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Structured Abstract—Objective: Measuring the severity of the lateral spinal curvature, or Cobb angle, is critical for monitoring 

and making treatment decisions for children with adolescent idiopathic scoliosis (AIS). However, manual measurement is time-

consuming and subject to human error. Therefore, clinicians seek an automated measurement method to streamline workflow and 

improve accuracy. This paper reports on a novel machine learning algorithm of cascaded convolutional neural networks (CNN) to 

measure the Cobb angle on spinal radiographs automatically. Methods: The developed method consisted of spinal column 

segmentation using a CNN, vertebra localization and segmentation using iterative vertebra body location coupled with another 

CNN, point-set registration to correct vertebra segmentations, and Cobb angle measurement using the final segmentations. 

Measurement performance was evaluated with the circular mean absolute error (CMAE) and percentage within clinical acceptance 

(≤5°) between automatic and manual measurements. Analysis was separated by curve severity to identify any potential systematic 

biases using independent samples Student’s t-tests. Results: The method detected 346 of the 352 manually measured Cobb angles 

(98%), with a CMAE of 2.8° and 91% of measurements within the 5° clinical acceptance. No statistically significant differences 

were found between the CMAEs of mild (<25°), moderate (25°-45°), and severe (≥45°) groups. The average measurement time 

per radiograph was 17.7±10.2s, improving upon the estimated average of 30s it takes an experienced rater to measure. Additionally, 

the algorithm outputs segmentations with the measurement, allowing clinicians to interpret measurement results. 

Discussion/Conclusion: The developed method measured Cobb angles on radiographs automatically with high accuracy, quick 

measurement time, and interpretability, suggesting clinical feasibility.  
 

Index Terms—Convolutional neural network, point-set registration, machine learning, radiograph, scoliosis 

 

Clinical and Translational Impact Statement—Implementing the developed method could allow for quick and robust Cobb angle 

measurements on radiographs to expedite clinical workflow and advise adolescent idiopathic scoliosis (AIS) treatment diagnosis. 

 

I. INTRODUCTION1 

COLIOSIS is a three-dimensional spinal disorder, where 

the spine is characterized by lateral curvature and axial 

vertebral rotation. Adolescent idiopathic scoliosis (AIS) is 

the most common type of scoliosis and occurs in 

approximately 3% of adolescents [1]. Girls have a higher 

chance of developing more severe curves. If left untreated, 

AIS can result in visible deformity, cardiopulmonary 

compromise, and back pain [1]. Determining the appropriate 

treatment for AIS involves routine imaging of the spine with 

a posteroanterior (PA) radiograph and measuring the severity 

of the lateral curvature using the Cobb angle. The Cobb angle 

is the gold standard for quantifying the severity of the spinal 

curvature, which is measured by first identifying the pairs of 

most slanted vertebrae with opposing tilt angles [2]. The 

difference between the angles of the upper endplate of the 

superior most tilted and the lower endplate of the inferior 

most tilted vertebrae is then calculated. The Cobb angles 

measured on a child with AIS are depicted in Fig. 1a, in 

which the child has a double curve. A minimum Cobb angle 

 
1 This paper was submitted for review on July 10, 2023. This work was 
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of 10° is required for a child to be diagnosed with AIS [1]. 

Fig. 1b and 1c show the PA radiographs obtained from a 

conventional digital and low dose radiation x-ray system 

(EOS Imaging Inc, Paris, France), respectively.  
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Fig. 1 (a) Cobb angle measurement of 19° main thoracic (red) and 29° 

thoracolumbar (cyan) curves; (b) A conventional x-ray PA radiograph; (c) A 
low dose radiation (EOS system) PA radiograph. 
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Treatment options for children with AIS are typically 

based on whether they meet certain Cobb angle thresholds 

[1]. If the adolescent exhibits curve progression, an increase 

of more than 6° in the Cobb angle between consecutive visits 

(typically six months apart), treatment may change from 

observation to bracing and/or exercise or from bracing and/or 

exercise to surgery [3]. Obtaining accurate and reliable 

measurements is therefore crucial to AIS treatment 

prescription and evaluation of treatment outcomes. 

Additionally, some clinics have a large number of AIS 

patient visits per day combined with regular clinical visits (2-

3 times per year), and so measuring the Cobb angle quickly 

and accurately is highly desired by clinicians. An automatic 

measurement method has been widely sought to minimize 

measurement error, reduce clinician workload, and improve 

measurement reliability [4]. However, some of the major 

concerns that clinicians have with using machine learning 

algorithms for automation are medical liability due to 

algorithmic error and skepticism in a ‘black box’ diagnosis 

[5]. Consequently, the automatic measurement algorithm 

must also fulfill a high interpretability criterion to give 

clinicians confidence in the final automated diagnosis and 

the option to easily correct the output if they see something 

wrong with it. 

