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ABSTRACT Conventional image-guided neurosurgery relies on preoperative images to provide surgical
navigational information and visualization. However, these images are no longer accurate once the skull
has been opened and brain shift occurs. To account for changes in the shape of the brain caused by
mechanical (e.g., gravity-induced deformations) and physiological effects (e.g., hyperosmotic drug-induced
shrinking, or edema-induced swelling), updated images of the brain must be provided to the neuronavigation
system in a timely manner for practical use in the operating room. In this paper, a novel preoperative and
intraoperative computational processing pipeline for near real-time brain shift correction in the operating
room was developed to automate and simplify the processing steps. Preoperatively, a computer model of the
patient’s brain with a subsequent atlas of potential deformations due to surgery is generated from diagnostic
image volumes. In the case of interim gross changes between diagnosis, and surgery when reimaging is
necessary, our preoperative pipeline can be generated within one day of surgery. Intraoperatively, sparse
data measuring the cortical brain surface is collected using an optically tracked portable laser range scanner.
These data are then used to guide an inverse modeling framework whereby full volumetric brain deformations
are reconstructed from precomputed atlas solutions to rapidly match intraoperative cortical surface shift
measurements. Once complete, the volumetric displacement field is used to update, i.e., deform, preoperative
brain images to their intraoperative shifted state. In this paper, five surgical cases were analyzed with respect
to the computational pipeline and workflow timing. With respect to postcortical surface data acquisition,
the approximate execution time was 4.5 min. The total update process which included positioning the
scanner, data acquisition, inverse model processing, and image deforming was ∼11–13 min. In addition,
easily implemented hardware, software, and workflow processes were identified for improved performance
in the near future.

INDEX TERMS Biomechanical modeling, brain shift, image-guided surgery, sparse data.

I. INTRODUCTION

IMAGE-GUIDED neurosurgery relies on preoperative
images to provide surgical visualization and navigation

into the brain after registration of the images to the patient’s
physical space. However, access to the brain subsequent to
craniotomy often leads to deformation of the brain along
with the movement of subsurface resection targets such as
a tumor. The amount of brain shift depends on a number

of factors including the extent of the craniotomy, retraction,
tumor resection [1]–[3], drainage of cerebrospinal fluid (CSF)
[2], [4], [5] and drugs administered during surgery [1], [6].
As a consequence, cortical shifts of up to 20 mm [1], [2]
and subsurface shifts of up to 7 mm [1], [2], [4], [7], [8]
have been reported and result in fundamental misalignment
between actual brain target positions and their counterparts as
determined from registered preoperative images. It is highly
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desirable to re-establish accurate alignment for successful
image guidance. In addition, when one considers the abun-
dance of preoperative image information (e.g. functional
magnetic resonance (MR) data, positron emission tomogra-
phy, MR diffusion tensor imaging, etc.) that can be brought
to bear on the care of patients during surgery, the need to
re-establish alignment between preoperative and intraopera-
tive states becomes even more critical.

One direct approach to achieving updated deformed brain
images is to re-image the brain during surgery using intraop-
erative magnetic resonance (iMR) imaging systems. To date,
iMR systems have been the only clinical solution that has
been adopted to any extent. While these systems are similar
to diagnostic ones, often due to the surgical environment and
workflow, the quality of these images acquired is not the
equivalent of their preoperative counterparts. In an effort to
utilize the pristine preoperative anatomical images as well
as other forms of imaging data, preoperative images are
deformed to match the intraoperative images using non-rigid
registration techniques that are image-based [7] or physics-
based [9]–[13] using the data-rich but albeit lesser quality
intraoperative images to drive the registration. While signif-
icant work has been produced in this direction, iMR imag-
ing systems are rather costly, occupy a significant portion
of operating room (OR) space and may not be available in
every hospital. A more cost-effective solution is to make
use of the exposed cortical surface to record brain shift
and use the subsequently measured surface displacements
to drive a comprehensive biomechanical model of the brain.
Once the model has computed a deformation field, it can then
be used to update/deform the preoperative images [14], [15]
(and other data consequently). The difficulty with this
approach is determining the extent of data necessary to pro-
duce a sufficiently accurate registration for intraoperative
guidance while simultaneously trying to minimize the impact
on operational work flow, i.e. the sparse data extrapolation
problem [16].

While there have been many proposed sparse-data
solutions with encouraging results in phantom, animal and
human studies, the work has largely reflected retrospective
analysis [11], [12], [17]–[25]. For practical use in the OR,
the updated preoperative images must be produced within
a reasonable amount of time. This time constraint means
that the cortical brain data collection and processing must be
executed quickly and with minimal interruption to the
surgical workflow. A brain shift compensation system,
which includes a preoperative biomechanical model devel-
opment pipeline, a preoperative surgical planning graphi-
cal user-interface (GUI) and two intraoperative GUIs, was
developed to perform real-time brain shift correction in
the OR. This study introduces this brain shift compen-
sation system and presents a comprehensive evaluation
of it in terms of the time taken for each process-
ing step along with an analysis of possible areas for
improvement.

