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ABSTRACT Assessing the structural integrity of the hippocampus (HC) is an essential step toward preven-
tion, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the
HC in those disorders. In this respect, the development of automatic segmentationmethods that can accurately,
reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This
paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the
HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that
locally control the influence of each energy term of a hybrid active contour model (ACM). The complete
set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the
same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not
required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce
the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three
different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods
demonstrating the efficacy and robustness of the proposed method.

INDEX TERMS Hippocampus segmentation, hybrid active contour model (ACM), multi-atlas, prior knowl-
edge, local weighting scheme, optimal local maps (OLMs).

I. INTRODUCTION
Brain disorders aremajor contributors tomorbidity, disability,
and premature mortality in many developed and developing
countries worldwide [1]. Every year, over one-quarter of adult
Americans are diagnosed with a mental illness, such as Major
Depressive Disorder (MDD), Post-Traumatic Stress Disorder
(PTSD), schizophrenia, and Alzheimer’s Disease [2]. More-
over, every year a third of the EU’s population is diagnosed
with mental disorders [3]. The number of patients becomes
even higher if neurological disorders, such as epilepsy and
dementia, are also taken into account. Apart from making
life difficult for patients on a personal level, brain disorders
have a considerable societal and financial cost. In this respect,
improved prevention and treatment of brain disorders is a
key-issue, and could alleviate healthcare costs. Assessing the

structural integrity of the hippocampus (HC), which is a struc-
ture of the limbic system (Fig. 1), is an essential step toward
this, due to its implication in such disorders. Dysfunction
and neurodegeneration of HC plays a fundamental role in the
development of various brain disorders. Many studies support
that altered HC volume and connectivity represents a spe-
cific endophenotype; indicatively in schizophrenia [4]–[6],
in first-episode schizophrenic patients [7], in bipolar disorder
[8]–[10], in epilepsy [11], in Alzheimer’s [12], [13], in Mild
Cognitive Impairment [14], [15], in dementia associated with
multiple sclerosis [16], [17], and in Down’s syndrome [18].
Hence, HC morphology alterations have shown the capacity
to be potentially used as a biomarker in decision making
systems regarding various brain disorders. Thus, HC mor-
phometry is a potentially powerful tool for many diseases
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FIGURE 1. A sagittal slice of a 3D MR volume (a), zoomed version of
(a) where the hippocampal region is indicated with magenta color (b),
and the reconstructed 3D model of the hippocampus (c).

diagnosis, prognosis and monitoring. However, apart from
the appropriate evidence and widespread agreement of the
usefulness of HC volumetry, its establishment as a biomarker
requires that it can be measured with appropriate accuracy
and reproducibility [19].

Traditionally, HC structural assessment has been based on
manual or semi-automated segmentation from MRI scans.
However, time-constraints posed by those methods, largely as
a result of the vast amount of data produced byMRI, rater bias
and cost, constitute the major obstacles in the effective, large-
scale morphological study of HC. Therefore, reliable auto-
matic HC segmentation offers a valuable clinical tool, already
showing its usefulness. Recently, in a large-scale, genome-
wide association meta-analysis of hippocampal, brain, and
intracranial volume [20] automated hippocampal volumetry
has successfully enabled the discovery of novel genes associ-
ated with hippocampal volume in schizophrenia. In [21] it is
clearly stated that the aim is fostering the use of hippocampal
volumetry in routine clinical settings regarding Alzheimer’s,
which requires standardization firstly on the segmentation
protocol (given the variety of protocols), and secondly on
the automatic segmentation method. Similarly, a collabo-
rative initiative on Alzheimer’s between Europe and USA
(EADC-ADNI) plans the adoption of HC volumetry as a
new diagnostic criterion of Alzheimer’s and in therapeutic
trials [19]. Thus a roadmap has been defined in order to
establish HC volumetry as an Alzheimer’s biomarker, which
requires reliable automatic segmentation. Once HC volume-
try is established, every day clinical practice would then
require subjective and highly accurate HC segmentation for
proper and reliable disease diagnosis (potentially within a
decision support system), monitoring, and treatment eval-
uation, which can even lead to drug discovery. Given the
existing evidence of HC alterations in other disorders (e.g.
schizophrenia, bipolar disease, epilepsy, etc.), similar actions
are foreseen for these cases too.

Several methods have been proposed for automatic HC
segmentation. However, it remains a very challenging task.
Results in literature report that HC is among the brain
structures for which the segmentation accuracy of automatic
segmentation methods is lower compared to other brain struc-
tures [22]–[24]. Automatic segmentation methods of deep
brain structures, such as the HC, can be broadly divided
into three major categories: (1) atlas-based techniques, (2)
deformable models and (3) active appearance models.

Atlas and multi-atlas based methods imply non-rigidly
registering one or multiple (in the case of multi-atlas tech-
niques) training images to the target image using some
similarity measure. The labeled image(s) of the training
image(s) are subsequently propagated to the space of the
target image using the calculated wrapping fields, to offer the
final segmentation. In the case of the multi-atlas methods an
extra step is required; fusing the transformed labeled images
or a selected subset of them. In literature, there exists a
substantial amount of variations of the multi-atlas concept
[23], [25]–[28]. These methods mainly differ in the registra-
tion method, the way for selecting a subset of the training
labeled images before fusion, as well as the label fusion
approach that is followed. A recent workshop offered com-
parative evaluation among state-of-the-art multi-atlas tech-
niques [29]. In total, 25 algorithms entered the challenge
and their performance was evaluated on a publicly available
dataset (abbreviated as OASIS-MICCAI dataset in this work).
Among the various multi-atlas methods that were evaluated,
the ones that reached higher accuracy in terms of Dice sim-
ilarity coefficient [30] are the joint label fusion technique
proposed by Wang et al. [31] and the Non-Local STAPLE
proposed by Asman et al. [32]. The first one is based on joint
label fusion combined with the bias correction [33], and was
proved to be the top performer of the challenge. The Non-
Local Staple method is a statistical fusion technique using the
non-local means framework.
In the second category, popular examples of deformable

models are the Active Contour Models (ACM). ACMs allow
a contour to deform iteratively to partition an image into
distinct regions according to the image gradients (edge-based
ACM), or the intensities’ statistical information (region-
based ACM). ACMs when used in combination with an
implicit representation of the object of interest, have proved
to be powerful tools in image segmentation. One popular
example of edge-based methods is the Geometric Active
Contour model (GAC) [34], whose evolution is terminated
when ‘‘strong’’ edges are encountered. On the other hand,
region-based ACMs use statistical information regarding the
distribution of intensities, inside and outside the contour,
making them less sensitive to image distortions, as well as to
the ‘‘leakage’’ effect. The Chan-Vesemodel [35], that is based
on the Mumford-Shah segmentation framework [36], is one
of the most widely used region-based ACMs to detect objects
whose boundaries are not defined by strong edges. However,
the sole use of regional information can lead to erroneous
segmentation results in the case of objects with well-defined
boundaries due to the lack of boundary terms. To tackle the
problems posed by the use of solely region or edge-based
information, hybrid approaches have been proposed [37].
Nonetheless, ACMs solely depend on image information.

