
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 1

A Comparison of Approaches for Segmenting the
Reaching and Targeting Motion Primitives in
Functional Upper Extremity Reaching Tasks
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Abstract—There is growing interest in the kinematic analysis of human functional upper extremity movement (FUEM) for applications such
as health monitoring and rehabilitation. Deconstructing functional movements into activities, actions, and primitives is a necessary procedure
for many of these kinematic analyses. Advances in machine learning have led to progress in human activity and action recognition. However,
their utility for analyzing the FUEM primitives of reaching and targeting during reach-to-grasp and reach-to-point tasks remains limited.
Domain experts use a variety of methods for segmenting the reaching and targeting motion primitives, such as kinematic thresholds, with
no consensus on what methods are best to use. Additionally, current studies are small enough that segmentation results can be manually
inspected for correctness. As interest in FUEM kinematic analysis expands, such as in the clinic, the amount of data needing segmentation
will likely exceed the capacity of existing segmentation workflows used in research laboratories, requiring new methods and workflows for
making segmentation less cumbersome. This paper investigates five reaching and targeting motion primitive segmentation methods in two
different domains (haptics simulation and real world) and how to evaluate these methods. This work finds that most of the segmentation
methods evaluated perform reasonably well given current limitations in our ability to evaluate segmentation results. Furthermore, we propose
a method to automatically identify potentially incorrect segmentation results for further review by the human evaluator.
Clinical impact: This work supports efforts to automate aspects of processing upper extremity kinematic data used to evaluate reaching and
grasping, which will be necessary for more widespread usage in clinical settings.
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I. INTRODUCTION

Assessments of functional upper extremity (UE) movement
quality are commonly used in the clinic and provide useful
treatment outcome measures. These assessments typically re-
quire an individual to perform standardized functional tasks,
such as moving small blocks over a partition under time
constraint [1] and writing and drawing [2, 3]. Functional
assessment measures also include self-reports, such as the
Quick Disabilities of Arm, Shoulder, and Hand (QuickDASH)
[4]. As a measure of functional ability, these assessments can
capture an individual’s perceived difficulty with the task [5],
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an observer’s rating of an individual’s ability to perform the
task [6], or the time required to complete the task [1].

While currently validated UE functional assessments (UE-
FAs) are essential to clinical practice, self-report measures
can be biased and may not be sensitive [7, 8]. Furthermore,
existing measures do not fully capture movement quality and
efficiency, which are important for discerning between behav-
ioral restitution and compensation during stroke rehabilitation
[9] and evaluating UE prostheses [10, 11, 12], among other
applications.

Using kinematics (e.g., position trajectory, velocity magni-
tude, acceleration, joint angles, etc.) to assess UE functional
ability provides a more objective assessment of current skill
and functional progression, which is challenging to capture
when a domain expert (i.e., clinicians and biomechanists)
relies solely on qualitative observational data [8]. Therefore,
domain experts have begun using kinematic data to evaluate
functional UE movement quality, such as smoothness [13] and
efficiency [8], during standardized assessments.

Reaching, grasping, touching, pointing, or otherwise ma-
nipulating objects are essential in activities of daily living
that incorporate the UE and are therefore of concern to
clinicians and movement scientists. UE functional motions
involving reach-to-point (RTP) [14] and reach-to-grasp (RTG)
[15] are generally characterized by an initial reaching motion
that covers most of the distance to the object (i.e., point of
interest) followed by a deceleration into a targeted move-
ment period [14]. Our definition of targeting considers the
grasp primitive as a subset in targeting, where targeting can
begin before grasping begins, e.g., when the grasp aperture
increases [16]. Additionally, reaching typically requires gross
UE motion, while targeting requires fine movements, therefore
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TABLE I
FUNCTIONAL MOTION HIERARCHY MODIFIED FROM SCHAMBRA et al.

[23]

Hierarchy Layer Goals Duration Examples

Activities
(broad)

Many Minutes
to hours

• Cooking dinner
• Bathing
• Getting dressed

Functional
Move-
ments or
Actions

Few Seconds
• Tasting soup
• Zipping up jacket
• Picking up cup

Functional
Primitives
or
Movemes
(granular)

One Sub-
seconds to
seconds

• Reach
• Reposition
• Touch
• Target
• Grasp
• Transport
• Stabilize
• Idle

representing different functional challenges to the individual
and involve potentially different neuromechanical pathways.
Therefore, recent kinematic analyses have analyzed the reach-
ing [3, 10, 12, 17] and targeting primitives [17, 10] separately
for RTP and RTG motions.