II. METHODS
A semi-automated, preoperative and intraoperative com-
putational processing pipeline for brain shift correction
was developed (Figure 1). Briefly, preoperative magnetic
resonance (MR) images are acquired a day or more prior to
surgery (diagnostic series can be used provided significant
surgical changes have not ensued). From the images, the
patient’s brain [26], tumor and intracranial support struc-
tures, falx and tentorium cerebri, [27], [28] are segmented.
A patient-specific volumetric finite element mesh is gen-
erated from the segmented brain and tumor images with
the structures of the falx and tentorium celebri having pre-
defined boundary conditions. A preoperative planning GUI
was developed for use by neurosurgeons to establish the
approximate head orientation as well as size and location of
the craniotomy. Based on the preoperative plan, remaining
boundary conditions are generated using an automatic bound-
ary condition generation algorithm [17]. As the exact forcing
conditions are difficult to know (e.g. level of CSF drainage,
gravitational direction, effects of hyperosmotic drugs and
edema), a distribution of possible conditions is determined
which generates an atlas of boundary conditions. Each bound-
ary condition set is used to constrain a finite element defor-
mation solution thus producing a distribution of possible
deformation solutions or a ‘deformation atlas’, which is pre-
computed prior to surgery [17], [18]. The model used within
this precomputation phase is a biphasic biomechanical model
that takes into account may of the sources of brain shift, i.e.
hydration effects from drugs like mannitol, gravity-induced
brain sag due to CSF drainage, resection effects, and skull-
tissue interactions [6], [29].
On the day of surgery, the deformation atlas is trans-

ferred to the intraoperative guidance system that performs
an inverse model calculation driven by sparse cortical brain
deformationmeasurements obtained from intraoperative laser
range scanner (LRS) data. The LRS records the cortical brain
surface by sweeping a line of laser light across the surface
while recording the laser line with a digital camera and by
triangulation produces a 3-dimensional (3D) point cloud of
the surface geometry. Texture information is also recorded
from the same digital camera by acquiring a 2-dimensional
bitmap of the field of view (FOV). Other examples of LRS
use in image-guided procedures include orthodontics [30],
neurosurgery [31]–[37], liver surgery [24], [38], [39] and
cranio-maxillofacial surgery [40], [41]. In this work, a
commercial LRS system (Pathfinder Therapeutics, Inc.,
Nashville, TN) was integrated with an optical tracking system
(Polaris Spectra, Northern Digital Inc., Waterloo, Ontario,
Canada) and used to collect cortical surface data. After corti-
cal brain measurements are made using the LRS, the optimum
brain shift solution is determined from an inverse problem
approach using the deformation atlas [18], [27]. Once calcu-
lated, the patient’s brain image data is subsequently deformed
using the optimum solution to reflect the current state of the
brain’s shape.
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FIGURE 1. A workflow illustrating the semi-automated preoperative and intraoperative computational processing steps involved in producing an
updated brain shift image in real-time. The inputs are preoperative MR images, face LRS scan for registration, and pre and post-resection cortical brain
surface LRS scans to drive the inverse modeling.

A preoperative planning GUI (called Surgical Planner), a
processing automatic pipeline, and two intraoperative GUIs
(called Registration, and Correction) were developed for use
before and during surgery to plan and process the collected
data. The custom software was written in C++ using open
source Insight Segmentation and Registration Toolkit (ITK),
Visualization Toolkit (VTK) and Fast Light Toolkit (FLTK)
libraries. MATLAB R2011b (MathWorks, Natick, MA)’s
Parallelization and Optimization Toolboxes were also used.
Figure 1 illustrates the overall layout of the system. In the
following sections, methodologies used will be briefly dis-
cussed, followed by results concerning the full system
performance.

A. PREOPERATIVE PROCESSING
1) MR IMAGE ACQUISITION
In this study, five patients were processed through the pre-
operative and intraoperative pipelines. All patients provided
written consent prior to imaging for this Vanderbilt Institu-
tional Review Board approved study. For each patient, two

TABLE 1. Patient demographics and MR image details.

sets of T1-weighted MR image volumes, one gadolinium-
enhanced and the other non-enhanced, were acquired from
a conventional clinical MR scanner (Table 1).