Thus, their drawback is the lack of anatomical knowledge
about structures undergoing segmentation. This limitation,
which can be overcome through modeling and integration
of prior knowledge of anatomical structures into the seg-
mentation framework, has become a key-issue in medical
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image analysis. One of the earliest and most influential works
towards this direction was that of Cootes et al. [38] who incor-
porated into the ACM framework global shape constraints
learned by means of Principal Component Analysis (PCA).
They named their method as Active Shape Models (ASM) to
avoid confusionwith traditional ACM. In Leventon et al. [39],
a non-parametric, intrinsic model based on the implicit rep-
resentation of the shapes was constructed and incorporated
into a GAC segmentation framework. The same approach
was later adapted by Yang et al. [40], to build a statistical
neighbor prior, able to constraint the segmentation based on
neighborhood properties between adjacent structures. Yang et
al. incorporated the constructed models into a region-based
ACM framework to achieve simultaneous segmentation of
neighboring structures. The aforementioned ASMs, however,
are modeling global shape-prior knowledge through PCA,
thus cannot account for local shape variations.

Incorporation of texture in the ASM framework led to
Active Appearance Models (AAMs) [41]–[44]. AAMs use
PCA-based linear subspaces to model variation of both shape
and texture information from a training set. The initial con-
cept of AAM required the identification of landmarks. In
an effort to overcome this issue, the integration of level-
sets in the AAM framework was proposed by Hu et al.
[45], [46]. In Toth et al. [47], a multi-feature landmark-free
AAM was presented. Other interesting approaches extending
the initial idea of AAMs include combination of the AAM
with patch-based label fusion [48], and the Bayesian appear-
ance model [49]. Despite its advantages, such as fast perfor-
mance, AAM is a local search technique and thus requires
good initialization [50].

All the aforementioned active models focus on modeling
and integrating prior information, rather than optimally bal-
ancing the degree of local influence that the prior knowledge
and image information should have at a voxel level. Global
weighting, which implies consistent boundary properties, has
traditionally been used. However, this hypothesis is not true in
some challenging cases, and thus is removedwithin this work.
In fact, HC has spatially varying boundary properties, demon-
strating clear, blurry and even missing borders. Towards this
direction, we recently developed a local weighting scheme
[51] to improve theweighting between the image and the prior
term. A local weighting map, called Gradient Distribution on
Hippocampus Boundarymap (GDHB), was built based on the
learned gradient values across the boundary of the HC.

Based on the same concept, in [52] we defined an Optimal
Local Weighting map (OLW), via an optimization procedure.
The optimization criteria are designed to generate the most
accurate segmentations for a set of training images, given
the corresponding ground-truth segmentations. The training
OLWs are adapted on the test image and fused, to generate the
OLW values of the latter. OLW is subsequently incorporated
into an ACM framework defined by two energy terms, the
region-based image term and the prior term. The efficacy of
this concept was validated through experiments on the central
sagittal slice of HC.

Hereby, the concept of OLW is further extended and a fully
automatic subject-specific segmentation framework is pro-
posed that models the local properties of HC bymaking use of
a complete set of Optimal LocalMaps (OLMs), applying it on
3D MR images. The OLMs produced are incorporated into a
hybrid ACM framework, which includes three energy terms:
a region-based term, an edge-based term and a prior term.
The prior term, which is a label spatial distribution map, is
built based on a straightforward multi-atlas framework. Thus,
the proposed method is a mixture of the multi-atlas concept
together with the ACM framework, in which OLMs are used
to locally blend the energy terms.
OLMs refer to three different 3D maps: (i) a map that

applies the local weighting between the prior energy term
and the image derived terms (W1), (ii) a map that locally
balances the contribution between the region- and the edge-
based term (W2), and (iii) a map that controls locally the time
step used in the evolution of the level set (S). To the best of
our knowledge this is the first work to define the purpose and
extraction of such three maps. All parameters included into
the hybrid ACMmodel are calculated during training through
an optimization procedure, avoiding heuristic parameter fine-
tuning, ensuring optimal contour evolution based on the
captured HC boundary and shape properties. The advantage
of the proposed scheme, is that the ACM based on OLMs
allows for capturing of fine details. Furthermore, the multi-
atlas concept is utilized, since it can naturally incorporate the
training OLMs, treating them as extra atlas modalities, thus
constructing multi-fold atlases, i.e the atlas image, its label
image and the corresponding OLMs (left part of Fig. 2).
The proposed algorithm was tested on three different

datasets and demonstrated its appropriateness to be used as
a supplementary technique to the multi-atlas methods.

II. METHODS
A. DESCRIPTION OF DATA
Three datasets were used in the context of this work:

1) OASIS Dataset
The OASIS database [53] consists of T1-weighted MR image
volumes acquired with a 1.5T Vision scanner, produced
by averaging four scans of the same individual, offering
images with reduced noise levels. The MR image volumes
were resampled to produce images with resolution 1.0mm ×
1.0mm× 1.0mm and were spatially warped into the Talairach
space. The size of the volumes is 176×176×208 voxels. The
database is very large (416 subjects), but no manual segmen-
tations are available. As a result, a subset was chosen so as to
cover the entire age span of the subjects and to include sub-
jects with different degrees of dementia. A professional radi-
ologist provided us with manual segmentations of HC, which
we offer publicly to the research community.1 The selected
subset consists of 23 right-handed subjects (13 females
and 10 males) with ages ranging from 18 to 96 years old.