Because of the outlined benefits, some groups have 

tackled the problem of automating Cobb angle measurement 

on PA radiographs. Many of them use a convolutional neural 

network (CNN) based approach and achieved accurate 

results [6]–[8]. However, these methods suffer from either 

testing on only a small subset in the wide range of curve 

severities present in the AIS population, or offering little 

interpretability on how the method measured the Cobb 

angles. Many other groups have outlined their own automatic 

measurement methods, but they do not obtain comparable 

measurement accuracies [9]–[13]. 

Our group [14] previously reported on a method that 

achieved a circular mean absolute error (CMAE) and 

standard deviation of circular absolute errors (SD) of 

2.8°±2.8° and 88% of its Cobb angle measurements within 

clinical acceptance (≤5°) when compared with manual 

measurements. However, this was only tested on a 100-

image test set, and there was no reported analysis of 

performance by curve severity. Additionally, the method 

took 90±41 seconds on average to measure per radiograph, 

which is roughly the time it takes for a less experienced rater 

to manually measure. More experienced clinicians can 

measure Cobb angles on a radiograph in approximately 30 

seconds, making the previous method’s runtime a barrier of 

entry for adoption in real scoliosis clinics. This manuscript 

reports the development of an improved fully automated 

algorithm to quickly measure the Cobb angle on PA 

radiographs and to display highly interpretable output 

images. The measurement results on an expanded test set of 

200 PA spinal radiographs with a wide range of curve 

severities, along with an analysis on the accuracy 

performance, are also reported. 

II. METHODS AND PROCEDURES 

A. Data 

The PA radiographs of children with AIS used in this study 

were provided by a local scoliosis clinic. These images were 

taken by either a conventional digital x-ray system or the 

EOS system. Ethics approval for this study was granted by 

the University of Alberta research health ethics board 

(Pro00102044 – chart review). A total of 330 PA radiographs 

were used in this study and split into three separate groups of 

110, 20, and 200 radiographs. The first group of 110 

radiographs was used for training and validating a spinal 

column segmentation CNN. The second group of 20 

radiographs was used to create 340 vertebral body images 

(17 relevant vertebrae per spine) for training and validating 

a vertebral body CNN. Finally, the last 200-radiograph group 

was used for Cobb angle measurement testing. Further 

details on the data sets used for each task are provided in their 

respective section below. All ground truth labels for CNN 

segmentation were annotated by two raters.  Prior to creating 

the training sets, both raters labelled 10 practice spines with 

verification by a researcher who had over 20 years of 

experience in Cobb angle measurement. The 200 radiographs 

in the Cobb angle test set were all measured by that 

experienced researcher. 

B. Automation Algorithm 

A flowchart of the overall automatic Cobb angle 

measurement algorithm is illustrated in Fig. 2. The general 

steps consist of identifying the spinal column from the top 

thoracic vertebra (T1) to the bottom lumbar vertebra (L5) as 

a region of interest, isolating the individual vertebral bodies 

for segmentation, performing point-set registration to correct 

poor vertebral body segmentations, and finally measuring the 

Cobb angle using the corrected segmentations. The overall 

structure of the algorithm is like our previous work [14], 

except that the point-set registration step was added to 

minimize Cobb angle measurement errors from poor 

vertebral body segmentations. Segmentation of the spinal 

column and vertebral body was accomplished with CNNs 

trained on a Linux virtual machine on the Industry Sandbox 

 
Fig. 2 Flowchart of the overall Cobb angle measurement automation algorithm. 
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& Artificial Intelligence Computing (ISAIC) supercomputer, 

using an NVIDIA Tesla V100 16GB GPU, an Intel Xeon 

Gold 6138 dual processor, and 64GB of RAM. All code was 

implemented in Python, using the TensorFlow library for 

CNN development as well as the pandas and pingouin 

libraries for statistical analysis. Any images used for CNN 

training were manually labelled using a user interface from 

the Image Processing Toolbox in MATLAB [15]. 

1) Spinal Column Segmentation 

The spinal column was segmented to narrow the PA 

radiograph to a region of interest for vertebral body 

segmentation. This step applied the same procedure of pre-

processing, segmentation, and post-processing as described 

in [14], except that the spinal column segmentation CNN is 

trained differently due to further network optimizations. 

A CNN architecture based on the U-net was used to 

segment the spinal column from the processed images [15]. 

The architecture of the U-net based CNN is illustrated in Fig. 

3. In total, 110 PA radiographs were manually labelled with 

a continuous spinal column segment from T1, the first 

thoracic vertebra, to L5, the last lumbar vertebra. These 

images were split into a 96-image training set and 24-image 

validation set. Each set consisted of half conventional and 

half EOS radiographs. To increase the effective size of the 

training set, the data augmentation methods of random 

horizontal flipping and rotations of up to 10° were employed. 