2) SEGMENTATION
To streamline the preoperative pipeline and model gen-
eration, a semi-automatic segmentation of the brain was
implemented [26]. Briefly described, for each patient, a
rigid alignment is performed between patient’s enhanced and
non-enhanced image volumes. Once complete, the patient’s
non-enhanced image volume is registered to an expertly
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segmented non-enhanced brain image volume (i.e. atlas
volume) first using a mutual information rigid registration
followed by a custom-built adaptive bases nonrigid registra-
tion algorithm [42]. Once complete, the atlas mask can be
transformed such that the contrast-enhanced patient’s can be
automatically segmented. We should note that the falx and
tentorium have been expertly segmented in the atlas which
serves as an automatic approach to deploying the dural septa
within our model [27]. The atlas also provides an excellent
reference surface set for finite element mesh generation once
registered to the patient. We should note that a visual confir-
mation is performed when complete, and some manual edit-
ing of the automatic segmentation is sometimes performed
using the open source software ITK-Snap (www.itksnap.org)
to correct small discrepancies. At this time, ITK-Snap is
also used to manually segment the contrast-enhancing tumor
region. We should note that manual methods of tumor seg-
mentation are the standard in commercial guidance systems.

Finally, we should note that in [28], a sensitivity study was
performed which compared our brain shift correction results
based on models built from our semi-automatic segmentation
approach versus those coming an expert manual segmentation
approach and no statistical difference between results was
found.

3) SURGICAL PLANNER
The direction and degree of brain shift are in part dependent
on how the head is oriented with respect to gravity, as well as
location and the size of the craniotomy. A priori knowledge of
these 3 variables helps to limit the size of the atlas of possible
deformation solutions and can be provided by the neurosur-
geon during preoperative planning. A user-interactive GUI
was developed to assist the neurosurgeon in quantifying those
variables. Brain and tumor surface meshes were converted
from segmented brain and tumor images respectively by using
marching cubes and smoothing algorithms [43]. Both sur-
face meshes were rendered in the GUI and the neurosurgeon
rotated the brain into the planned position and recorded the
transformation. The center of the craniotomy was selected
by picking a point on the brain surface and the craniotomy
size was determined using the slider tool to adjust the sphere
(Figure 2). These 3 variables were used later in defining the
boundary conditions of the computational model.

4) CONTINUUM MODEL
Based on the observation that the brain acts similar to fluid
saturated poroelastic medium, Biot’s theory of biphasic con-
solidation was used to represent the deformation behavior
of brain tissue [6], [29]. According to Biot’s theory, the
mechanical behavior of a poroelastic medium such as the
brain can be described using equations of linear elasticity for
solid porous matrix and Darcy’s law for describing the flow
of fluid through the porous matrix. Equation (1) represents
equilibrium whereby the gradient in interstitial fluid pressure
can cause shape change to the solid matrix. In addition,
changes in the buoyancy of the surrounding fluid can generate

FIGURE 2. Screenshot of the surgical planner GUI with the brain and
tumor surfaces loaded and oriented to the same position as in the OR.
The center and size of the craniotomy are represented by the green
sphere selected by the neurosurgeon.

gravity-induced deformations. In equation (2), we see a
conservation of fluid mass relationship whereby changes in
hydration can effect the the time rate of change of the volu-
metric strain of the solid matrix. In addition, we also allow
for dilatation effects as exchange with capillary beds can
occur in response to drugs like mannitol. The model can be
described as,

∇ · G∇Eu+∇
G

1− 2v
(∇ · Eu)− α∇p = −(ρt − ρf )g (1)

α
∂

∂t
(∇ · Eu)+ kc(p− pc) = ∇ · k∇p (2)

where G is the shear modulus defined by E
2(1+ν) with E

as Young’s modulus and ν is the Poisson’s ratio. Eu is the
displacement vector, α is the ratio of fluid volume extracted
to volume change of the tissue under compression, p is the
interstitial pressure, ρt is the tissue density, ρf is the surround-
ing fluid density, g is the gravitational unit vector, kc is the
capillary permeability, pc is the intracapillary pressure and
k is the hydraulic conductivity. This constitutive model is a
common model and has been used successfully to describe
brain shift [17], [18], [27].

5) COMPUTATIONAL BIOMECHANICAL MODEL
For each patient, a patient-specific finite element volumetric
mesh was generated from the MR images. Briefly, once the
patient’s images have been segmented, a marching cubes
algorithms can be used to generate bounding surface.
A custom-built mesh generator is then used to generate a vol-
umetric tetrahedral mesh [44] with parenchyma, and tumor
designated. Parenchyma can be discretized further into white
and gray matter elements using an image-to-grid methodol-
ogy whereby the average image-intensity of voxels within
a tetrahedral element can be determined and then used to
threshold tissue type [52]. Typically, a brain mesh consists
of approximately 100,000 tetrahedral elements (Figure 3).
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FIGURE 3. Brain (in white) and tumor (in yellow) mesh overlaid with MR
images.