1http://vcl.iti.gr/hippocampus-segmentation/

VOLUME 2, 2014 1800116



Zarpalas et al.: Accurate and Fully Automatic HC Segmentation

FIGURE 2. Overview of the proposed methodology for calculating the spatial distribution map L, the OLMs as well as the ACM parameters for a target image.
The resulting L, OLMs and ACM parameters are incorporated into the ACM framework, to produce the final segmentation.

Among them, 2 subjects have a Clinical Dementia Rating
scale (CDR) equal to 0.5, indicating verymild dementia while
2 subjects have CDR scale of 1, indicating mild dementia.

The manual protocol followed for the segmentation of the
OASIS dataset is a close variant of the protocol used in the
study of Narr et al. [54]. This protocol is an adaptation from
existing protocols [55]–[60] and defines HC as a homoge-
neous gray matter structure. However, it should be noted
the current discussion on whether to include or not non-
gray matter parts in the hippocampal formation [61], [62].
The non-gray matter parts under discussion to be included in
hippocampus are the alveus and fimbria.

2) IBSR DATA SET
The IBSR dataset is provided by the Center for Morphomet-
ric Analysis at Massachusetts General Hospital.2 It contains
T1-weightedMR image volumes of various image resolutions
(from 0.8mm×0.8mm×1.5mm to 1.0mm×1.0mm×1.5mm)
from 18 subjects. The volumes have been spatially normal-
ized into the Talairach orientation (rotation only). The sub-
jects’ age varies from youngsters, of less than 7 years of age,
to older people of 71 years. Among the subjects, 4 of them
were female, while the rest 14 subjects were male. Volumes’
size is 256× 256× 128 voxels.

The IBSR repository further offers the corresponding man-
ual segmentations of HC. The manual segmentation protocol

2http://www.cma.mgh.harvard.edu/ibsr/

followed is described in Makris et al. [63] and regards HC as
a homogeneous gray matter structure.

3) OASIS-MICCAI DATA SET
The OASIS-MICCAI dataset is also a subset of the OASIS
database, that was used in the recent evaluation workshop of
MICCAI 2012 ‘‘Workshop on Multi-Atlas Labeling’’ [29].
Of the 35 MR image volumes in the subset, 15 were used for
training and 20 for testing. The average age of the subjects
in the training set is 23 years old (ages ranging from 19 to
34 years old), while in the testing set the average age is
47.5 years old (ages ranging from 18 to 90 years old). Both
training and testing datasets contain female and male sub-
jects; 10 MRIs from females and 5 from males, and 12 from
females and 8 from males, are included in the training and
testing sets, respectively.
Manual segmentations for the dataset are provided by

Neuromorphometrics, Inc.3 under academic subscription.
The manual segmentation protocol4 used for HC segmen-
tation includes also white matter parts (fibria/alveus) in the
hippocampal region.

B. OVERVIEW
The key point of the proposed method is the blending of
different types of information in a hybrid ACM framework
through the incorporation of a set of subject-specific Optimal

3http://Neuromorphometrics.com/
4www.braincolor.org
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Local Maps (i.e.W1,W2 and S) to be used on top of the multi-
atlas concept. The level set evolution depends on three energy
terms: the edge-based term, the region-based term and the
prior term. The latter is built by the subject-specific spatial
distribution of labels map L offered through multi-atlas. In
this scheme, W2 is used to balance the contribution of each
image-derived energy term. Hence, in the presence of strong
edges W2 weights more the edge-based term on that region,
while in low gradient regions the region-based term is trusted
more. Similarly, W1 balances between the combined image
terms and the prior term. Thus, the prior term is used in
regions where the image information is not sufficient to drive
the segmentation in the right direction. S aims to control the
time step for the level set evolution, defining smaller time
steps when the level set is close to convergence. Vice versa,
S takes higher values on homogeneous regions, where the
evolving contour is far from the actual boundary, to speed up
evolution and convergence.

As Fig. 2 shows, once the OLMs and ACM parameters of
the atlases are extracted, the atlases are registered to the test
image. The fusion step follows, to extract the subject-specific
OLMs, the spatial distribution label map L, as well as the
ACM parameters. Then, the ACM evolution starts evolving
a contour both on the MR image and on L, and optimally
blending their outcomes. For the initialization of the ACM
evolution, the region with the most likely voxels to belong
to hippocampus (defined as the regions of L with the highest
values) is used.

C. PRIOR INFORMATION
The first step towards modeling prior information is to
build L, which offers information about the spatial distribu-
tion of the structure’s labels. In this work, we investigated
two different fusion techniques for the construction of L.
The first one is a simple multi-atlas fusion concept based
on a global weighted average technique. Thus, given a set
of n training images Ii, i = 1, .., n and their corresponding
labeled images Li, as well as the wrapping fields calculated
by non-rigidly registering Ii to the target image I , L is
provided as:

L =
∑

i=1,..,n

si · F(Li) (1)

where F represents the wrapping process of the labeled
images Li to the space of I , and si stands for the similarity
between the registered training image Ii and the target image
I expressed by means of cross-correlation. All si are normal-
ized so that

∑
i=1,..,N

si = 1.

The tasks of non-rigid registration and similarity calcula-
tion are performed with the ANTs toolkit. More precisely, the
symmetric normalization methodology (SyN) [64] is utilized,
which is based on optimizing and integrating a time-varying
velocity field. The instructions in Klein et al. [65] were fol-
lowed to choose the similarity metrics and the velocity field
regularization.

The second fusion technique that was investigated for the
construction of L is based on the recent joint label fusion tech-
nique5 which was proposed byWang et al. [31]. According to
this approach:

Ljoint (x, y, z) =
∑

i=1,..,n
wi(x, y, z) · F(Li(x, y, z)) (2)

wherewi refer to the votingweights (3Dmatrices of size equal
to the size of Li) calculated by the use of the joint label fusion
technique, and are subject to

∑
i=1,..,n

wi = 1.