The average of the manually measured Cobb angles 

including all curves from the 110 images was 24.6°±12.4° 

(range: 6° - 97°). 

 The CNN was trained using the Adam optimizer [16] and 

a Dice loss function [17]. Optimizing the hyperparameters of 

the CNN was accomplished with a grid search, which 

involved fitting multiple models with different 

hyperparameter combinations and using the hyperparameters 

of the highest performing network, according to which one 

produced the lowest Dice loss during training. The ranges of 

hyperparameters explored are listed in Table 1. The 

optimized spinal column CNN was trained for 1,000 epochs. 

A learning rate of 10-3 and a batch size of 2 was employed. 

To improve the CNN’s ability to generalize, dropout [18] of 

0.5 probability was performed after each pooling and 

upsampling layer, and batch normalization was performed 

before each pooling and upsampling layer. The network with 

the lowest validation loss during training was taken as the 

final optimized CNN.  

 Similar to the work in [14], any small stray segmentations 

were removed and only the largest connected component was 

treated as the spinal column. Then, the spinal column curve 

(SCC) was determined by fitting a ten-degree polynomial to 

the spinal column. These two steps were executed to improve 

performance in the subsequent vertebra isolation step. Fig. 4 

illustrates the spinal column segmentation pipeline of an 

initial PA radiograph to fully segmented with the SCC 

labelled. 

2) Vertebral Body Segmentation 

 The vertebral body was segmented individually so that 

the most opposite tilted vertebra angles could be derived for 

Cobb angle measurement. The details of the processing steps 

were reported in [14], but the vertebral body segmentation 

CNN training differed in this study. 

 Segmentation of the vertebral body was achieved using 

the same CNN architecture as the spinal column CNN, 

 
Fig. 3 Architecture of the spinal column segmentation CNN, based on the 

U-net. Dark green boxes represent the feature maps and white boxes represent 
copied feature maps with the size of them indicated on the left of each 

convolutional block and the number of them above each box. The leaky 

rectified linear unit (ReLU) activation function after each convolutional layer 
had an alpha value of 0.01. 

 

 

 

 

 
Fig. 4 (a) An initial PA radiograph; (b) The pre-processed version of the 
radiograph; (c) Automatically segmented spinal column (yellow) with spinal 

column curve (green) overlaid on the pre-processed radiograph. 

 TABLE I 
RANGES OF HYPERPARAMETERS EXPLORED IN THE GRID SEARCHES FOR BOTH SEGMENTATION CNNS 

(Learning rate, batch normalization) Batch size Dropout Leaky ReLU alpha 

{(10-3, True), (10-4, False)} {1, 2, 4, 8, 16} {0, 0.125, 0.5} {0, 0.01} 
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except the initial image size was modified to be 128x128. A 

total of 340 vertebral body images from 20 subjects with AIS 

were manually labelled and split into 272-image training and 

68-image validation sets, with each set comprising of half 

conventional and half EOS radiographs. Data augmentation 

methods of horizontal flipping, rotations up to 45°, 

horizontal and vertical shifts up to 10%, and zooming from 

80% to 120% were employed. The average of the manually 

measured Cobb angles of the 20 subjects was 24.9°±10.8° 

(range: 7° - 54°). 

 A grid search was similarly employed to optimize the 

hyperparameters of the vertebral body segmentation CNN 

with the hyperparameter ranges explored listed in Table 1. 

The optimized CNN used an Adam optimizer with a learning 

rate of 10-4 and a Dice loss function. It was trained for 1,000 

epochs with a batch size of 4. A dropout of 0.125 was used 

after each pooling and upsampling layer. Batch 

normalization was not used. 

 Similar to the spinal column segmentation, small stray 

segmentations were removed from the final vertebral body 

segmentation and only the largest connected component was 

kept. Fig. 5 illustrates the vertebral body segmentation 

pipeline of a cropped vertebral body image. 

3) Iterative Vertebral Body Location 

Because the vertebral body segmentation CNN was 

trained on square images centered on the vertebral body, a 

method of identifying potential vertebral body images within 

the PA radiograph is required for accurate vertebral body 

segmentation. Localizing vertebral body images to crop out 

for segmentation was accomplished using an iterative 

algorithm which was different from the procedure described 

in [14]. Iterative vertebral body location started by 

estimating a position of T12, the last thoracic vertebra, to 

crop out and segment. This vertebra was chosen because it 

typically is the clearest in a radiograph and therefore results 

in the clearest segmentations. First, the vertical position of 

T12 was estimated by calculating a ratio, r, describing its 

relative vertical position within the T1 to L5 spinal column. 

This is calculated using vertebral body heights, h, given in 

[19], [20], and vertebral index, j, with T1 as j = 1 to L5 as j 

= 17: 

 𝑟 =
∑ ℎ𝑗

12
𝑗=1

∑ ℎ𝑗
17
𝑗=1

 (1) 

This ratio is then multiplied by the height of the segmented 

spinal column to obtain T12’s estimated vertical position, v. 