FIGURE 4. (Left) Mesh of the brain with the fixed brain stem nodes in red,
stress-free nodes in green, slippage nodes in black, dural septa nodes
also defined with slip boundary conditions in magenta and tumor nodes
in blue. Black arrow indicates direction of gravity. (Right) Mesh of the
brain with Dirchlet boundary conditions for pressure set on blue nodes at
a baseline reference pressure and Neumann boundary conditions set on
the red nodes indicating non-draining surfaces.

The boundary conditions applied were determined accord-
ing to observed conditions commonly associated with brain
shift from previous studies [17], [18], [27]. The boundary
conditions associated with displacement that were found to
produce good estimates of brain shift were as follows: (1) the
brainstem area was typically found to be very stable and as
a result represent a fixed, i.e. no displacement condition –
Figure 4, left, red region, (2) in the region of the craniotomy
and surrounding area where the brain can often sag away
or shift laterally, the surface was designated as stress free
allowing for the brain to fall away from cranial wall –
Figure 4, left, green region, (3) the remaining brain surface is
bound by the skull such that movement is limited to tangent-
to-the-skull motion along the cranial wall only, i.e. a freedom
to slip boundary condition – Figure 4, left, black region, (4)
slip boundary conditions were also designated for the internal
rigid dural septa structures – Figure 4, left, magenta region.
As equations (1,2) state, gradients in interstitial pressure can
induce deformations and do embody the transient effects
of the model. Boundary conditions were either designated
at an atmospheric reference pressure in elevations above

cerebrospinal fluid (CSF) drainage levels – Figure 4, right,
blue region, or non-draining surfaces (i.e. no flux) below
drainage levels – Figure 4, right, red region.

6) ATLAS CREATION
While the above provides a good reference for a single bound-
ary condition set, the surgical environment is quite dynamic.
As a result, our strategy is to generate a distribution of pos-
sible boundary conditions based on reasonable surgical pre-
sentation, a so-called ‘atlas of deformations’. As a result, the
boundary conditions in the previous section have been param-
eterized such that based on minimal preoperative planning a
complete deformation atlas can be constructed. The distribu-
tion of boundary conditions is based on three mechanisms of
brain shift that we have observed to be important : gravity-
induced brain shift, brain volume reduction due to administra-
tion of hyperosmotic drugs like mannitol, and brain swelling
due to edema around the tumor [17], [18]. For gravity-induced
deformation, we have varied the atlas to express three dif-
ferent levels of CSF drainage which influences the deploy-
ment of pressure-related boundary conditiozns (Figure 4,
right). We should also note that with each drainage level, we
also account for a distribution of possible head orientations
around the estimate from the preoperative plan. While this
accounts for inaccuracies in the preoperative plan, it also
helps to account for surgical table adjustments during surgery
(typically involves a distribution of+/−20 degrees from pre-
operative estimate, leads to approximately 60 different head
orientations). We should note that with each orientation, the
boundary condition distribution in Figure 4, left change, i.e.
our displacement boundary conditions are parameterized as
a function of head orientation. With respect to the influence
of hyperosmotic drugs, we have chosen to exploit the second
term in equation (2). Our atlas allows for 3 different cap-
illary permeability, i.e. varying kc, with a fixed intracapil-
lary pressure. Similarly, swelling variations were simulated
with 3 different capillary permeability values, and positive
intracapillary pressures, however, we did allow for 3 different
craniotomy sizes (75%, 100% and 125% of planned size) to
account for any deviations from the plan. We should note
that boundary swelling, the boundary conditions associated
with Figure 4, left, green region are modified to slip-based
boundary conditions with stress free in the craniotomy region.
For the work here, there were 729 total brain shift solutions
contained within our deformation atlas. The different material
properties and their varying levels are tabulated in Table 2
and are based on sensitivity studies performed within in vivo
porcine brain experiments which we have found to be quite
satisfactory for predicting bulk brain shift [45]–[48].
The 729 finite element models were solved by spreading

the computation across an 8-node computing cluster to ensure
the atlas of solutions was built in time for the day of surgery.
The biphasic brain model was solved for displacement and
pressure using an open source Portable Extensible Toolkit
for Scientific Computation (PETSc) package. A highly auto-
mated process of computational model generation, boundary
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TABLE 2. List of material properties used.

conditions creation and solving for the atlas were developed
to streamline and ensure minimal user error. Once complete,
the deformation atlas is transferred to the intraoperative data
collection and processing computer used in the OR on the day
of surgery.

B. INTRAOPERATIVE REAL-TIME IMAGE UPDATE
To facilitate real-time brain shift correction in the OR,
an intra-operative pipeline was developed with 2 sim-
ple user-friendly GUIs to process the collected data from
the LRS along with the precomputed atlas (Figure 1,
right side).