The reason for investigating two different multi-atlas
fusion techniques is two-fold. Firstly, the multi-atlas concept
is crucial for the performance of the proposed method as it
offers L, which is used to provide the prior term. Secondly and
most important, the proposed method is a locally weighted
ACM on top of the multi-atlas concept and it is designed
to improve the multi-atlas result no matter how accurate the
latter is. By incorporating one of the most accurate multi-
atlas methods according to the results from theMICCAI 2012
workshop, it is possible to demonstrate the appropriateness
of the proposed method to work as a complementary method
even to sophisticated and highly accuratemulti-atlasmethods.

D. ACM EVOLUTION
Let C denote the evolving curve, which is implicitly repre-
sented as the zero level set of a signed distance function φ.
The evolution of the curve C is driven by the image terms
and the prior term. Hence, by introducing the local weighting
maps W1 and W2 the contour update equation is defined as:

∂φ

∂t
= W1 ◦

∂φimage

∂t
+ (1−W1) ◦

∂φprior

∂t
(3)

where the operation ◦ denotes the Hadamard product, and

∂φimage

∂t
= W2 ◦

∂φE

∂t
+ (1−W2) ◦

∂φR

∂t
(4)

where φR, φE and φprior correspond to the evolving contours
based on the region-based (ER), the edge-based (EE ) and
prior (Eprior ) term, respectively. Finally, by introducing S in
the level set framework, the evolving shape at iteration k is
calculated by:

φk = φk−1 + S ◦
∂φk−1

∂t
(5)

The derivation of φR, φE , φprior and based on them the
final form of the evolution equation ∂φ

∂t can be found in the
Appendix section.

E. CALCULATION OF TRAINING OLMS AND ACM
PARAMETERS THROUGH GRAPH-CUTS
Another means of capturing prior knowledge is the modeling
of the varying boundary properties of HC, through the con-
struction of local blending maps (OLMs), that define at voxel

5http://www.nitrc.org/projects/picslmalf/
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FIGURE 3. Training phase: Overview of the procedure for calculating the training OLMs and ACM parameters for the training
images via an optimization scheme.

level which energy terms are to be trusted more for accurate
segmentation results.

Graph cuts [66] have been widely used in computer vision
in various problems, whose solution can be found through
discrete pixel labeling. Graph cuts require formulating the
pixel labeling in terms of energy minimization, assuming that
the minimum energy solution corresponds to the maximum
a posteriori estimate. Hereby, the Maxflow algorithm, intro-
duced by Boykov and Kolmogorov [67], is used to minimize
two energy functionals E(f ) (Fig. 3). These allow the calcu-
lation firstly of the training OLMs and secondly of the ACM
parameters for the n training images, i.e. W1i, W2i, Si, and
λ1i, λ2i, i = 1, ..., n.

Minimizing the two energy functionals requisites thatW1i,
W2i, Si and λ1i, λ2i are defined such as the image and
prior terms that drive the evolving level-set will force it
to move towards the corresponding ground-truth level set,
despite its initial position. Thus, by imposing minimum dif-
ference between the needed move of the level set and the
ground-truth zero level set extracted by the label image, and
repeating the procedure until convergence of the level set,
the curve will approach and finally fall onto the ground-
truth contour. Once convergence is accomplished, the training
OLMs and ACM parameters are defined as the average from
all iterations. More details can be found in the Appendix
section.

F. ADAPTING TRAINING OLMS AND ACM PARAMETERS
THROUGH REGISTRATION
The focus of this section is on creating a subject-specific seg-
mentation framework that accounts for the subject’s anatomy.
Towards this aim, a multi-atlas concept is used to produce
subject-specific OLMs and ACM parameters for the target
image. Attention should be paid to the fact that in the context
of this section, as an atlas we consider the coupling of an
anatomical image with its corresponding OLMs.

FIGURE 4. Sagittal slices of a training MR image Ii (top row) and a test MR
image (bottom) of the OASIS dataset. The contours of hippocampus are
represented with magenta. The corresponding slices from the 3D training
W1i , W2i , Si (top) and of the testing W1, W2, S (bottom) are presented in
columns 2, 3 and 4 respectively.

As mentioned in subsection II-C, each anatomical image
in the training set Ii, i = 1, ..., n is non-rigidly registered
to the test image. The resulting transformations are used to
propagate the training OLMs to the space of the target image
(Fig. 4). Denoting the wrapping procedure as F , the resulting
local maps and ACM parameters are combined according to
the similarity si:


W1
W2
S
λ1
λ2

 =
∑

i=1,..,n

si ·


F(W1i)
F(W2i)
F(Si)
λ1i
λ2i

 (6)

III. EXPERIMENTS AND RESULTS
A. EVALUATION FRAMEWORK
The performance of an algorithm is potentially affected by
the scanner type, imaging conditions, demographic charac-
teristics and even by the quality of manual segmentations
and the segmentation protocol used. To overcome these
limitations and achieve fair comparisons, we evaluated the

1800116 VOLUME 2, 2014
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TABLE 1. Comparison results for the OASIS dataset using mean dice’s
similarity index.

proposed method (abb. OLM-ACM when weighted average
fusion is used for building the spatial distribution map, and
OLM-ACM_Joint when the sophisticated joint label fusion
scheme is incorporated) in 3D MR images using three differ-
ent datasets that vary in terms of the aforementioned charac-
teristics.

To assess the behavior of the proposed methodology on
HC segmentation, experiments were conducted to evaluate its
performance through comparison with other methods. For the
IBSR and OASIS datasets, the broadly-used leave-one-MRI-
out procedure was followed, in order to offer fair comparison
with the published results of other methods. For the OASIS-
MICCAI dataset we followed the evaluation protocol of the
MICCAI challenge to enable a straightforward comparison
of our results, where 15 MRIs were used for training and 20
for testing. The Dice similarity coefficient (D) is used in all
datasets as a segmentation performance measure due to its
popularity and importance in evaluating and comparing the
performance of segmentation methods. D is given by:

D =
2|Ĥ ∩ H |

|Ĥ | + |H |
=

2 · Pr · Re
Pr + Re

, D ∈ [0, 1] (7)

where Pr and Re stand for Precision and Recall respectively.
D = 0 indicates no overlap between the actual (H ) and
the estimated volume (Ĥ ), while D = 1 indicates perfect
agreement.

B. RESULTS AND COMPARISONS
1) OASIS DATA SET
Due to the absence of published results in our OASIS
dataset, a state-of-the-art AAM segmentation algorithm [50]
offers a valuable indication on the expected Dice values.