To maximize the chances of obtaining a cropped image that 

was centred on T12, five vertical positions were chosen for 

cropping, with each being separated by a quarter of the spinal 

column width (SCW) at v.  The horizontal positions were the 

centroids of the spinal column segmentation at each 

respective vertical position. The size of each cropped image 

was determined using the SCW at each vertical position. 

These cropped images were input into the vertebral body 

CNN and the best quality segmentation was selected. 

To determine the quality of a segmentation automatically, 

thirteen vertebral body masks from the training set were 

treated as standard masks and compared with the predicted 

segmentation. A similarity loss was calculated, which 

involved extracting the contours of both the predicted 

segmentation and each standard mask, performing rotation 

and scaling on the contour of the predicted segmentation so 

that it was consistent with each standard mask, and then 

calculating the minimum distances from each point on the 

predicted contour to each standard contour and vice versa. A 

lower similarity loss corresponded to a higher quality. Let 

the distributions of points in the predicted and standard 

contour be Φ and Ω with a single point being φ and ω in each 

contour, respectively. The difference loss, ℓ, is calculated as 

shown below with Nx being the number of points in a given 

distribution x and M being the set of all standard masks: 

ℓ = min
𝑀

[√
1

𝑁Φ
∑ (min

𝜔∈Ω
‖𝜑𝑖 − 𝜔‖)

2
𝑁Φ
𝑖=1 +

                                       √
1

𝑁Ω
∑ (min

𝜑∈Φ
‖𝜔𝑖 − 𝜑‖)

2
𝑁Ω
𝑖=1 ] (2) 

Once T12 was set, the position of the vertebra above (T11) 

was estimated for segmentation. The SCW of T12 was 

multiplied by vertebral body height-to-width ratios to obtain 

the distance to travel to reach the next vertebra [19], [20]. 

The direction in which to travel was determined using the 

tangent of the SCC at T12. Crop width was determined using 

the SCW at the new estimated position. This cropped image 

was then passed to the CNN for segmentation. Checks were 

employed to ensure that a reasonable segmentation was 

achieved, such as testing that its ℓ was low and that the two 

segmentations were reasonably far apart. If any of these 

checks were failed, the cropping parameters were modified 

in scaling and/or translation to achieve a higher quality 

segmentation. To avoid cases of infinite looping where the 

vertebra in question can never be segmented satisfactorily, 

only seven segmentation attempts were allowed before the 

algorithm proceeded. Once the vertebral body segmentation 

is finalized, the procedure of cropping location estimation, 

vertebral body segmentation, and quality verification was 

repeated for the next vertebra above in an iterative procedure 

until the top of the spinal column segmentation was reached. 

If the number of vertebral bodies that was segmented to reach 

the top of the spinal column was different than expected, then 

the algorithm shifted the levels of the vertebrae 

appropriately. The T11 or L1 vertebra was sometimes 

segmented at the start instead of the T12 vertebra due to 

spinal structural differences in children with AIS. The 

algorithm then moved back to the vertebra above the initially 

segmented vertebra to iterate downwards until the bottom of 

the spinal column segmentation was reached. This vertebra 

was chosen as the starting point instead of the initially 

segmented one since there was now more information to 

 
Fig. 5 (a) An initial cropped vertebral body image; (b) The processed 
version of the vertebral body; (c) Automatically segmented vertebral body 

(yellow) overlaid on the vertebral body image. 
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leverage for its cropping location estimation and a higher 

quality segmentation for it could be achieved. This overall 

algorithm is illustrated in Fig. 6. 

4) Point-set Registration Correction 

To measure the Cobb angle, the tilt angle of the minimum 

bounding boxes of each vertebral body segmentation is used. 

One limitation in the algorithm from previous work [14] was 

that the tilt angle of a vertebral body segmentation was 

sensitive to small protrusions due to the use of a bounding 

box to determine vertebral tilt. Consequently, a step of point-

set registration correction was added to minimize the number 

of extraneous protrusions and ensure high quality bounding 

boxes that accurately reflect the tilt of the vertebral body. 

Identifying whether a vertebral body required point-set 

registration to correct its segmentation involved checking 

that the tilt angle of the current bounding box, the angle 

formed from the top corners of the segmentation, and the 

angle formed from the bottom corners of the segmentation 

were all within a 3.5° difference from each other. The 

algorithm also checked if the tilt angle of the current 

bounding box was within 10° of the angle perpendicular to 

the SCC at the centroid of the vertebral body segmentation. 

If any of these checks failed, the vertebral body went through 

point-set registration to correct its segmentation. 

