g2

I. INTRODUCTION
LEEP is an intrinsic physiological process which is
vital for sustaining both cognitive function and overall
well-being. Indeed, it plays a crucial role in numerous vital
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ABSTRACT Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data col-
lected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of
data is lacking for emerging, less intrusive modalities, such as ear-EEG. Methods and procedures: The current
study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on
data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis
from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid,
and developed in-house as described in our previous work. Unlike previous studies, our research uniquely
focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions),
and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results:
Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the
model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a
statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected
by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical
items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages.
Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring
the effectiveness of the fine-tuning process. Conclusion: Our findings underscore the potential of fine-tuning
pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older
population and using feature-based methods for transfer learning. This approach presents a promising avenue
for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across
different populations and computational techniques. Clinical impact: An enhanced ear-EEG method could
be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in
elderly patients with conditions like dementia or sleep apnea.

INDEX TERMS Automatic sleep scoring, hearables, ear-EEG, machine learning, wearable EEG.
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functions, for example by enhancing memory, boosting cog-
nitive performance, and promoting dealing with stress [6].
On the other hand, sleep disturbances can have health impli-
cations, spanning from cognitive impairments to broader
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health concerns such as cardiovascular ailments, metabolic
complications, heightened mortality risk, and recently iden-
tified ties to the progression of Alzheimer’s disease [7], [8],
[9], [10]. As individuals sleep, their brain rhythms go through
multiple stages of physiological and neurological restorative
processes. Given its profound implications, there has been
a growing interest to analyze human sleep across research,
clinical, and consumer landscapes.

Polysomnography (PSG), the gold standard for sleep eval-
uation, refers to the analysis of sleep based on measurements
from multiple physiological sensors. This includes Electroen-
cephalography (EEG), which tracks the brain’s electrical
activity to discern different sleep stages and patterns. Elec-
trooculography (EOG), recording eye movements to identify
the Rapid Eye Movement (REM) stage of sleep, is also
usually part of the PSG setup. Furthermore, Electromyogra-
phy (EMG) monitors muscle activities, crucial for detecting
phases of sleep, especially REM. Respiratory effort sen-
sors play a key role by measuring breathing patterns and
detecting anomalies such as apneas or hypopneas. Finally,
Oxygen Saturation (SpO2) monitoring is employed to assess
blood oxygen levels, aiding in identifying periods of reduced
oxygenation [11]. Each of these modalities contributes to
a comprehensive understanding of the participant’s sleep
architecture and quality, facilitating accurate diagnosis and
treatment of sleep-related conditions like sleep apnea and
insomnia [12], [13].

However, the challenges that impact the ease-of-use and
accuracy of PSG include the need for overnight stay of
patients in specialized labs, introducing the “first-night
effect” due to unfamiliar surroundings and potentially
biasing results [14]. Furthermore, the high costs associ-
ated with PSG limit accessibility, especially for those in
remote areas or with mobility challenges. The unsuitabil-
ity of PSG for long-term sleep tracking is also reflected in
night-to-night sleep variability [15], making single-session
data potentially unrepresentative. Also, the manual epoch-
by-epoch scoring by sleep technicians, though guided
by strict criteria, can be prone to inter-scorer variabil-
ity [16], casting doubts on its consistent reliability and
scalability.

The advancement of wearable technologies has paved the
way for monitoring sleep at home, although these devices
may not capture all the signals recorded through PSG. Among
the signals that must be analyzed for sleep scoring is at
least the EEG signal. In this context, Hearables [17], devices
worn in the ear, have emerged as a practical solution for
sleep analysis [18], [19], [20], [21], [22]. Such devices can
monitor various physiological and non-physiological signals
including EEG [23], [24], electrocardiogram (ECG) [25],
[26], [27], cognitive workload [28], and daily activities [29].
Findings from studies utilizing standardized ear-EEG sensors
reveal a considerable correlation between automatic sleep
stage prediction using ear-EEG and the hypnogram derived
from a PSG [18], [19].
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Hearables represent an emergent modality, so that large-
scale datasets and automated sleep-staging models specific
to ear-EEG are still in their infancy. On the other hand, sleep
research has been an active area for many years and there is
a wealth of publicly available databases of both scalp EEG
datasets and automated sleep-staging models [2], [30], [31],
[32]. These open-source models have been trained on data
recorded from sleep labs worldwide, encompassing a wide
range of demographics and sleep-related conditions. A natu-
ral question to be asked is: Can these open-source models,
trained and optimized on scalp EEG, be employed effec-
tively for ear-EEG data? To generalize well across different
datasets and conditions, machine learning models typically
require large amounts of data to avoid overfitting and to
capture the diversity inherent in real-world applications. In-
ear EEG, with its unique sensor technology, placement,
and potential variations in signal quality, may have dis-
tinct characteristics from traditional scalp EEG. Successfully
adapting these pre-trained models to ear-EEG could dra-
matically accelerate and facilitate the development of Hear-
ables, optimizing both time and resources, a subject of this
study.