Segmenting the reaching and targeting motion primitives
for UEFAs using kinematic data is a relatively recent de-
velopment. A variety of segmentation methods have been
used, with relatively little discussion on how best to perform
the segmentation. Furthermore, existing workflows used for
segmentation involve applying segmentation algorithms and
then manually reviewing the results [11]. As interest in FUEM
kinematic analysis expands, such as in the clinic, the amount
of data needing segmentation will likely exceed the capacity
of existing segmentation workflows used by researchers, re-
quiring new methods and workflows for making segmentation
less cumbersome. A better understanding of the performance
of different segmentation methods and how to incorporate seg-
mentation automation into the kinematics analysis workflow
[18] will support the translation of kinematics analyses to the
clinic.

This paper provides insight into the performance of five dif-
ferent segmentation methods, including how to evaluate these
methods and automatically identify questionable segmentation
results that require further review. To our knowledge, this
paper is the first to address the specific problem of segmenting
reaching and targeting motion primitives for UEFAs. Our
contributions are as follows:

• Comparing methods for segmenting the reaching and tar-
geting motion primitives on data sets from two different
domains (i.e., haptics simulation and real world), where
we find most of the segmentation methods do similarly
well.

• Proposing the novel use of the minimum jerk trajectory
velocity profile as an indicator of potentially poor seg-
mentation results, which can be used to direct a human
reviewer’s attention for further evaluation.

• Identification of challenges and opportunities associated
with evaluating segmentation performance, which pro-

vides insight into the future development of segmentation
methods.

• Modifications are made to the segmentation method from
Jackson et al. [17] to adjust for edge cases.

Implementations of the methods discussed in this paper are
available on GitHub1. The data used in this study are available
at [19].

II. BACKGROUND

A. Motion Primitive Segmentation

Methods for segmenting human functional movement are
typically developed and evaluated for specific layers in the
functional motion hierarchy described in Table I. The rea-
soning for this is twofold. First, domain experts must be
able to consistently extract the relevant subsections of an
individual’s movement to ensure they are performing con-
trolled comparisons (e.g., when evaluating patient progress at
various points during the rehabilitation process). Second, the
developed segmentation algorithms are designed specifically
for different components of the hierarchy (i.e., an action
recognition algorithm will not do primitive segmentation). The
definition of a movement segment varies across algorithms and
applications but is generally considered to be a subsequence of
the original time series sequence [20]. A potentially confusing
aspect of the literature is inconsistent references to the layers
in the functional UE movement hierarchy in Table I. For ex-
ample, Lin [21]’s stated focus is on segmenting primitives for
rehabilitation, however the labeled movement classes across
the reviewed data sets include a mix of actions and primitives,
and do not include functional motions used during RTP and
RTG. Similarly, Kadu and Kuo [22] discuss action recognition,
when instead activities are considered. To avoid confusion, this
work follows Schambra et al. [23]’s UE functional motion
hierarchy (see Table I).

Activity [22, 27] and action [20, 28] recognition methods
currently do not identify specific functional UE motion primi-
tives, such as reaching and targeting, which are needed for
some kinematics analyses. Additionally, UEFAs often have
the activities and actions clearly defined. An example where
the action is defined is the Southampton Hand Assessment
Procedure’s (SHAP) door handle task, where the participant
must rotate the door handle until it is open and then release
the handle [29]. An example of a defined activity is the SHAP
food cutting task which consists of actions involved in cutting
food (e.g., pick up knife, cut food), which would require
a method for segmenting the actions before doing primitive
segmentation. Activity and action recognition methods also
often require templates, training data sets, or sufficient data for
pattern mining [20], which are challenging to curate given the
diversity in tasks, individual strategies for performing those
tasks, and movement pathologies. Therefore, the methods
used in this study are relatively simple and drawn from
research papers performing kinematic analyses on functional
UE motion.

Algorithms have been proposed for motion primitive seg-
mentation by identifying points where the trajectory changes

1https://github.com/kjacks21/UE-reach-grasp-seg
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direction (i.e., strokes) [24, 25] and by using fixed kinematic
thresholds [12, 10] (see Lin et al. [20] for expanded review).
However, discrete strokes and directional changes do not
necessarily indicate the end of the reaching motion primitive in
UE RTP and RTG movements, and fixed kinematic thresholds
can result in over-segmentation [20]. Another approach is to
segment trajectories based on a percentage of total movement.
For example, Li et al. [26] accounted for differences in
participant kinematics while transporting objects by selecting
50% of movement time as when the hand reached a target
position.

More complex methods, relative to simple kinematic and
percent-of-movement thresholds, have been proposed recently
[17, 3]. Jackson et al. [17] propose a segmentation point iden-
tification algorithm that does not rely on kinematic thresholds,
and instead uses the shape of the velocity profile to identify
the segmentation point. Sakai et al. [3] propose a multi-step
segmentation method that combines kinematic thresholding
with the segmentation method from Jackson et al. [17].