Point-set registration was accomplished using the scaling 

iterative closest points algorithm (SICP) [21]. This algorithm 

found the affine transformation that minimized the sum of 

squared minimum distances between the points of the 

contours from the vertebral body segmentation and standard 

mask that produced the lowest ℓ during the iterative vertebral 

body location algorithm. An inlier ratio of 0.8 was used, and 

the SICP algorithm was repeated for a maximum number of 

100 iterations unless an improvement of less than 10-3 was 

achieved between consecutive iterations. Once the SICP 

algorithm was complete, the registered standard mask was 

used for measurement instead of the segmentation. 

5) Cobb Angle Measurement 

The Cobb angle was measured using the angles of the 

bounding boxes of the vertebral body segmentations or 

registered standard masks. Extracting the Cobb angles 

involved identifying the apices of the spinal column, the 

vertebrae that are most laterally shifted from the centerline 

of the body. The apical vertebrae therefore correspond to the 

points on the SCC where the angles perpendicular to the SCC 

are 0°. A Cobb angle was then calculated for each apex, 

taking the difference of the steepest opposing vertebral body 

tilt angles (calculated from their minimum bounding boxes). 

If no opposing vertebral body tilt angles were found, the apex 

was skipped. For each curve, the algorithm determines its 

Cobb angle, direction, upper end vertebra, apical vertebra, 

and lower end vertebra. 

C. Validation 

1) Spinal Column and Vertebral Body Segmentation 

The performance of the optimized segmentation networks 

was evaluated using 5-fold cross validation. The same 

hyperparameters and design choices for the final optimized 

CNNs were used in cross validation, except for the number 

of images. All labelled images were used in each 5-fold cross 

validation, with 110 spinal column images and 340 vertebral 

body images. The mean and standard deviation of the Dice 

coefficient, precision, and recall over all folds were reported 

as the segmentation performance metrics. 

2) Cobb Angle Measurement 

A total of 200 spinal PA radiographs were randomly 

selected for automatic Cobb angle measurement to validate 

the developed method. The average of the manually 

measured Cobb angles of these 200 subjects was 24.6°±9.7° 

(range: 8° - 52°). None of the images in this set were 

involved in network training or algorithm tuning. The 

automatic Cobb angle (A-Cobb) measurements were 

compared to manual Cobb angle (M-Cobb) measurements 

performed on the same radiograph. All M-Cobb 

 
Fig. 6 (a) Search for the starting vertebra by segmenting five cropped images at different vertical positions; (b) Quality coefficient calculation to determine the 

initial segmented vertebral body to use as the starting point for the iterative vertebral body location algorithm; (c) Iterative vertebral body location algorithm where 
the most recently segmented vertebral body is used to estimate the position of the vertebral body above and below to segment in an iterative procedure until all 

vertebral bodies are segmented; (d) Final result of the iterative vertebral body location algorithm where the vertebral bodies are now separated from each other. 
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measurements were performed by a rater who was blinded to 

the A-Cobb measurements and had over 20 years of 

experience measuring Cobb angles manually. 

To evaluate the measurement accuracy, the circular mean 

absolute error (CMAE) and standard deviation of circular 

absolute errors (SD) were calculated. These metrics were 

calculated as follows: 

 CMAE =
1

𝑁
∑ arctan (

sin(|𝜃𝑖
𝑎−𝜃𝑖

𝑚|)

cos(|𝜃𝑖
𝑎−𝜃𝑖

𝑚|)
)𝑁

𝑖=1  (6) 

 SD =
√∑ [arctan(

sin(|𝜃𝑖
𝑎−𝜃𝑖

𝑚|)

cos(|𝜃𝑖
𝑎−𝜃𝑖

𝑚|)
)−CMAE]

2

𝑁
𝑖=1

𝑁−1
 (7) 

where N is the number of paired measurements and 𝜃𝑎 and 

𝜃𝑚 are the A-Cobb and M-Cobb angle, respectively. 

Additionally, percentage of measurements within clinical 

acceptance between A-Cobb and M-Cobb measurements 

was reported. Clinical acceptance was defined as an A-Cobb 

measurement being within at most 5° of the respective M-

Cobb measurement. The inter-method intraclass correlation 

coefficients (ICC2,1) were calculated to evaluate the 

reliability. The vertebral level agreement was evaluated 

using the error index (EI), calculated as follows: 

 EI =
1

𝑁
∑ √(𝑢𝑖

𝑎 − 𝑢𝑖
𝑚)2 + (𝑙𝑖

𝑎 − 𝑙𝑖
𝑚)2𝑁

𝑖=1  (8) 

where ua and um are the automatic and manual upper end 

vertebral levels and la and lm are the automatic and manual 

lower end vertebral levels [22]. 

Analysis was further split by curve severity into a mild 

(<25°), moderate (25°-45°), and severe (≥45°) group. These 

angle thresholds were chosen because they correspond with 

different treatment options for AIS [1]. The ICC2,1 values 

were not reported for the curve severity groups because the 

restriction of population variance attenuates the coefficients. 