Open-source models for automatic sleep staging can
be broadly classified into two major categories: deep-
learning-based and feature-based. Deep-learning based mod-
els include U-Sleep by Perslev et al. [31], SeqSleepNet
from Phan et al. [2], and TinySleepNet by Supratak and
Guo [30]. Each of these models, while architecturally distinct,
predominantly trains on raw single-channel EEG data, with
U-Sleep also integrating raw EOG data. The feature-based
models include those developed by Vallat and Walker [32]
who trained a LightGBM model, called YASA, on more than
30,000 hr of PSG data across 3163 full-night PSG recordings
from a heterogeneous population. They achieved kappa val-
ues of more than 0.80, indicating a level of agreement that is
higher than the inter-scorer agreement reported in literature.
Contrasting the deep-learning counterparts, feature-based
models use predefined features, encompassing statistical met-
rics of the signal (e.g. mean, variance, and skewness), spectral
attributes (e.g. power within certain frequency bands), and
other domain-specific features [19], [33]. Although transfer
learning has been extensively demonstrated for deep learning
models in ear-EEG analysis [2], [3], [4], [5], its application
to feature-based models - such as LightGBM - remains unex-
plored, representing a gap that is addressed by the present
study. In this study, we examine the extent to which the
open-source YASA model can be adapted to ear-EEG data for
sleep scoring through transfer learning. Our motivation is to
leverage the considerable knowledge gained from the analysis
of scalp EEG to improve performance on the ear-EEG task.
It is important to mention that, unlike deep-learning models,
feature-based models like LightGBM offer inherent inter-
pretability and explainability, which is crucial for identifying
both similarities and discrepancies when applying a model
trained on scalp EEG to ear-EEG data.
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FIGURE 1. The experimental EEG setup, with the scalp electrodes and the
generic Ear-EEG sensor visible.

Il. METHODOLOGY

A. PARTICIPANT RECRUITMENT AND DATA COLLECTION
A cohort of 17 participants (mean age: 71.8 £+ 4.4 years;
age range: 65-83 years; 6 females) was enrolled in the study.
All participants had no documented history of neurological
or mental health issues. While some individuals reported
comorbidities such as type-2 diabetes, sleep apnea, and
hypertension, these conditions were stable, well-managed,
and had not necessitated recent medication adjustments or
hospital admissions.

The participants were invited for an overnight stay at the
Surrey Sleep Research Centre (SSRC). During their stay,
a comprehensive 10-hour in-bed polysomnography (PSG)
assessment was conducted, aligning with the guidelines set
by the American Academy of Sleep Medicine (AASM).
The recordings implemented a standard AASM adult PSG
montage, and concurrently, EEG was recorded from one ear
using a viscoelastic generic earplug described in our previous
work [1], [17] that conforms to the shape of the ear canal, with
a flexible electrode fixed onto its surface shown in Figure 1.
The choice between referencing the ear sensor to M1 or
M2 was determined by the side of ear-EEG recording; the
sensing electrode was placed inside the canal of one ear, with
the reference electrode positioned on the ipsilateral mastoid
(M1 for the left ear, M2 for the right ear). A SomnoHD
recording system combined with the DOMINO software
(Somnomedics, Germany) was employed for all scalp EEG
and ear-EEG recordings. Sleep stages were divided into 30-
second epochs and were independently reviewed by two
scorers. Each scorer independently analyzed the EEG record-
ings to assign sleep stages according to standard criteria. The
consensus hypnogram was then generated by comparing the
scorers’ classifications, with discrepancies resolved through
a joint review session to reach agreement [34].

All procedures in this study were executed adhering to the
Declaration of Helsinki and Good Clinical Practice standards.
The research design was granted approval by the NHS ethics
committee (22/L.0O/0694). Prior to any study-related proce-
dures, participants were briefed in detail about the research
activities, and they gave their written informed consent.
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B. DATA PRE-PROCESSING

For every recorded subject, a central scalp EEG channel was
extracted (C4-M1 or C3-M2) along with an ear-EEG channel
referenced ipsilaterally to either M1 or M2, depending on
which had the sensor. Out of the 17 recorded participants,
4 were removed from this study due to the high impedance
(i.e. higher than 10k Ohm) between the skin and the electrode
which heavily impaired signal quality. High impedance was
noticed whenever the subject refused to clean their ear before
the insertion of the sensors. Impedance measurements were
conducted before sleep recordings to ensure signal quality;
however, due to technical constraints, continuous impedance
monitoring throughout the night was not feasible, limiting
our ability to assess the impact of impedance variations on
staging accuracy. The included signals were then downsam-
pled from 256 Hz to 100 Hz and bandpass-filtered between
0.40 Hz and 30 Hz, to match the lightGBM model that scalp
EEG data had been trained on. Features were then calculated
based on 30-sec epochs to train the machine learning model.

C. FEATURES

The procedure for extracting features from EEG signals
integrates both time- and frequency-domain analysis. In the
time domain, common descriptive metrics such as the stan-
dard deviation, skewness, interquartile range, and kurtosis
were employed. Furthermore, non-linear characteristics like
the count of zero-crossings, Hjorth mobility and complexity
parameters, permutation entropy, and the fractal dimension of
the signal were determined. In the frequency domain, the peri-
odogram, computed for each 30-second epoch using Welch’s
approach, serves as the basis for deriving features, encom-
passing specific band relative spectral powers, the broadband
signal’s absolute power, and power ratios. The full set of
features is given in Table 1.