B. Evaluating Primitive Segmentation Performance

The unavailability of motion primitive ground truth labels
from RTP and RTG tasks makes algorithm evaluation difficult.
While activities and actions (i.e., gross movements) are easier
to visually identify, no method for definitively differentiating
the reaching and targeting motion primitives currently exist.
Variations in neuromuscular coordination used for RTP and
RTG movements across different object configurations or
movement pathologies are challenges in understanding where
the true segmentation point is, assuming one exists. Therefore,
all existing approaches to segmentation and validation are
approximations, including the common approach of visually
inspecting segmentation results or comparing with recorded
video [17, 12].

Consequently, it is difficult to objectively compare algo-
rithms for segmenting the reaching and targeting motion
primitives. We propose a method (see Section III.D.2) for
indicating when segmentation results may need further review
by comparing the segmented reach motion primitive velocity
profile to the minimum jerk trajectory (MJT) velocity profile
[30]. We also visualize trajectories based on the distribution
of errors computed using the MJT. While the error computed
from comparing the two velocity profiles have been used in
the robotics literature [30], its usage for evaluating reaching
and targeting motion primitive segmentation performance is
novel.

III. METHODS AND PROCEDURES

A. Segmentation Methods

1) 50% of movement: Percent-of-movement thresholds
have been used to roughly indicate when a hand reaches a
target during a functional UE task [26]. Although this approach
may work well for small data sets and clean data where
different thresholds can be visually inspected, it is used in
this paper to demonstrate that it does not generalize well on
more challenging data.

2) Kinematic thresholding: Variations of the kinematic
threshold exist for segmenting the reaching motion primitive
[11, 3]. We use the kinematic threshold described in Sakai
et al. [3] (II.A.ii.a and b), which is a component of the
segmentation method proposed in [3]. Restated here, the
segmentation point is after the peak velocity magnitude when
either of the following are first satisfied:

• The velocity magnitude reaches 5% of the peak velocity
magnitude.

• The velocity magnitude is less than 20% of the peak
velocity magnitude, and the acceleration is non-negative
for the first time.

3) Jackson et al. [17] (updated): The segmentation method
from Jackson et al. [17] exploits the well-established property
that RTP and RTG motions often have an initial, higher speed
movement that covers a large distance followed by slower,
finer movement to interact with the point of interest [14, 31].
The updated method does the following:

1) Identify the part of the trajectory that is close to the
target and contains the reaching and targeting motion
primitives.

2) Using this trajectory subset, identify the segmentation
location, which we refer to as the “shoulder” of the
velocity profile. The term “shoulder” in this context
refers to the curved portion of the velocity profile
between the reaching deceleration and targeting period.

First, a relative displacement threshold is found for position
trajectory Tr = [r⃗0, ..., r⃗g]. This threshold is used due to
potential re-adjustments in the trajectory that could result in
multiple local maxima and minima. This calculation differs
from that proposed in [17] to address an edge case where the
trajectory between r0 and rg are not approximately linear (e.g.,
due to an individual adjusting the endpoint). Additionally, the
displacement threshold works well if the start and end points
are relatively distant from each other, which is not always the
case.

Given the start r⃗0 and end r⃗g coordinates of the trajectory
Tr, at every index i along Tr, the displacement di is:

di = ||(r⃗i − r⃗g)|| (1)

With di computed for all points i on Tr, identify the earliest
point ds along Tr where ds ≥ dg(1−α) and where 1 ≥ α > 0.
In other words, if α = 0.2, then ds will be at least 80% of
the distance between r⃗g and r⃗0 away from r⃗0.

The velocity along the curve is obtained by the differen-
tiation of the position vectors. We use the velocity magni-
tudes vi = ∥ ˙⃗ri∥ to segment the curve Tr. First, we find
p = argmax{vs, . . . , vg}, the index of the maximal velocity
in Tr. We then compute orthogonal distances dn,i of points
(i, vi) from the line connecting (p, vp) and (g, vg) using the
equation for the shortest distance from a point to a line [32],

dn,i =
−((i− p)(vg − vp)− (vi − vp)(g − p))√

(vg − vp)2 + (g − p)2
. (2)

The point (f, vf ) satisfying f = argmaxi{dn,i} is the seg-
mentation point for the velocity profile. A consequence of
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this formulation is that local maxima cannot be flagged as
the segmentation point, which could happen with the version
of the method described in [17].

4) Jackson et al. [17] (updated), no displacement thresh-
old: To evaluate the utility of the displacement threshold
described in the previous subsection, we evaluate the seg-
mentation performance of the Jackson et al. [17] method
without the displacement threshold. This method finds the
“shoulder” in the velocity profile after the point indicating the
peak velocity magnitude, regardless of distance to the grasp
location.