Independent samples Student’s t-tests were conducted 

between the CMAEs of curve severity groups to identify any 

potential systematic biases in algorithm performance. A 

threshold of p < 0.05 indicated statistical significance. To 

assess the improvements from the network optimizations and 

point-set registration over the method developed by 

Sigurdson et al. [14], the 200-image test set in this study was 

also measured using the method in [14] for comparison. 

 Bland-Altman analysis was conducted to evaluate the 

level of agreement between the two measurement methods 

[23]. Linear regression analysis was performed to evaluate 

the relationship and linear correlation between the M-Cobb 

and A-Cobb measurements. 

III. RESULTS 

A. Spinal Column and Vertebral Body Segmentation 

The 5-fold cross validation results for each segmentation 

network are listed in Table 2. Both networks achieved a Dice 

coefficient greater than or equal to 0.9 for all folds. The 

optimized spinal column and vertebral body segmentation 

networks converged in 398 and 195 epochs, respectively. 

B. Cobb Angle Measurement 

 Among the 200 test images, the experienced rater 

measured 352 Cobb angles (M-Cobb). The developed 

automatic algorithm successfully identified 346 of these 

curves, missing 6 curves. Overall, 91% of the A-Cobb 

measurements were within the clinically accepted error of 5°. 

Additionally, the CMAE for all categories of measurements 

were below the 5° clinical acceptance threshold. There were 

no statistically significant differences between mild, 

moderate, and severe groups, indicating no systematic biases 

in measurement performance. The method of Sigurdson et al. 

successfully identified 341 curves, missing 11 in total. It 

achieved a lower percentage within clinical acceptance of 

86% and a higher CMAE of 3.2°. Table 3 outlines the results 

of the M-Cobb vs. A-Cobb paired measurements comparison 

for all curves and the different curve severity categories. 

The current automatic measurement algorithm took on 

average 17.7±10.2 seconds to measure the Cobb angles per 

radiograph. The algorithm measured much more quickly on 

radiographs taken by the EOS system (9.8±3.1 seconds) than 

the conventional system (25.7±8.3 seconds). Examples of 

segmented and measured radiograph outputs from the 

current method are illustrated in Fig. 7. The method of 

Sigurdson et al. took 76.2±34.2 seconds on average to 

measure the Cobb angles per radiograph. 

A Bland-Altman plot and scatter plot with line of best fit 

for A-Cobb vs. M-Cobb measurements are illustrated in Fig. 

8. The Bland-Altman plot resulted in a bias and limits of 

TABLE II 
CROSS VALIDATION (5-FOLD) RESULTS FOR CNNS 

Network Dice Precision Recall 

Spinal column 0.957±0.003 0.959±0.004 0.955±0.006 

Vertebral body 0.915±0.006 0.911±0.011 0.929±0.006 

 

 

 

TABLE III 
COMPARISON RESULTS FOR M-COBB VS. A-COBB MEASUREMENTS ON THE MEASUREMENT TEST SET FOR DIFFERENT CATEGORIES 

Grouping Method # of curves detected # of curves missed % within clinical CMAE±SD (°) ICC2,1 EI 

All 
Sigurdson [9] 

Current 

341 

346 

11 

6 

86% (292/341) 

91% (316/346) 

3.2°±3.9° 

2.8°±2.8° 

0.87 

0.92 

1.3 

1.1 

Mild 

(<25°) 

Sigurdson [9] 

Current 

185 

186 

7 

6 

86% (159/185) 

93% (173/186) 

3.3°±4.6° 

2.7°±2.4° 
-- 

1.4 

1.3 

Moderate 

(25°-45°) 

Sigurdson [9] 
Current 

144 
148 

4 
0 

84% (121/144) 
89% (131/148) 

3.1°±3.0° 
3.0°±3.3° 

-- 
1.2 
0.9 

Severe 

(≥45°) 

Sigurdson [9] 
Current 

12 
12 

0 
0 

100% (12/12) 
100% (12/12) 

2.3°±1.4° 
2.6°±1.5° 

-- 
0.8 
0.6 
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agreement of 1.3° (-6.0°, 8.7°). The 95% confidence interval 

of the mean difference was [0.94°, 1.74°], meaning that the 

bias was significant as this interval excludes 0°. The equation 

for the line of best fit in the scatter plot was y = 1.03x + 0.62 

with a correlation (r) of 0.93. 