1) PHYSICAL TO IMAGE SPACE REGISTRATION
The Registration GUI developed is a registration and visu-
alization utility that registers the patient’s physical space to
image space using an LRS scan of the face and the cor-
responding surface from the MR image volume. The face
LRS scan was acquired by positioning the LRS directly over
face of the patient, making sure to include all if possible,
the nose, eye and ear as these structures serve as good land-
marks for use in registration. The manual segmentation tool
in the LRS acquisition software (Pathfinder Therapeutics,
Inc., Nashville, TN) was used to remove extraneous points in
the face scan, such as hair, intubation tubes and drapes, that
will unnecessarily slow down the registration computation
(Figure 5). Once the segmented face LRS scan data is com-
plete, a smoothing process using a commercially available
radial basis fitting (RBF) procedure is performed (FarField
Technology, Ltd., Christchurch New Zealand). To initialize,
three surface fiducials are selected on the LRS data of the
patient’s face and the corresponding points are designated

FIGURE 5. The face RBF before (left) and after (right) manual
segmentation to remove extraneous points.

on the MR surface counterpart and a rigid registration using
Horn’s method [49] is executed. Once complete, the reg-
istration is refined using an iterative closest point surface
registration [50]. Verification of the registration is confirmed
by visual inspection of the overlay of both 3D objects
(Figure 6). If the alignment of the two objects is not satis-
factory, the user may select new points and execute another
registration.

FIGURE 6. A screenshot of the Registration GUI with the face RBF on the
right overlaid onto the MR image-based head surface mesh on the left.
The 3 homologous points on both surfaces are in green and they are used
for the initial alignment.

2) PRE-RESECTION LRS SCAN
After the craniotomy and dura is opened, the LRS was moved
into place to acquire the exposed cortical brain surface.
Care was taken to ensure a direct line of sight between the
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FIGURE 7. The pre-resection RBF before (top) and after (bottom) manual
segmentation to remove extraneous points.

FIGURE 8. A screenshot of the Registration GUI with the transformed
pre-resection RBF overlaid over the MR image-based head surface mesh
set to be semi-transparent.

brain surface and the laser. Once acquired, a simple manual
segmentation tool is used to remove extraneous points, iso-
lating just the brain surface (Figure 7). Similar to the face
scan, an RBF surface is fit and rigid transformations can
be applied to transform the surface to image space. To con-
firm the positioning accuracy of the optically-tracked LRS,
the transformed pre-resection RBF scan was automatically
overlaid onto the head surface mesh for visual inspection
(Figure 8).

3) POST-RESECTION LRS SCAN
Multiple LRS scans may be taken during the course of the
surgery depending on neurosurgeon’s request to track the
updated position of the tumor since the amount of brain shift
is a function of time. The procedure for all sequential scans
is the same. In this study however, only one final cortical
brain surface was acquired after tumor resection was thought
to be complete and an image update would be useful to
confirm complete removal of the tumor in the presence of
brain shift. Since time is critical at this juncture as the entire
surgical team is waiting for updated images, processing steps
were specifically developed to minimize user intervention
and computation time. Instead of a full manual segmentation
as done previously with the pre-resection LRS scan, a mask
of the pre-resection LRS was applied to the post-resection
LRS to remove points outside of the craniotomy region. The
fully segmented post-resection scan was also automatically
fitted with an RBF surface, transformed to image space, and
displayed along with the pre-resection RBF for visualization
(Figure 9).

FIGURE 9. A screenshot of the Registration GUI with transformed pre-
and post-resection RBF overlaid onto the MR image based head surface
that has been made less opaque. The post-resection RBF is below that of
the pre-resection RBF illustrating brain shift.

4) HOMOLOGOUS POINT PICK
Once the pre- and post-resection LRS cortical surfaces were
spatially transformed to image space, the Correction GUI
is used to determine the driving shift measurements for
correcting the image volume for brain shift. To accomplish
his, the 2D pre-resection and post-resection bitmaps, i.e.
texture information acquired by the LRS unit, were visualized
side-by-side. Homologous points were then selected using
blood vessel bifurcations as landmarks (Figure 10).
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FIGURE 10. A screenshot of the Correction GUI with homologous points
in green selected at blood vessel bifurcations on the pre- and
post-resection bitmaps.

These points will produce shift measurements to drive our
compensation system.