5) Sakai et al. [3]: The method proposed by Sakai et al. [3]
was used for segmenting the targeting and reaching primitives
in pen-point trajectories as part of an assessment that required
participants to connect multiple dots on the surface of a digital
tablet. It is unknown whether this method generalizes beyond
pen-point trajectories, which is partially why it is included in
this evaluation. This method combines kinematic thresholding
(section III.A.2) and the Jackson et al. [17] method (section
III.A.3), in addition to checks to verify whether the length
of the trajectory is sufficiently long for applying the method
from Jackson et al. [17]. The implementation of Sakai et al.
[3] evaluated in this paper uses the updated version of the
Jackson et al. [17] method, as described in section III.A.3.

The Sakai et al. [3] method follows multiple stages for
segmentation, which we briefly describe. First, the method
checks whether the velocity profile has a sufficiently long
targeting period before using the Jackson et al. [17] segmen-
tation method. This is done because the Jackson et al. [17]
method can return improper results if the velocity profile does
not have a sufficiently long tail after reaching. If the velocity
profile is too short, where the length depends on a parameter
c1 (i.e., higher values for c1 increase the targeting primitive
length requirement), then the segmentation point is the earliest
point after the peak velocity point at which either (1) the
velocity magnitude reaches 5% of the peak velocity or (2)
the velocity magnitude is less than q% of the peak velocity
and the acceleration becomes non-negative for the first time
[3]. The latter option (2) is a zero crossing method, where the
crossing from negative to positive acceleration values indicates
a local minimum in the velocity profile. If the velocity profile
is determined to be sufficiently long for segmentation using
the Jackson et al. [17] method, then segmentation is done
using a portion of the trajectory that is within the length set
by a parameter c2, where the length found by using c1 is less
than c2. A result of this is that the velocity profile could be
shortened before the Jackson et al. [17] method is used, which
the Jackson et al. [17] method does not do itself. Following
Sakai et al. [3], q = 20%, c1 = 2, and c2 = 3.

B. Segmentation Methodological Assumptions

Motion primitive segmentation methods make some as-
sumptions about the kinematics being analyzed. The imple-
mentation of the methods considered in this paper assume the
following criteria to be met or that the input data demonstrate
these characteristics:

1) The trajectory must represent reaching towards one point
of interest and must terminate once the point is touched
for RTP and grasped for RTG tasks.

2) The trajectory has a reaching motion primitive followed
by a targeting primitive.

For Condition 1, if there are multiple targets then the
trajectories between each target must be pre-segmented.

Regarding Condition 2, depending on the assessment and
movement quality, some trajectories may have no obvious
targeting period (e.g., Fig. 7.D). These cases likely have
overlapping reaching and targeting primitives. The methods
considered in this paper identify a single point and do not
capture this overlap, although some kinematic analyses may
want to capture this overlap and will therefore require different
segmentation method implementations. No method currently
exists for automatically detecting where reaching transitions
to targeting across a variety of functional tasks, although
visual inspection of the kinematic data will help indicate when
the targeting period begins. Additionally, a trajectory could
include more than one reaching and targeting motion primitive
(e.g., when the endpoint is adjusted while attempting to grasp
an item).

C. Evaluation Data

The segmentation algorithms are evaluated on two data sets
which involve RTP and RTG movements. The trajectories are
preprocessed to include movement towards one point of inter-
est at a time. Although the two data sets include transporting
an object after grasp, our analysis focuses specifically on the
reaching and targeting primitives before grasp.

1) Haptic Virtual Environment: This George Mason Uni-
versity IRB-approved experiment (#477548, approved Jan. 29,
2014, informed consent obtained from participants) required
participants to perform a simulated workbench clearing task
within a haptic virtual environment (HVE) [17] (see Fig.
1), which involved grasping and mounting six tools on a
pegboard. A convenience sample was used, with an invitation
to participate by word of mouth, resulting in twenty-one non-
disabled participants, aged 18 to 30, and comprising fourteen
males and seven females. This task combines RTP and RTG
movements because the manipulator is a single point in three-
dimensional virtual space. The participant-manipulated stylus
position, acceleration, and rotation were captured at 30 Hz and
in three dimensions by the haptic device. Velocity magnitude
was filtered using the fifth-order low-pass Butterworth filter
with a cutoff frequency of 10 Hz. Trajectories were segmented
into actions representing reaching to a tool and mounting a
tool based on events recorded by the HVE software (i.e., the
system tracks when objects are grasped and released). The
mounting action is excluded from our analysis. The reaching
actions, which contain reaching and targeting primitives, were
used as input to the segmentation algorithms evaluated in this
paper. Each participant performed three trials and a total of 305
trajectories were analyzed. α = 0.4 for segmentation methods
(3) and (5). The choice of α does not appear to drastically
impact segmentation results if α ≤ 0.5, although it could be
useful to test a few values for one’s particular application.
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Fig. 1. (left) participant interfacing with a Touch™haptic device used in our
study and (right) the workbench clearing task.