IV. DISCUSSION 

A. Results Analysis 

The current method achieved 91% of A-Cobb 

measurements within clinical acceptance of the M-Cobb 

measurements. The percentage of measurements within 

clinical acceptance is a useful metric in determining the 

feasibility of the algorithm from a clinical perspective. This 

high accuracy coupled with the high interpretability that our 

method offers – namely, providing overlays of the 

individually segmented vertebral bodies along with the 

angles of each vertebral body – can quell clinicians’ doubts 

in using a machine learning algorithm to automate Cobb 

angle measurement. With the added benefit of measuring a 

subject’s radiograph within 18 seconds on average, our 

proposed method has achieved strong clinical feasibility. The 

estimated average time it takes an experienced rater to 

manually measure the Cobb angle is 30 seconds per 

radiograph, so our completely automatic algorithm can 

significantly expedite clinical workflow. Moreover, our 

algorithm measures radiographs even more quickly on EOS-

based radiographs, with an average measurement time of 10 

seconds per radiograph. The EOS radiographs provide better 

image quality as its x-ray source moves vertically which 

 
Fig. 7 Automatic measurement algorithm outputs with relevant vertebrae used in Cobb angle measurement outlined (green boxes) and final Cobb angles listed 

(cyan text). The three leftmost images are from the conventional x-ray system, and the three rightmost images are from the EOS x-ray system. 

 

 
Fig. 8 (a) Bland-Altman plot of A-Cobb and M-Cobb measurements with a bias of 1.3° (black line) and (-6.0°, 8.7°) limits of agreement (red lines); (b) Scatter 

plot of A-Cobb vs. M-Cobb measurements with line of best fit in red (y = 1.03x + 0.62). 
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generates more even penetration energy when compared 

with the conventional x-ray system in which the x-ray source 

is in a fixed position (usually at the middle). Image quality at 

the upper and lower parts of the body from the conventional 

x-ray system is relatively poor. Therefore, lower quality 

vertebral body segmentations are more frequently obtained 

during iterative vertebral body location, resulting in more 

attempts at re-segmentation and longer measurement times. 

Nowadays, the EOS system is a more common x-ray system 

in many scoliosis centers among developed countries due to 

its low-dose radiation capability. 

Moderate curves were automatically measured slightly less 

accurately than mild or severe curves, but based on the 

Student’s t-tests between pairwise comparisons of curve 

severity groups, we conclude that there were no substantial 

discrepancies in measurement accuracy among the different 

curve severities. The Bland-Altman and scatter plots also 

support this conclusion, as there are no visual trends of larger 

error as the value of the Cobb angle increases. The level 

agreement in mild curves was less accurate (EI: 1.3) than 

moderate (EI: 0.9) and severe (EI: 0.6) curves. This is 

expected, however, as mild curves have end vertebrae with 

shallower tilts. This means that the neighbors of the end 

vertebrae typically have tilt angles closer to the true end 

vertebra, making identification of the true end vertebra 

difficult from both an automatic and manual perspective. 

A total of 6 curves that were in the M-Cobb measurements 

were not detected by the automatic algorithm. The primary 

reason for these undetected curves was the inclusion of a 

vertebra with a very shallow tilt angle in the curve. It is easier 

for the algorithm to miss a curve with at least one end 

vertebra that has a small tilt angle because the Cobb angle is 

defined for vertebrae with opposing tilt angles. In 4/6 of the 

missed curves, the algorithm segmented the relevant end 

vertebra, but with no opposing tilt angle, even though the 

actual value of its angle was very close to the manual 

measurement. One of the other curves was missed due to a 

poor vertebral body segmentation of the bottom lumbar 

vertebra (L5). The shape of the L5 vertebra is typically 

different than the other vertebrae due to its 3D orientation in 

the spine, meaning that mis-segmentations of L5 are more 

common. Finally, the last curve was not detected due to a 

slight mis-segmentation in the spinal column. Because the 

spinal column segmentation was off, the SCC for this subject 

did not detect an apex in the upper region of the spine, 

resulting in no Cobb angle measured at all for that region. It 

should be noted that none of the undetected curves were the 

major curve for the subject. The major curve is more 

important to detect since it is what determines the 

appropriate treatment option for AIS. Instead, all undetected 

curves were mild and minor curves, and so would be less 

important to the diagnosis of the child with AIS. 

B. Comparison with Other Methods 

Two other relevant papers reported on an approach that 

involved CNN segmentation of spinal features to derive 

automatic Cobb angle measurement [6], [8]. However, the 

segmentation targets for our method differ from the other 

papers. The methods in the related literature segment the 

separated vertebral bodies from the full spinal radiograph, 

whereas our method splits the task into segmentation of the 

spinal column as one continuous segment on the full spinal 

radiograph and segmentation of each individual vertebral 

body from a square cropped image with the vertebral body 

roughly centered. Therefore, we unfortunately cannot draw a 

meaningful one-to-one comparison with these papers. 