The implementation of the latter is publicly available.6

In addition, the proposed method’s performance is com-
pared with that of the corresponding multi-atlas method on
which the spatial distribution map relies on. More precisely,
the ACM framework based on OLMs that uses either the
weighted averaging for building the prior term (OLM-ACM),
or the sophisticated joint label fusion (OLM-ACM_Joint),
are compared with Multi-atlas and Multi-atlas_Joint meth-
ods, which are produced by applying majority voting on
L and Ljoint , respectively. This comparison actually reveals
the contribution of the proposed methodology on top of the
multi-atlas, regardless of the fusion technique. It should be
noted that the Multi-atlas_Joint method is our reproduction
(using the publicly available tools of ANTs toolkit and joint
label fusion) of the method proposed by [31] and abbrevi-
ated as ‘PICSL_Joint’ during the MICCAI 2012 workshop.
PICSL_Joint ranked 3rd in the challenge, while when com-
bined with bias correction reached the first place. Moreover,
segmentation results using a hybrid ACM based on global
weighting for blending the edge, the region and the prior term
were produced. As in the case of the proposed method, the
performance of the hybrid ACM method using two different
approaches for building the prior term is evaluated. In the
first case the prior term is build using L (ACM), while in the
second the Ljoint is used instead (ACM_Joint).
The resulting mean Dice similarity coefficient and the

corresponding standard deviations for all experiments are
presented in Table 1. Comparing the OLM-ACM with the
Multi-atlas method, and the OLM-ACM_Joint with the
Multi-atlas_Joint method respectively, an improvement of
1-2% can be observed (p-values from paired t-test are 0.045
and 0.047, respectively). This demonstrates that the multi-
atlas approach still leaves space for improvements that the
proposed methodology takes advantage of by combining both
image (edge and intensity) and prior information in an opti-
mal way. Comparing the resulting Dice similarity coeffi-
cients by means of the ACM method and the ACM_Joint
approach (0.79 and 0.84) with those achieved when using
the Multi-atlas and Multi-atlas_Joint methods (0.80 and 0.84
respectively), no improvement can be seen. This suggests
that the hybrid ACM with global weighting is insufficient for
improving the multi-atlas result. It is important to note that
in order to find the adequate ACM parameters for the hybrid
ACM without OLMs, exhaustive heuristic fine-tuning was
used and only the best achieved results are presented here.
Therefore, the incorporation of the OLMs concept, which
uses local weighting and parameters calculatedwith the use of
an optimization procedure, is required in order for the ACM
framework to be able to offer improvements to the multi-atlas
methods.
A comparison plot of the Dice similarity coefficient for

each subject is provided in Fig. 5 with the aim to allow
comparisons among the OLM-ACM_Joint, Multi-atlas_Joint
and the AAMmethods. The Clinical Dementia Rating (CDR)

6http://www.isbe.man.ac.uk/ kob/vaam_1_0/index.html
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FIGURE 5. Comparison metrics for the performance of OLM-ACM_Joint, Multi-atlas_Joint and AAM methods. On the precision vs recall plot, the results of
the OLM-ACM_Joint method are connected with those of each of the methods under comparison on the same subject to allow for direct comparison. The
optimum position in the Precision-Recall space is the upper right corner (1, 1). On the Dice similarity index plot, colored asterisks stand for the Clinical
Dementia Rating (CDR) of each subject (red asterisk stands for CDR=1 which indicates mild dementia, green for CDR=0.5 indicating very mild dementia,
while blue for CDR=0 which indicates no dementia). The age of each subject appears above or below the corresponding CDR asterisk. Subjects are sorted
by ascending ground-truth HC volume.

FIGURE 6. Bland-Altman plots for the OASIS dataset showing graphically the agreement between the manually
segmented volumes and the volumes segmented by means of OLM-ACM_Joint, Multi-atlas_Joint and AAM method.

FIGURE 7. Segmentation results for subjects 2 (1st row), 12 (2nd row), 14 (3rd row) from OASIS dataset by (a) OLM-ACM_Joint,
(b) Multi-atlas_Joint, and (c) the AAM method of [50]. On the both 2D slices and 3D models, blue color represents false positives,
green true positives and magenta false negatives.

and the age of every subject are also provided in the plot.
The subjects have been sorted according to ascending hip-
pocampal volume in an effort to demonstrate the influ-
ence of volume in the performance of the methods. Further,

comparison plots on additional metrics are also provided,
i.e. the precision and recall metrics, the Haussdorff distance
and the undirected average difference. The plots clarify that
in the OASIS dataset, OLM-ACM_Joint performs better than
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TABLE 2. Comparison results for the IBSR dataset using mean Dice’s
similarity index (µ) and the corresponding standard deviation (σ ) where
available. Three decimal points are used when available to allow for fair
ranking, as differences among methods are in some cases lower than 1%.

the Babalola et al. approach [50] and Multi-atlas_Joint for
most subjects on every metric. It can also be observed that
there is a decrease in segmentation performance on older
subjects, especially the ones suffering from dementia for
all aforementioned methods. However, segmentation perfor-
mance in those subjects may have been affected by the lack of
sufficient amount of similar cases. Apparently, experimenting
with a dataset, with only a few problematic cases, is not
sufficient for drawing conclusions on a method’s behavior in
those cases.

Furthermore, the agreement between the automatically and
manually segmented volumes was studied with the use of
the Bland-Altman analysis (Fig. 6). A high overestimation
bias for the AAM method can be observed, while the Multi-
atlas_Joint presents an underestimation bias. Furthermore,
Multi-atlas_Joint shows a light tendency to overestimate
small volumes and to underestimate the large ones. The
same tendency can be observed for the OLM-ACM_Joint
method. However, the OLM-ACM_Joint method has a much
lower bias when compared to the other two methods. This
indicates that the segmented volumes, calculated by means
of the OLM-ACM_Joint method, are closer to the manually
segmented ones. Fig. 7 illustrates segmentation results for
3 different subjects.

2) IBSR DATA SET
In order to validate the performance of the proposed method
in the IBSR dataset, the segmentation results produced are
compared with the results published over the years on this

FIGURE 8. Bland-Altman plot for the IBSR dataset showing graphically
the agreement between the manually segmented volumes and the
volumes segmented by means of OLM-ACM_Joint.