2) The Targeted Box and Blocks Test: For this George Ma-
son University IRB-approved experiment (#492701, approved
Oct. 24, 2013, informed consent obtained from participants),
optical motion capture data were collected from three female
participants, aged 22 to 29, performing the targeted Box and
Blocks Test (tBBT) [1]. Two of the participants were non-
disabled and the third participant performed the task using
clinically-prescribed below-elbow myoelectric prostheses (see
Fig. 2). The tBBT requires the individual to move wooden
blocks over a partition in a predefined order and at predefined
locations (see Fig. 2) and represents a RTG task when reaching
to grasp a block. This assessment and variations of it are
commonly used to assess functional UE movement quality for
rehabilitation.

Trajectories were segmented into actions representing reach-
ing for a block and transporting a block, although the
transportation action is excluded from our analysis. Action
segmentation was performed using heuristics and visual in-
spection of the data. This step is not the primary focus of
this work, although an automated action segmentation method
for tBBT could be future work. Specifically, our approach
was to identify the velocity profile peaks using thresholds,
followed by identifying local minima indicating a grasp or
release, comparing the kinematics to the recorded video for
context, and ensuring the correct number of actions were
found. The segmented RTG actions are then used as input
to the segmentation algorithms evaluated in this paper. Raw
position information, captured from a marker on the wrist,
is processed by removing spikes along each dimension (i.e.,
x, y, z), interpolating gaps due to marker occlusion via
cubic spine interpolation, and applying the fifth-order low-pass
Butterworth filter. We used α = 0.4 for segmentation methods
(3) and (5).

D. Evaluation Approach

Ground truth labels for the segment location between the
reaching and targeting motion primitives are not available due
to there being no method currently for identifying the true
segmentation point between reaching and targeting. While
it would have been easier to simply label all trajectories
where an acceptable label location would be, the segmen-
tation workflow movement scientists use is to first apply a
segmentation algorithm (e.g., a kinematic threshold) followed
by visual inspection [11]. This is a result of difficulty in
visually identifying from a graph the point at which, for

Fig. 2. A participant performing the targeted Box and Blocks Test [1],
outfitted with wired active optical motion capture markers.

example, the velocity magnitude reaches 5% of the peak
velocity, necessitating some method to at least cue the rater’s
attention. Therefore, a few approaches are used to evaluate the
segmentation results.

1) Expert evaluation of segmentation results: Segmentation
results for all methods were assessed and assigned one of the
following labels as part of this analysis:

• Acceptable: Segmentation result is acceptable; a human
evaluator would likely not modify this result.

• Questionable: Segmentation result is questionable; a
human evaluator would likely modify this result.

• Ambiguous: The trajectory and associated kinematics are
sufficiently unclear that a human evaluator likely would
not be able to segment or use the data for analysis. A
trajectory labeled as ambiguous maintains that ambiguous
label across all methods.

Note that these labels allow for variation in interpretations.
This is intentional, as there is no method currently to identify
the true point which separates reaching from targeting. For
example, an acceptable segmentation result can take a range
of points along the trajectory.

Two domain experts (S. Engdahl and A. Santago) labeled
all segmentation results for the HVE data set on the kine-
matic thresholding method (n = 305) to establish labeling
criteria and to better understand the challenges associated with
evaluating segmentation results. To minimize bias, the domain
experts did not know which method was used to perform
the segmentation. For each trajectory, three plots indicating
position, displacement, and the velocity profile overlaid with
the segmentation result were used for evaluation, as is shown
in the first column of Fig. 5. The raters had an initial
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Fig. 3. Two segmented reaching subsequences normalized velocity profiles
from the HVE data set corresponding to the highest and lowest minimum
jerk trajectory (MJT) mean absolute errors (MAE). The reaching segments
are plotted with the normalized MJT velocity profile used to compute the
MJT MAE. These two examples correspond to trajectories A and D in Fig.
5, respectively.

percent agreement of 66.8% and a Cohen’s kappa statistic
of 0.18, indicating that it is challenging to have consistent
evaluations across raters for segmentation results. Due to the
inherent subjectivity in segmenting RTP and RTG motions,
a follow-on meeting was held to further establish agreement
on labeling criteria, resulting in an agreement on all except
one segmentation result. These labeling criteria and labeled
segmentation results were then used by a non-domain expert
(K. Jackson) to label the remaining segmentation results for
the HVE and tBBT data sets.

2) Indicator of questionable segmentation results: Motion
primitive segmentation results for the HVE and tBBT data sets
are additionally evaluated by computing the mean absolute er-
ror (MAE) for each segmented trajectory’s reaching primitive
compared to the straight-path MJT velocity profile, referred to
as MJT MAE. This is one of this work’s novel contributions,
where MJT MAE can be used as an indicator of potentially
questionable segmentation issues that may need review by a
domain expert.