Table 4 outlines the comparison between our method and 

other similar methods reported in the literature. The only two 

algorithms that outperformed our CMAE performance either 

had a very limited curve severity test set distribution [6] or 

provided no curve severity test set distribution information 

at all [8]. Accurate performance on curves above 25° is 

crucial because this is the approximate Cobb angle threshold 

where treatment options are seriously considered. Brace 

treatment is considered as an option at around the 25° mark, 

and surgery is considered for curves at around 45° [1]. 

Therefore, for an automatic measurement algorithm to be 

clinically feasible, accurate and reliable measurements must 

be achieved on more severe curves to avoid misdiagnosis and 

ensure optimal treatment outcomes. The other method [7] 

performed worse in terms of CMAE, but had a potentially 

broader curve severity distribution. However, this method 

suffers from not providing interpretability, meaning that one 

cannot visually confirm the validity of the measurements. 

Based on the performance of the method of Sigurdson et 

al. on our expanded test set, we conclude that the network 

optimizations and point-set registration step positively 

impacted the Cobb angle measurement automation 

algorithm. The CMAE and SD improved by 0.4° and 1.1°, 

respectively. More importantly, the percentage of 

measurements within clinical acceptance improved by 5% 

from 86% to 91%, which is a metric that is of great relevance 

to clinicians when determining a measurement algorithm’s 

clinical feasibility. 

Fig. 9 depicts a comparison of performance between the 

two methods for two PA radiographs in the Cobb angle test 

set. The lower end vertebra for the curves in Fig. 9a 

particularly illustrates the impact that an extraneous 

protrusion can have on a Cobb angle measurement. For this 

case, the added point-set registration step removed the 

protrusions, thereby pushing the automatic measurement 

within clinical acceptance. 

C. Limitations 

 A limitation of this study is that there were not as many 

severe curves included in the Cobb angle measurement test 

TABLE IV 

COMPARISON OF TEST SET INFORMATION AND ACCURACY PERFORMANCE OF 

VARIOUS AUTOMATIC COBB ANGLE MEASUREMENT ALGORITHMS 

Method CMAE (°) Curve distribution # of images 

Horng [6] 2.5°±1.7° <20° 35 

Fu [7] 3.2°±3.1° 2°-92° 240 

Zhao [8] 2.5° -- 75 

Sigurdson [9] 3.2°±3.9° 24.5°±9.5° (10°-52°) 200 

Current 2.8°±2.8° 24.5°±9.5° (10°-52°) 200 
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set. Our method reports the curve severity distribution and 

measures accurately on curves >20°, unlike Horng et al. and 

Zhao et al. [6], [8]. However, while the algorithm did achieve 

100% of A-Cobb measurements within clinical acceptance 

for severe curves, 12 datapoints is not enough to confidently 

conclude that the algorithm performs well on curves ≥45°. 

Severe curves make up a small proportion of AIS cases, since 

bracing is typically prescribed to prevent moderate curves 

from progressing to these high Cobb angles. Therefore, with 

a randomly selected measurement set, severe curves will 

naturally comprise a smaller proportion of the set’s 

population. Consequently, a further study with a test set of 

only cases with severe major Cobb angles needs to be 

conducted to confidently validate the proposed method. 

 Another limitation is that the study population was 

limited only to subjects with AIS. There are different forms 

of scoliosis, such as congenital or neuromuscular, that would 

benefit from an automatic Cobb angle measurement method 

as well. While we have not tested our algorithm on 

congenital or neuromuscular scoliosis patients, we strongly 

suspect that the CNNs would need to be re-trained with 

labelled images of other types of scoliosis to be accurate on 

those forms of scoliosis. 

 Finally, there were no non-scoliotic cases in the 

validation set population. We suspect that the algorithm 

would not misclassify non-scoliotic cases as scoliotic, since 

non-scoliotic radiographs were included in the training sets 

of the CNNs for this reason. However, future work would 

consist of testing the algorithm on a set of non-scoliotic 

radiographs to confidently validate this suspicion.  

V. CONCLUSION 

A fully automatic Cobb angle measurement method on PA 

radiographs was developed using a cascaded design of two 

CNNs, where one CNN segmented the spinal column and the 

other segmented individual vertebral bodies. A point-set 

registration step was added to improve vertebral body 

segmentations and was found in many cases to push 

measurements within the clinically accepted error. The 

developed method yielded 91% of measurements with 

clinical acceptance with a 2.8° CMAE, indicating high 

accuracy. Measurements were obtained within 18s on 

average per radiograph, which is quicker than what an 

experienced rater manually measures. Additionally, 

measurements were output in an interpretable fashion, with 

the segmentations being output along with the measurement 

so that clinicians can quickly confirm the validity of the 

measurement. These three characteristics of the method are 

key in realizing actual implementation in clinical practice. 

Future work consists of validating on a set of more severe 

curves to cement this method as truly clinically feasible. 

When this is completed, the algorithm could offer robust 

measurements for informed treatment diagnosis of AIS and 

streamline clinical workflow. 
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