TABLE 3. Comparison results for the OASIS-MICCAI dataset using mean
Dice’s similarity coefficient. Three decimal points are used to allow for
fair ranking of the methods.

dataset from state-of-the-art segmentationmethods, including
various multi-atlas based methods. The resulting mean Dice
similarity coefficient and the standard deviation of the meth-
ods are presented in Table 2 allowing a direct comparison
among methods. The results indicate that OLM-ACM_Joint
outperforms all previously published results. Furthermore,
comparing the OLM-ACM with the Multi-atlas and the
OLM-ACM_Joint with the Multi-Atlas_Joint presents a con-
sistent improvement of 0.5-0.6% (p-values of paired t-tests
0.03 and 0.042 respectively), as well as smaller dispersion
of the resulting Dice similarity coefficients (as demonstrated
by the σ values). MR images from the IBSR dataset differ
significantly from those of the OASIS dataset in terms of
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FIGURE 9. OASIS-MICCAI subset: Comparison of the four top ranked methods, as presented in Table 3, on four metrics. On the precision vs recall plot,
the results of the OLM-ACM_Joint method and each of the remaining methods on the same subject are connected to allow for direct comparison.
Subjects are ranked by ascending ground-truth HC volume and their ages are provided in the Dice plot. Note that in the OASIS-MICCAI subset, the
Clinical Dementia Rating (CDR) for all subjects, but subject 16, is 0 or not provided by OASIS (young subjects), in contrast with OASIS subset where
subjects with different CDR were included (Fig. 5).

FIGURE 10. OASIS-MICCAI subset: Bland-Altman plots showing graphically the agreement between the manually segmented volumes and the volumes
segmented by means of the four top ranked methods presented in Table 3.

imaging quality/varying resolution and scanner types used.
Therefore, the improvement in image segmentation for both
datasets suggests that the proposedmethodmay be insensitive
to differences in scanner type and image quality.

Moreover, the Bland-Altman analysis in Fig. 8 demon-
strates an overestimation bias for OLM-ACM_Joint method,
while the Multi-atlas_Joint method presents (similarly with
the OASIS results) a larger underestimation bias. Further-
more, for the Multi-Atlas_Joint method the tendency to
underestimate volumes is stronger for subjects with large HC
volumes.

3) OASIS-MICCAI DATA SET
Multi-atlas labeling techniques have gained increased pop-
ularity over the past years for the segmentation of brain
structures, including the hippocampus. The ‘‘Grand Chal-
lenge on Multi-Atlas Labeling’’ at the MICCAI 2012
workshop has provided the scientific community with an
insight to the theory and application of current state-of-
the-art multi-atlas methods, as well as with a compara-
tive evaluation among them using the mean Dice similarity
coefficient. In total, 25 different multi-atlas approaches were
presented and validated, while the segmentation masks have
been made publicly available. Following the same protocol
as in the challenge, the proposed methodology is applied
to the challenge’s dataset. Please note that around half of
the methods, including the three highly ranked, have used
the ANTs toolkit for the task of non-rigid registration,
as the proposed method does. Thus, a fair comparison is
available.

The mean Dice similarity coefficient values obtained
by means of all 25 methods, as well as OLM-ACM,
OLM-ACM_Joint, Multi-atlas andMulti-atlas_Joint, are pro-
vided in Table 3. It should be noted that the method
‘PICSL_Joint’ of Table 3 is actually the Multi-atlas_Joint
method. The results demonstrate that the proposed method-
ology, when combined with the joint label fusion scheme,
achieves accuracy of 0.865, with the highest accuracy
achieved in this dataset being that of the ‘PICSL_BC’
method [72], which equals to 0.869. However, comparing
OLM-ACM with Multi-atlas and OLM-ACM_Joint with
Multi-atlas_Joint, it is clear that the application of the pro-
posed ACM framework on top of the multi-atlas concept is
beneficial also in this dataset.
Furthermore, Fig. 9 presents comparison plots for the four

top ranked methods presented in Table 3 using four metrics.
The Dice similarity coefficient plot shows that, except for
the three smallest volumes, no bias between volume size
and segmentation performance was observed for any of the
methods. Furthermore, the precision-recall diagram demon-
strates higher recall values for the proposed methodology,
while the rest of the methods demonstrate higher precision.
Moreover, the agreement between manually and automati-
cally segmented volumes by means of the four aforemen-
tioned methods is indicated using the Bland-Altman analysis
(Fig. 10). OLM-ACM_Joint presents a higher overestimation
bias than the rest of the methods, while has smaller variation
than them.
It is worth mentioning that the proposed concept was tested

on datasets that differ in terms of the manual segmentation
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FIGURE 11. The actual boundary (blue color) and HC dilated region used
for the calculation of the mean values of OLMs presented in the table on
the right as case A (on the boundary) and B (purple region), respectively.

protocol. As mentioned in II-A, the manual segmentation
protocol used in the OASIS-MICCAI dataset includes non
gray-matter parts in the hippocampal region, while those used
in IBSR and OASIS dataset do not. The proposed methodol-
ogy was designed to work according to manual segmentation
protocols that consider HC as a homogeneous gray matter
structure. However, for the sake of completenesswewanted to
show our performance also in the OASIS-MICCAI dataset, in
which apparently our method can not perform in an optimum
way; the region based term cannot support the inclusion of
white matter, since the vast majority of HC voxels have a
darker intensity. However, the proposed method ranked high
in all datasets, regardless of the manual protocol used. Thus,
the results suggest the potential robustness of the proposed
method to the segmentation protocol.