The MJT velocity profile is smooth and has a unimodal
bell-shape, which the segmented reaching velocity profile is
expected to approximately follow. Higher MJT MAE values
indicate a reaching velocity profile that deviates from a uni-
modal shape (see examples in Fig. 3), which could be due to
an incorrect segmentation result or a complex reach that has
multiple peaks and troughs.

The straight-path MJT velocity magnitude time series is
defined as:

Vjerk = ẋ(t) = xf (30τ
4 − 60τ3 + 30τ2) (3)

where τ is normalized time equal to t/tf and 0 ≤ τ ≤ 1, tf
represents the total duration of the reaching motion primitive,

and xf is the final position of the reaching motion primitive
[30].

The segmented and MJT velocity magnitude values are
normalized to be within the interval [0, 1] to evaluate the shape
of the profiles. The MAE for each segmented reaching motion
primitive is calculated between all indices of the segmented
normalized velocity profile [v0, ..., vf ] and the normalized MJT
velocity profile:

(
∑tf

i=1|
ẋ(i)

Vjerk,peak
− vi

vp
|)

tf
(4)

where the denominator tf is used because the numerator alone
will generally result in higher values as tf increases.

The MJT MAE for each trajectory in the HVE data set
are reported as rain cloud plots [33] across all segmentation
methods considered in this paper. Segmentation results for the
trajectory with the highest, 75th percentile, 25th percentile,
and lowest errors are visualized (see Figs. 5 and 7).

IV. RESULTS

A. HVE Workbench Clearing

The distribution of labels and MJT MAE values for all
305 trajectories analyzed are reported in Fig. 4. Example
segmentation results for the Sakai et al. [3] method are
visualized in Fig. 5 for different percentiles based on the
distribution of MJT MAE values for the Sakai et al. [3] method
depicted in Fig. 4.

The (1) 50% of movement and (3) Jackson et al. [17]
(without the displacement threshold) methods did not perform
as well as the other three methods. Methods (2), (4), and
(5) performed similarly, although each method was able to
acceptably segment some trajectories that were questionably
segmented by the other two methods (i.e., no one method was
able to handle all cases). One pattern observed in twenty-nine
instances was that the (2) kinematic thresholding method had
a tendency to segment slightly earlier compared to methods
(3) and (5). However, these were still considered within the
acceptable range given uncertainty about what point along
the trajectory truly represents the transition from reaching to
targeting.

With regards to the distribution of MJT MAE values, a
general pattern is apparent in Fig. 4 that ambiguous and
questionable segmentation results have a tendency to have
higher MJT MAE values.

B. The Targeted Box and Blocks Test

The tBBT segmentation performance results are in Fig. 6.
Example trajectories from tBBT based on the distribution of
MJT MAE values using the Sakai et al. [3] segmentation
method are in Fig. 7. The results in Fig. 6 suggest that, like the
HVE data, methods (2), (4), and (5) performed similarly on
the tBBT data. While the segmentation results for methods (2),
(4), and (5) were mostly labeled as acceptable, methods (2)
and (5) tended to segment near the end of the trajectory (see
Fig. 7 for examples). On the other hand, method (2) tended
to segment earlier, usually at the “shoulder” of the velocity
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Fig. 4. Rain cloud plots [33] depicting MJT MAE values for the five segmentation methods described in section III.A. The “clouds” to the left of the notch
plots indicate the density of points for each label group, in the order of: acceptable, questionable, and ambiguous. The points represent each segmentation
result’s MJT MAE value based on a particular segmentation method.

Fig. 5. Workbench Clearing in Haptic Virtual Environment Visualized trajectories selected based on the distribution of MJT MAEs shown in Fig. 4’s
“Sakai et al.“ column. Each column corresponds to a trajectory from the HVE workbench clearing data set, with the second and third rows displaying
results from the segmentation algorithm proposed by Sakai et al. [3]. The top row displays raw position trajectories, where the red diamond indicates the
starting position, the blue circle indicates the location where the reaching and targeting primitives were segmented, and the red ”X” indicates where the object
was grasped. The second row shows where segmentation occurs along the displacement time series from the grasp location. The bottom row shows where
segmentation occurs along the velocity profile.
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Fig. 6. Targeted Box and Blocks Test MJT MAE values displayed for tBBT data across segmentation methods, as is done in Fig. 4. The notch plot order,
from left to right, for each method are acceptable and questionable.

profile (e.g., approximately frame 65 of trajectory B in Fig. 7;
additional examples are available at [19]).