5) 2D to 3D CORRESPONDENCE
Once homologous points are selected from the texture infor-
mation provided by the LRS, they can be related directly to
their 3D coordinate positions. We should note that brain shift
is possible from the very instant the dura is opened. To accom-
modate for this initial shift, a correspondence between brain
mesh and intraoperative pre-resection LRS-defined features
is determined using a closest point operator. Once deter-
mined, the shift from pre-resection to post-resection LRS
is appended and an entire deformation is complete. In the
event that a very limited number of homologous points can
be determined, the platform does allow for the calculation to
be driven by closest point operators solely with the possibility
of weighting from any homologous points that can be deter-
mined. For one patient in this study, this feature was used due
to a lack of homologous points.

6) INVERSE MODELING
With a field of displacements describing cortical surface
deformation defined, the correction algorithm is employed
that uses a constrained least squares inverse modeling
approach based on the atlas and constrained by the measured
displacement shift vectors of the cortical surface as well as
added constraints to the coefficients of reconstruction. Details
of the inverse modeling can be found in previous studies
[17], [18], [27]. Briefly, the least-squared errors between the
measured shift vectors and predictions from the deformation
atlas were minimized by solving the following equations for

the weighting coefficients, w.

min
∥∥Mw− u∥∥2∃wi ≥ 0 and

m∑
i=1

wi ≤ 1 (3)

where u are the measured shift vectors on the brains surface
as determined by the above methods, and M is the atlas
matrix containing the pre-computed deformation solutions
at the selected measurement points on the computer model
boundary mesh. The first constraint ensures only positive
regression coefficients and the second constraint prevents
extrapolations of the solution. The constraints imposed have
been shown to successfully predict brain shift [27], [28].
The implementation of the method of Lagrange multiplier
in the Optimization Toolbox in MATLAB was used to solve
the linear optimization problem, along with the use of the
Parallelization Toolbox to improve input/output function
speeds. We should note that while other optimization
approaches with less constraint can lead to better objective
function results, we have found that constraints such as the
above are necessary to maintain physically realistic deforma-
tions, i.e. a real safety constraint consider the dramatically
underdetermined nature of this problem.

7) DEFORMED IMAGE UPDATE
Once the inverse solution is achieved, a quantitative report
is automatically generated based on the optimum solu-
tion for assessment, specifically the amounts of shift based
on measurements, and remaining error after correction.
As equation (3) is solved within the context of matching the
sparse measurements at the surface, the coefficients deter-
mined are then used to construct a full volumetric deformation
field which is subsequently used to deform the preoperative
MR images, thus providing an updated image of the deformed
brain for use within the neuronavigation system.With respect
to image deformation, nodal displacements from the unde-
formed finite element mesh were trilinearly interpolated onto
a regular grid at the same resolution as the preoperative
MR images. To ensure there was no extrapolation of displace-
ments outside the brain, the grid of interpolated displacements
weremultiplied with the binary brainmask. Each undeformed
pixel was then transformed to their respective deformed pixel
and filled with a trilinearly interpolated pixel intensity value
from the undeformed MR images. Since not every deformed
brain pixel will be filled, the missing pixels intensity val-
ues were interpolated from its surrounding neighbors. The
Parallelization Toolbox in MATLAB was used to parallelize
and speed up the interpolations of 3 Cartesian components of
displacements.
A computer with Intel Quad Core i5 with 16 GB of ram

running Windows 7 64bit was used to compute the intraoper-
ative steps. The same computer was also used to acquire the
LRS scans.

III. RESULTS
The computational timing to process each of the steps in
the preoperative part of the pipeline for all 5 patients is
tabulated in Table 3. The model and atlas creation steps were
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TABLE 3. Time taken to run the preoperative steps in the pipeline.

TABLE 4. Time taken for registration using the registration GUI from
intraoperative steps in the pipeline.

significantly longer for Patients #2, 3 and 4 because more
extensive mesh refinement was needed to resolve tumors. The
total preoperative processing time ranged from 7 to 17 hours,
with the majority of the time spent on creating the atlas.

The computational costs to register the patient space to
MR image space using the Registration GUI for all 5 patients
are listed in Table 4. The LRS acquisition time was up to
4 minutes, including positioning of the apparatus, for all
5 patients.

The computational costs to produce the updated deformed
brain image from when the post-resection LRS scans were
taken for all 5 patients are listed in Table 5. The maxi-
mum time reported for an updated deformed brain image to
be computed during post-resection, including post-resection
LRS acquisition times, was approximately 13minutes and the
fastest time was about 11 minutes (Table 5). From the per-
spective of surgical workflow, the most prominent ‘waiting’
period would likely be experienced during the computation
of the updated image after homologous point picking. The
average wait time during this period would be approximately
4.5 minutes. In a realistic workflow setting, it is likely that the
surgeon would be engaged during homologous point picking.
Once this task was complete, the surgeonwould be effectively
waiting for an image update. Summing across columns 5, 6,
and 7, in Table 5 and taking the average, the surgeon wait time
would be approximately 5.5 minutes.