IV. CONCLUSION
This paper advocated the incorporation of OLMs into a
hybrid ACM, to be used on top of the multi-atlas concept for
HC segmentation. OLM-ACM tends to improve segmenta-
tion accuracy compared to traditional prior-knowledge and
data driven ACM. This is because the latter makes use of
the hypothesis of consistent boundary properties and thus
applies global weighting to the energy terms. On the contrary,
OLM-ACM defines each term’s contribution at a voxel level,
taking into account the spatially varying properties of bound-
aries and thus allowing the optimal exploitation of the ACM
energy terms. Furthermore, it consistently improves the result
of the multi-atlas methods in all three datasets, which demon-
strates its efficacy as a supplementary technique to the multi-
atlas methods.
W1 tends to underline image properties, either edges or

statistical differences of intensities, in those regions which
are located close to the boundary, by weighting them more.
In this respect, W1 makes it possible for a level set to con-
verge at an accurate voxel point where the actual boundary
is located. The table in Fig. 11 allows us to observe that
W1 does indeed take its higher values on the boundary, as
desired. The sole use ofW1 is not, however, a sufficient means
of achieving optimal segmentation. This is because, apart
from the general knowledge where the image term should
be trusted more, it is of great significance to determine at
voxel level whether the edge or the region term is more
trustworthy.

The concept of W2 was introduced to tackle this issue.
In regions of the boundary where gradients are high, the
edge-based term is used more frequently. Vice versa, in
regions characterized by a lack of strong edges the region
term is preferred to allow the level set to evolve correctly.
It should be noted that the use of the region-based term
is generally preferred, as HC is a structure with mainly
ambiguous boundaries. This is confirmed by Fig. 11
(W2 < 0.5 means more weight on ER). In addition, the level
set evolution depends on the step used for its evolution. When
large steps are used the evolution process is accelerated.
However, when the level set is close to the real boundary, the
step should be small enough to capture small deformations
that are needed to achieve segmentation accuracy. This is why
the use of S in ACMmethods seems to be of high importance.
Regarding execution time, the major bottleneck is the task

of non-rigid registration, included in the multi-atlas proce-
dure. More precisely, the testing procedure involves register-
ing the test image with each training image. This procedure
requires n × 2 hours (n is the size of the training set) with
ANTs toolkit routines on an Intel Core i7 3.90Ghz computer
(using 1 core). The subsequent transformation of the labels
and training OLMs to the space of the target image and the
calculation of the similarity metrics si takes on the same
computer 5 min, while around an hour is required for the
joint label fusion algorithm. The ACM evolution requires
only 6 min on average (with the use of un-optimized Matlab
code). This means that any burden regarding the computation
time needed is due to the registration procedure, since during
the testing phase our method increases the computational
time infinitesimally comparing with the multi-atlas required
time. For this reason, future work will focus on avoiding
the task of non-rigid registration. Some first works towards
this direction have recently been presented [68], [73], [74].
As far as the training phase is concerned, it is also compu-
tational heavy due to the sophisticated and complex nature
of extracting the OLMs. On the same computer the training
requires n × 2.6 hours on average. However, as any other
training procedure, the training is performed only once and
is an offline procedure.
The proposed framework was evaluated in three publicly

available datasets, none of them equipped with statistics on
manual segmentation variations. These offer a good indica-
tion of the segmentation task’s difficulty in a given dataset, as
the goal is to offer less, or even similar, variability than the
one observed between different experts. Indicatively, in two
recent 3 Tesla HC studies the reported inter-rater variability
was 0.91 [75], while in [11] it was 0.832 (with the intra-
rater being 0.891, and the automatic segmentation perfor-
mance 0.844). The results presented in [76] show comparable
Intraclass Correlation Coefficient between the automatic and
manual volumes (0.898), compared to the inter-rater relia-
bility (0.929). Similarly, [77] reports higher manual-manual
(0.63) compared to manual-automated (0.61) HC agreement,
while in [78] the difference is much higher in two datasets
(inter-rater 0.80 vs automatic 0.77, and inter-rater 0.90 vs
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automatic 0.75). In [79] two raters were using the same tool to
enhance their HC segmentation skills. In a two series exper-
iment both of them managed to raise their intra-rater agree-
ment (from 0.79 to 0.94). Interestingly, once this was accom-
plished, their inter-rater agreement decreased from 0.68 to
0.57. This could mean that the two raters were doing excellent
but different segmentations, and is further suggesting that
inter-rater reliability may be a useful indication but perhaps
insufficient too.

Overall, the proposed method is an ACM based exten-
sion of the multi-atlas methodology. Experimental results on
three datasets, with different manual segmentation protocols,
demonstrate the efficacy of the proposed method and its
appropriateness to be used on top ofmulti-atlasmethods, even
the sophisticated ones. Thus, combination of the proposed
method with an even better performing multi-atlas based
algorithm (such as the PICSL_BC [33]) can lead to further
improvements and is inline with our future work. However,
results from the OASIS-MICCAI dataset in comparison with
those from OASIS and IBSR datasets, show that there exists
space for further improvements in datasets for which the
manual segmentation protocol followed includes whitematter
parts in the hippocampal region. In this respect, future work
will include investigating ways to assign inW1 higher values
to the prior term in the alveus/fimbria regions. Given that the
multi-atlas based prior knowledge mapped in L will be voting
the inclusion of alveus/fimbria, this modification will allow
the proposed methodology to perform in an optimum way in
such datasets too.

In conclusion, evidence favors the inclusion of HC volume-
try in clinical practice, to enhance disease diagnosis, within
a decision support system. Hence, actions are envisaged for
establishing it as a biomarker. The above highlight the need
for automatic HC segmentationmethods that can offer as high
accuracy as possible. Any improvement that is proved sta-
tistical significant could help identifying a more precise and
reliable biomarker. The proposed framework demonstrates a
supplementary technique to the multi-atlas methods, consis-
tently improving their performance, while slightly increasing
the computational cost. It ranked high in three datasets (even
in one with a different definition of hippocampus), posing
itself as a promising candidate for large-scale experimenta-
tion.
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APPENDIX
A. ENERGY MODEL
Following the level set method [80], in the image domain
� ∈ R3, we define an evolving curve C implicitly repre-
sented as the zero level set of a signed distance function
φ : R3→ �

C = {(x, y, z) ∈ � | φ(x, y, z) = 0} (8)

where φ(x, y, z) < 0 inside the contour C and φ(x, y, z) > 0
outside the contour C .
The contour update equation based on the local weighting

mapsW1 andW2 is defined as: where the operation ◦ denotes
the Hadamard product and

∂φ

∂t
= W1 ◦

[
W2 ◦

∂φE

∂t
+ (1−W2) ◦

∂φR

∂t

]
+(1−W1) ◦

∂φprior

∂t
(9)