V. DISCUSSION

A. Which Segmentation Method is Best?

The (2) kinematic thresholding, (3) Jackson et al. [17],
and (5) Sakai et al. [3] segmentation methods all performed
similarly well. The HVE data presented complex trajectories
and kinematics, which would be difficult for even a human
evaluator to segment. These methods also performed similarly
well on the tBBT data, which were generally less complex than
the HVE data. The (5) Sakai et al. [3] method incorporates
methods (2) and (3) into their method, and is therefore likely
the most robust out of those considered in this work. However,
it is not clear what method is best for all applications given
challenges with evaluating segmentation performance. Addi-
tionally, we use two data sets consisting of data from healthy,
skilled individuals, where the tasks are relatively simple. Our
HVE and tBBT also had an unbalanced number of participants
(twenty-one and three, respectively), so the results could be
biased towards motions in simulated environments. These
data are not representative of all populations and tasks that
clinicians work with, where tasks requiring greater precision
may change the kinematic characteristics even in healthy
populations. Therefore, future work would include evaluating
the segmentation approaches on data from additional UEFAs
and from persons with movement pathologies or disabilities.

The specific analysis being done will influence which meth-
ods and thresholds to use. For example, the Sakai et al. [3] and
kinematic thresholding methods used a 5% of peak velocity
threshold, which worked well for the HVE data but resulted in

possibly late segmentation results for the tBBT data (see Fig.
5 and Fig. 7). A higher threshold, such as 10%, may provide
better results on the tBBT data we used, although this may
not be the case for all data collected from tBBT.

Nearly all our tBBT data had short or non-obvious targeting
periods. Skilled RTG movements in non-disabled populations
have been shown to adhere to stereotyped kinematic patterns,
including tight coupling or overlap between the reaching and
targeting primitives [16, 31, 34], which is relevant to the sec-
ond segmentation methodological assumption listed in section
III.B stating targeting must follow reaching. Similarly, the
tBBT trajectories from the participant with the below-elbow
myoelectric prostheses resembled the non-disabled trajectories
due to a high level of prosthesis experience (26 years),
but the trajectories may look different in other participants
with disabilities (e.g., reaching and grasping are typically
decoupled in UE prosthesis users [34]). Future work includes
developing and evaluating segmentation methods that allow
for overlapping motion primitives (i.e., where more than one
segmentation point is provided between two primitives, which
is in contrast with the methods considered in this study
that provide only a single segmentation point), as there may
be kinematic analyses that would benefit from more precise
motion primitive segmentations.

B. Segmentation Performance Evaluation
The most challenging part of our analysis was determining

how to evaluate the segmentation methods. In the activity and
action recognition literature, data sets typically come with
labels that researchers can use to evaluate their methods.
We did not have these for our data, nor does there exist
a method currently for identifying the true location where
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Fig. 7. Targeted Box and Blocks Test Four trajectories from the tBBT data visualized based on the distribution of MJT MAE values, as was done in Fig. 5.

reaching transitions to targeting, assuming it does exist. Our
approach to evaluating segmentation results via domain expert
review raised issues that could be addressed in future works.

As indicated in section III.D.1, initial agreement between
our expert raters was not high for the HVE data. Additionally,
the initial low agreement amongst our raters is partially due
to the three label classes (i.e., acceptable, questionable, am-
biguous) being vague, which was intentional. The consensus
meeting resulted in agreement on all except one segmentation
result, primarily due to one rater being more strict than the
other on what was considered acceptable; however, other raters
will likely have different opinions on the criteria for the
evaluation labels. For this reason, the labels and segmentation
results are available at [19]. We omit a statistical analysis
comparing the varied segmentation methods and the MJT
MAE distributions across the three labels due to the challenges
associated with evaluation.

As kinematic analyses that require segmentation of the
reaching and targeting motion primitives are used more fre-
quently, researchers will need a method to more objectively
evaluate segmentation methods. Specifically, more concrete
labeling criteria and a better understanding of intra- and
inter-rater variability associated with evaluating segmentation
results will be needed. Improved evaluation approaches will
support segmentation algorithm development and the potential
usage of template and learning algorithms. While the targeting
period may be difficult to segment using only the kinematics
of an endpoint (e.g., wrist), additional data sources may help.

For example, muscle activity measured by electromyogra-
phy (EMG) [35] or sonomyography (SMG) [36] may assist
with identifying the segmentation point between reaching
and targeting when combined with kinematics. While these
modalities have been used in other contexts such as detecting
grasp intention (e.g., [38]) or movement onset [37], it is
unclear if they could be used to identify the targeting primitive.
If so, this approach could be used to help create ground truth
data for developing and evaluating segmentation approaches
that use kinematics alone. Similarly, detecting muscle activity
in the hand or tracking finger aperture via motion capture
could be useful for better delineating when grasping begins
[16, 31, 34, 38].