The performance of the predictive computational model for
all 5 patients is summarized in Table 6. It includes the num-
ber of homologous points used in calculating the measured
brain shifts between the pre- and post-resection LRS scans,
percentages of shift corrected and the magnitude of cor-
rected position errors. The percent shift corrected follows the

FIGURE 11. Original (left) and model updated shifted (right) brain images
for all 5 patients.

formula, (1 – corrected error magnitude/measured shift mag-
nitude)× 100%, where corrected error magnitude is the error
between measured and model predicted points [17], [18].
Despite the variability in magnitude of brain shift between
the 5 patients, the corrected error magnitudes had a narrow
range of 2.48 mm to 3.29 mm. The updated images of the
shift-compensated brains for all 5 patients are illustrated in
Figure 11.

IV. DISCUSSION
The objective of this study is to evaluate a preoperative and
intraoperative processing pipeline developed for real-time
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TABLE 5. Time taken to run the post-resection LRS scan segmentation part of the registration GUI and the correction GUI from intraoperative steps in the
pipeline.

TABLE 6. The measured and predicted brain shift correction results (mean + standard deviation with maximum in parenthesis) for all 5 patients.

brain shift correction using cortical brain surface deformation
data only. The complete process beginning with the posi-
tioning of equipment into the surgical field, data acquisi-
tion, inverse model processing, and image deforming was
approximately 11 - 13minutes across the five patients.Within
that time, the actual wait time to compute an updated image
volume, where the neurosurgeon is not actively engaged in
the workflow, is approximately 5.5 minutes. The current
workflow has been developed to be minimally cumbersome
but better OR design is very achievable and will serve to
reduce total process time. This study comprehensively cov-
ers the pipeline and its performance on typical computing
hardware. As hardware and software techniques continue to
evolve, computation times are likely to improve.

As a comparison to intraoperative imaging systems, includ-
ing movable magnetic systems like the VISIUS (IMIRIS,
Inc., Chanhassen, MN), the fixed magnetic systems like the
BrainSuite iMRI Miyabi (BrainLab, Inc., Westchester, IL),
and portable systems like the PoleStar N20 (Medtronic, Inc.,
Minneapolis, MN), these systems all require at least the same
amount of time if not more to position the magnet or patient,
taking extra care to ensure anesthesia and ventilation are
not interrupted. In addition, after the deformed images are
acquired, more computation time is required to nonrigidly
register the new images to the preoperative images [10], [11],
[13], [20], [25], [51]. This latter point is quite important. Even
with the employment of iMR techniques, one should expect
algorithmic times similar to our approach to still be needed
to align other forms of data. Time is also spent moving the
magnet or patient back to the original surgical positions.

Breaking down the total 11-13 minutes of intraopera-
tive setup and correction time yielded some interesting

observations. The tasks that took the longest time were
the manual selection of the homologous points (up to 2.25
mins), acquiring the LRS scan (up to 4 mins) and com-
puting the deformed image (up to 4 mins). The length
of time needed to deform the images was proportional
to the number of slices and in-slice resolution of the
patient’s brain volume. To improve image deformation
times, the computation was divided to run in parallel
on 4 computer processing units (CPU) using MATLAB’s
Parallelization Toolbox. Although CPU/GPU paralleliza-
tion does improve computation time, there are alternative
strategies to how deformation correction should be imple-
mented within guidance systems. Already some advances
have been made. In [53], an alternative strategy where
non-rigid deformations are compensated for in the local-
ization of digitizers has been proposed which would elim-
inate the need for deformed image volumes. That alone
would reduce the wait time for surgeons by approximately
3-4 minutes.
The positioning and acquisition of the LRS scans took up

most of the time during registration, pre-section and post-
resection. Improvements can be made to the workflow by
mounting the LRS scanner on the overhead articulating arms
in the OR, thereby allowing the scanner to be positioned and
also withdrawn from the field quickly, resulting in less disrup-
tion to the surgical workflow. Alternate to LRS methodolo-
gies for point cloud generation, the use of stereo-pair recon-
structed surfaces from the optics of the surgical microscope
data would be an excellent way to reduce workflow problems
[23], [54]. Another opportunity to reduce interruption and
reduce time would be to eliminate homologous point picking.
Since video is available throughout the resection process,
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blood vessels on the cortical surfaces could be continuously
tracked. Ding et al. [52] developed such a tracking feature
although in [48] it was used in a retrospective analysis. Com-
bining vessel-tracking feature with stereo pair reconstruction
from microscope data [53] could in effect generate the same
type of data as with the LRS but yet remain integrally con-
tained within the microscope environment.