B. REGION-BASED TERM (ER )
The region-based term used is the one presented by Chan-
Vese in [35], where the curve is being evolved to minimize
the following energy functional:

ER = λ1

∫
�1

|I (x, y, z)− c1|2dxdydz

+λ2

∫
�2

|I (x, y, z)−c2|2dxdydz, (x, y, z) ∈ � (10)

where I is the target MR image, c1 and c2 are the aver-
age intensities of the regions inside and outside the con-
tour, respectively and λ1, λ2 ≥ 0 are balancing factors
for the properties of the interior and the exterior regions
of the estimated boundary. Based on ER, the evolution
equation of the contour driven by the region-based term
becomes:

∂φR

∂t
=δε(φ)

[
µdiv

(
∇φ

|∇φ|

)
−ν−λ1(I−c1)2+λ2(I−c2)2

]
(11)

where δε(φ) is the Dirac function, ν controls the propagation
speed, and µ div

(
∇φ
|∇φ|

)
is a regularization term that controls

the smoothness of the contour.

C. EDGE-BASED TERM (EE )
The edge-based term is formulated by minimizing the energy
functional defined in Caselles et al. [34]:

EE =
∫
�

g(v)|∇φ(v)|dv (12)

where g is an edge stopping function defined as in [34]:

g(|∇(I )|) =
1

1+ |∇Gσ ∗ I |
(13)

with Gσ standing for the Gaussian convolution kernel of size
3 × 3 × 3 and standard deviation 0.5. The contour evolution
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equation driven only by the edge-based term reads:

∂φE

∂t
=

[
g|∇(φ)|(div

(
∇φ

|∇φ|

)
)+∇g · ∇φ

]
(14)

where
∇φ

|∇φ|
is the regularization term.

D. PRIOR TERM (EPRIOR )
The prior term is modeled by applying the region-based ACM
on L. The selection of the Chan-Vese approach to model the
prior term is based on the fact that L is an image with very
smooth transitions. Thus, the energy functional is defined as:

Eprior = v1

∫
�1

|L(x, y, z)− d1|2dxdydz

+v2

∫
�2

|L(x, y, z)−d2|2dxdydz, (x, y, z) ∈ � (15)

where d1 and d2 are the mean values in the regions of L
inside and outside C . Similarly to equation (10), v1 and v2
are balancing factors for the properties of the interior and
the exterior regions, which were set equal to one, since both
inside and outside regions are smooth and homogeneous.
Based on Eprior , the evolution equation for the contour driven
by the prior term is defined as:

∂φprior

∂t
= δε(φ)

[
µ div

(
∇φ

|∇φ|

)
− ν − v1(L − d1)2

+ v2(L − d2)2
]

(16)

By means of equations (9), (11), (14), (16), the overall
contour update formula becomes:

∂φ

∂t
= W1 ◦W2 ◦

[
g|∇(φ)|div(

∇φ

|∇φ|
)+∇g · ∇φ

]
+δε(φ)

[
(1−W1 ◦W2)µdiv

(
∇φ

|∇φ|

)
−W1 ◦ (1−W2) ◦

(
λ1(I − c1)2 − λ2(I − c2)2

)
−(1−W1) ◦

(
v1(L − d1)2 + v2(L − d2)2

)]
(17)

E. CALCULATION OF TRAINING OLMS AND ACM
PARAMETERS THROUGH GRAPH-CUTS
Fig. 3 provides the overview of this procedure. Let us consider
the problem of finding the optimum combination of values for
W1i, W2i, Si at a voxel v for a training image Ii, i = 1, .., n.
Such a procedure can be handled as a graph-cut labeling
problemwhere each label fv is beingmapped to a combination
of three labels: a label fv1 ∈ [0, 1] that represents the amount
of contribution of the prior term (W1i), a label fv2 ∈ [0, 1] that
represents the amount of contribution of the edge-based term
(W2i) as well as a label fv3 ∈ [1, 6] representing the step of
evolution (Si).W1i’s andW2i’s values are in the interval [0, 1]
as they represent percentages of contribution of the various
energy terms, while the values of Si stand for the size of the

time steps and thus, can be integer numbers. The mapping
function is expressed as:

f : fv ∈ [0,P]→ fv1 ∈ [0, 1] ∧ fv2 ∈ [0, 1] ∧ fv3 ∈ [1, 6]

(18)

where P is the number of possible permutations of fv1, fv2, fv3.
Due to computational considerations, only 8 discrete values
in the interval [0,1] were used for both fv1 and fv2. For the
same reason, the S’s possible values were limited to 6. It is
obvious that using more values could lead to better accuracy,
but this selection was done having in mind an optimal balance
between accuracy and computational cost in terms of memory
requirements.
In order to formulate our problem, we consider the com-

plete set of voxels V which belong to image Ii of the training
set and its corresponding label image Li that serves as the
ground-truth image. The goal is to define an optimal labeling
f forV. Finding the optimal labeling is equivalent to minimiz-
ing an energy functional E(f). According to graph cut theory,
the energy functional can be formulated as:

E(f) =
∑
v∈V

Dv(fv)+
∑

v∈P,q∈Nv

Vv,q(fv, fq) (19)

whereDv is the individual voxel cost for voxel v andmeasures
at which extent label fv fits for voxel v given the ground-truth
segmentation and the resulting one. Nv is the set of neighbor-
ing voxels of v and Vv,q(fv, fq) [66] is the interaction potential
between voxels v, q that penalizes discontinuities between
neighboring voxels and thus encourages spatial coherence
and it is defined as Vv,q(fv, fq) = min(|fv1− fq1|+|fv2− fq2|+
|fv3 − fq3|,K ), where K is set equal to 4 based on experi-
mentation. Within our framework, the data cost function Dv
is defined as:

Dv = |S ◦
∂φ

∂t
(fv)− φGT | (20)

where ∂φ
∂t is given by equation (17) and φGT stands for the

level set formulation of the corresponding label image.
A similar formulation with that in equation (19) is also used

in order to find optimal ACM parameters, λ1i, λ2i for each
image in the training set. Thus, to calculate λ1i, λ2i, which are
set in [0, 1], graph-cuts are used to minimize the difference
between the region update term and the level set formulation
of GT:

Dv = |S ◦
∂φR

∂t
(fv)− φGT | (21)
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