C. Min. Jerk Trajectory Mean Absolute Error

The results suggest MJT MAE is a useful method for
evaluating segmentation performance. In Fig. 5, higher MJT
MAE values are associated with segmented reaching primitives
that do not follow a clean bell-curve shape. For example,
trajectory A in Fig. 5 has the highest MJT MAE score in
the data set, indicating a questionable segmentation result that
may need to be corrected. Note that MJT MAE should not be
considered a definitive measure of segmentation performance
given that reaching motions may have non-bell-shaped velocity
profiles, which the MJT MAE penalizes.

Wider usage and automation of kinematic analyses that
require segmentation of the reaching and targeting motion
primitives would benefit from using the MJT MAE to identify
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segmentation results that need closer review. This approach
is aligned with the segmentation workflow already used by
domain experts (e.g., apply segmentation algorithms and then
manually review [11]). However, the MJT MAE has limita-
tions. Based on the results in Fig. 4, there is sufficient overlap
over the MJT MAE distributions of the three evaluation labels
that improvements to this approach are needed for identifying
segmentation results that actually need additional review by a
human evaluator (i.e., true positives). Establishing the range
of acceptable MJT MAE values, or from a similar method, for
specific UEFAs and populations is an area of future work.

D. Challenging Segmentation Cases

Our analysis of the HVE and tBBT data sets identified
multiple kinematic profiles that the segmentation methods did
not do well on. Examples of each are in the supplemental
materials [19], which are briefly described below.

1) Slow reaching: Although the segmentation methods
considered in this paper assume that velocity profiles exhibit
the characteristic unimodal bell-shape, slow reaching motions
did not demonstrate this. Segmentation results for these tra-
jectories were therefore varied. Developing methods that can
address this edge case are likely necessary, as slow reaching
can be a viable strategy used by individuals for RTG and RTP
motions.

2) Re-adjustments during reach and targeting: Particularly
in the HVE data, participants would sometimes adjust the end-
point during reaching or targeting. If re-adjustments occurred
during reaching, our evaluation approach was to consider that
part of reaching. However, it was difficult to determine the
segmentation point between reaching and targeting when re-
adjustments occurred during targeting, where the endpoint was
briefly moved away from the object and a small reach was
used to move back to the object. Whether to include the re-
adjustments during targeting as part of the segmented targeting
time series will likely depend on the kinematic analysis being
performed (e.g., it may be useful to include if assessing how
much difficulty an individual is having in targeting an object
for grasp or pointing).

3) More than one object targeted: There were some in-
stances in the HVE data where a participant would reach and
target for one object, then move to another object. As the HVE
workbench clearing task does not specify an order of tools, this
was valid for the test but made segmentation more challenging.
Reaching and targeting more than one object is a violation of
the assumption of the segmentation methods considered in this
work, and would require additional processing. This issue may
not be prevalent in some UEFAs where the order of objects
to be grasped or pointed to is pre-defined (e.g., in tBBT).
However, some UEFAs do not specify order (e.g., Box and
Blocks Test). Careful observation of the participant and video
recordings help provide context when evaluating segmentation
results.

E. Ensemble Segmentation Methods

Of the three best performing segmentation methods consid-
ered in this paper, each method acceptably segmented some

trajectories where the other two failed. While it may be
possible to develop one segmentation method that is robust to
all applications, a promising direction is to use an ensemble
of segmentation methods. Inspired by ensemble methods from
the data mining and machine learning literature [39], ensem-
bling segmentation outputs to all “vote” on a segmentation
point would leverage the best of each segmentation method.
Ensembles have demonstrated state-of-the-art performance on
multiple problems in machine learning [39]. For example,
ensemble learning has been used for activity recognition
from wearable sensors [40]. One possible implementation of
ensembling segmentation methods could be to have the final
segmentation location be the average of all the segmentation
locations from the multiple segmentation methods used in
the ensemble, which is an approach used for fusing outputs
of regression models [39]. Furthermore, high disagreement
amongst the ensembled methods could signal a challenging
trajectory that requires further review by a human evaluator,
similar to what has been proposed for quantifying the uncer-
tainty of deep learning models [41], providing an alternative
or complement to the proposed MJT MAE.

VI. CONCLUSION

This paper provides an analysis of segmenting reaching and
targeting motion primitives for RTP and RTG motions. The
results suggest that recently proposed methods for segmen-
tation do reasonably well, having been tested on HVE and
tBBT data. However, our understanding of what indicates the
precise point between reaching and targeting motion primitives
from kinematics alone remains limited. A better understanding
of where reaching transitions to targeting will help create
ground truth data sets for more objective evaluation, along
with enabling the development of learning-based methods
that require training data. This work also proposes the MJT
MAE to evaluate segmentation performance and indicate po-
tentially questionable segmentation results, which could be
incorporated into a segmentation workflow used by researchers
and, eventually, clinicians. Mechanisms like the MJT MAE
which flag questionable results may also help mitigate risks
associated with domain experts using erroneous results in their
decision making.
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