less effective in a
Fourier-based scale-up method than an image-based bicu-
bic interpolation. In addition, this finding indicates that the
current algorithm requires further technical improvements to
enhance its output quality.
Super resolution can be a useful tool to improve the clinical

management of the patients with scar-related arrhythmia.
Previous studies have shown that myocardial scar imaging
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FIGURE 6. Super resolution applied to patient images: short-axis images. Original, low-resolution images of patients A and B with clinical
standard spatial resolution were interpolated (zero padding or Bicubic 1) to scale up by a factor of 4. Super resolution was applied to the
interpolated image. The bottom row represents the absolute difference in SI between the interpolated image and the super resolution
image, as in Fig. 3. Note sharper geometric features in super resolution images (e.g. edges, endocardial border with blood pool).

with LGE can predict fatal arrhythmia and death [2], [3], [10].
In addition, we have demonstrated that LGE can identify the
potential target of ablation therapy to treat fatal arrhythmia
[11], [12]. Improvement in image quality by super resolution
is expected to improve the diagnostic accuracy of these impor-
tant clinical indices to provide better care to the patients.

There are several limitations of the current study. First,
we did not evaluate the effect of super resolution on images
of different slice thickness. Slice thickness of the original

image is a realistic and critical factor in visualizing accurate
scar structures in clinical MRI. Even with a high in-plane
resolution, increasing slice thickness substantially blurs the
scar geometry due to the partial volume effect [1], [13]. The
error improvement with super resolution would be greater
with thicker slices due to the more substantial partial vol-
ume effect, because the smoother the original image is, the
easier it is for the algorithm to recover the original image
with smaller errors. Second, we did not explore resolution
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FIGURE 7. Super resolution applied to patient images: long-axis images. See the legend of Fig 6.

improvement greater than a factor of 4. In reality, however,
given a typical in-plane spatial resolution of 1.2-1.9 mm
in clinical LGE, resolution improvement by a factor of 4
provides an in-plane spatial resolution of 0.3-0.5 mm, which
would resolve finer details at the edges of the scar, as shown
in Figs. 6 and 7. Third, because of the lack of ex vivo,
high-resolution images of human heart, we applied super
resolution to patient images using the dictionaries created by
high-resolution images of the swine heart. Although the heart
anatomy is similar between human and swine, it is possible
that some of the detailed features may be misrepresented.

A viable solution to this potential issue is to create dictio-
naries from ex vivo, high-resolution myocardial scar imag-
ing from patients post mortem who are known to have had
heart disease. Finally, the current super-resolution algorithm
is limited to two-dimensional (2-D) images. However, the
vast majority of medical imaging, including MRI that was
used in this work, provides three-dimensional (3-D) volumet-
ric data to represent 3-D structures of the human anatomy.
To provide more accurate and quantitative data, a similar
algorithm should be developed to apply super-resolution to
3-D volumetric images.
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V. CONCLUSION
Single-image super resolution significantly improves the
errors of the images both qualitatively and quantitatively.
However, the magnitude of improvement by super resolution
compared with interpolation was relatively small in images
with Fourier-based scale-up method. These findings provide
evidence to support its potential use in myocardial scar imag-
ing, but suggest that the current algorithm of super resolution
may be less effective in a Fourier-based scale-up method than
an image-based bicubic interpolation.
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