The preoperative processing time to create the atlas
from MR images took from 7 to 17 hours in this study.
Approximately 2 hours were spent on generating the patient-
specific brain models with the majority of the preopera-
tive processing time (6 to 14 hours) spent on creating the
729 solutions in the atlas. Since preoperative MR images are
typically acquired days before the surgery, there is clearly
enough time to compute the atlas. However, a recent sen-
sitivity study on the size of the atlas solutions found that
instead of 729 solutions used in this study, only a fraction,
approximately 123 solutions could produce results with the
same accuracy (effectively a sparser sampling of the atlas).
The smaller atlas size means that construction time could be
reduced to 2 hours [28], [54]. This suggests that ‘same day as
surgery’ preoperative computing is achievable.

The biphasic biomechanical model-based brain shift cor-
rection accounted for 60%-88% of the shift, with a mean
correction error of about 3 mm. Sources of error may be from
image segmentation, finite element meshing, material proper-
ties, boundary conditions and registration. Additionally, the
LRS scanner has a geometric error of 0.25 +/− 0.40 mm
and a tracking error of 2.2 +/− 1.0 mm [55]. Despite all
these sources of possible error, the mean error of 3 mm is
remarkably small. Although the majority of brain shift was
accounted for in the biphasic biomechanical model, even
higher accuracy could likely be achieved if the collapse of the
tumor resection cavity could be included in the model. Effort
is underway to address this complex tissue-modeling event.

The homologous points selected for use in the error anal-
ysis were from the cortical brain surface. There is a lack of
subcortical surface validation of the biphasic biomechanical
model used. In a previous study by Dumpuri et al. [18],
postoperativeMR imageswere usedwith preoperative images
to provide both surface and subsurface homogolous points to
drive the same biomechanical model. About 85% of the brain
shift was recaptured in that 8 patient study, with remaining
shift error less than 1 mm. While suggesting submillimetric
correction accuracy, it must be noted that significant brain
deformation recovery had taken place prior to post-operative
imaging in this study (up to 40% recovery in some instances).
Nevertheless, the results from this study were promising and
demonstrated the applicability of the biphasic biomechanical
modeling approach.

A. OPPORTUNITIES AND CHALLENGES
The above system represents a cohesive approach to col-
lecting, segmenting, and processing data with the result
producing a ‘computationally’ altered image for improved
navigation in image-guided procedures. There are clearly

limitations to the approach and room for improvement. In no
area of imaging and image processing has there been more
development than that of the neurosurgical domain. The
opportunity to develop sophisticated computer models with
not only general anatomical information but also with com-
plex structural information (e.g. diffusion tensor imaging
and elastography) is attainable. In addition, it is important
to recognize that more sophisticated platforms for modeling
are being developed that incorporate a variety of constitutive
laws as well as interactive simulation conditions that include
nonlinear effects (e.g. SOFA [56]). While we have chosen a
linear platform here based on acceptable performance levels
within the localization limitations of today’s IGS systems, this
will undoubtedly change in the future with the evolution of
more precise surgical systems (e.g. robotic platforms [57]).
In this paper however, the work presented represents a
baseline ‘systems’ level realization from which enhanced
innovation can be realized. For example, challenges in space-
occupying lesions and removal of tissue still persist and
solutions are needed. While new data streams (e.g. LRS and
surgical microscope) and interventional diagnostics (e.g. opti-
cal spectroscopy, and fluorescence) are on the horizon, new
minimally invasive neurosurgical techniques will continue
to provide challenges to presentation. Hardware and soft-
ware developments bring enormous processing speed and
enhanced computational architecture to the OR, but workflow
requirements and the ever-increasing wealth of preoperative
information continue to expand and require improvements.
As one looks at this contribution, it undoubtedly represents
a ‘snapshot’ of technology in time but is an important con-
tribution emphasizing the characteristics that serve as con-
straints to data acquisition and guidance procedure execu-
tion, while also highlighting the potential for computation
within the OR. It embodies the problem of extrapolating
cost-effective relevant information from distinctly finite or
sparse data while balancing the competing goals between
workflow and engineering design, and between application
and accuracy, a termwe have called ‘sparse data extrapolation
problem’ [16].

V. CONCLUSION
This paper clearly demonstrates that deformation com-
pensated images can be computed intraoperatively using
sparse data and biomechanical model approaches in near
real-time for use in the OR without the need for whole
intraoperative imaging systems. It also suggest that intra-
operative computing is less significant than the workflow
of equipment and data acquisition. The work demonstrates
the fabrication of logical and systematic preoperative and
intraoperative pipeline that is robust, simple, and minimally
disruptive; perhaps in some cases, significantly less wieldy
when compared to setup times for intraoperative imaging
systems. Lastly, while a great deal of work towards these
computational approaches has been achieved, more validation
using ‘gold standard’ iMR measurement methods is needed,
as well as long-term patient outcome studies.
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