To capture the temporal dynamics inherent in sleep EEG
data, each feature was additionally smoothed in two distinct
manners: using a 2-minute rolling window or, alternatively,
using a 7.5-minute triangular window. Incorporating these
dual variants enabled the model to assimilate information
from adjacent epochs. Every smoothed feature was then nor-
malized across each night. The model uses as input both
smoothed and raw features in the original units. All features
were calculated using the YASA sleep analysis toolbox in
Python [32].

D. MUTUAL INFORMATION ANALYSIS

Mutual Information (MI) is an information-theoretic mea-
sure that quantifies the dependency between two random
variables. In the context of our study, we employed MI to
quantify the relationship between features extracted from
EEG signals and the corresponding sleep stages ( [35]). For
each participant, features were calculated from both ear and
scalp EEG data. Each feature’s value, for every epoch, was
paired with the corresponding sleep stage, resulting in a two-
dimensional dataset. The MI between EEG features and sleep
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TABLE 1. List of features computed from EEG data for sleep
classification [32].

Feature name

Description

Absolute power

Total energy across all frequencies Total en-
ergy across all frequencies

Absolute power

Total energy across all frequencies

Alpha power Energy in the alpha frequency band (8-13 Hz)
Alpha/theta Proportional energy between alpha and theta
power ratio bands

Beta power Energy in the beta frequency band (13-30 Hz)

Delta/beta power
ratio

Proportional energy between delta and beta
bands

Delta/sigma Proportional energy between delta and sigma
power ratio bands
Delta/theta Proportional energy between delta and theta

power ratio

bands

Fast delta power

Energy in the upper range of delta frequency
band

Hjorth complex-
ity

Measure of signal complexity compared to
its derivatives

Higuchi fractal
dimension

Quantifies the complexity of time series

Hjorth mobility

Rate of change of signal amplitude

Time elapsed
(hours)

Duration from the start of EEG recording

Inter-quartile
range

Range between 25th and 75th percentiles of
data distribution

Kurtosis

Measure of the data’s peakedness or flatness
relative to normal distribution

Time elapsed

Standardized duration from start of EEG

(normalised) recording

Numper of zero- Times the signal crosses the zero amplitude
crossings

Permutation en- | Uncertainty measure in the order of ampli-
tropy tude values

Petrosian fractal | Quantifies the roughness or irregularity of
dimension signals

Slow delta power

Energy in the lower range of delta frequency
band

Sigma power

Energy in the sigma frequency band (typi-
cally related to sleep spindles)

Skewness

Asymmetry in the data distribution

Standard devia-
tion

Dispersion or variability of the signal

Theta power

Energy in the theta frequency band (4-8 Hz)

stages was computed as

p(x,y)
MIX,Y) = , V) | _—
& D=2 2 px.y) Og(p<x>p<y>)

yeY xeX

where X represents the EEG features, Y represents the sleep
stages, p(x,y) is the joint probability distribution function
of X and Y, and p(x) and p(y) are the marginal probability
distribution functions of X and Y, respectively.

All MI calculations and visualizations were performed in
Python, using the Scipy library for MI computations and
Matplotlib for visualizations.

E. PRE-TRAINED MODEL

The open-source pre-trained model from [32] was built
upon a comprehensive training set encompassing over 31,000
hours of PSG data derived from 3,163 distinct recordings
distributed across seven datasets. The scoring for this vast
dataset was achieved through a consensus of five sleep
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technicians, ensuring its reliability and representing a con-
siderable breadth of real-world sleep data. The core of the
model is a LightGBM classifier [36], a gradient-boosting
framework which uses tree-based algorithms. This classifier
was tuned with specific hyper-parameters: 500 estimators,
a tree depth capped at 5, up to 90 leaves per tree, and
it utilized 60% of the available features for the construc-
tion of each tree. These hyper-parameters were carefully
chosen from 96 potential combinations to deter overfitting
while optimizing accuracy, achieved through an exhaustive
threefold cross-validation on the entire training set. Notably,
to address the inherent imbalance in the distribution of sleep
stages during a typical night, custom weights were applied
to the sleep stages. After rigorous optimization, the chosen
weights were 2.2 for N1, 1 for both N2 and Wake stages,
1.2 for N3, and 1.4 for REM. The model, once trained,
was exported as a compact file and made available from
https://github.com/raphaelvallat/ YASA.

F. FINE-TUNED MODEL

The open-source pre-trained LightGBM model was adapted
for our specific datasets using fine-tuning. Contrary to tradi-
tional retraining or adaptation approaches, fine-tuning, in this
context, does not involve altering the hyperparameters or
modifying the existing decision trees that the original model
has learned. Instead, it can be viewed as an expansion of
the pre-existing model. Fine-tuning was implemented by
passing the pre-trained model as the argument for the ““‘init
model” parameter when training a LightGBM model on new
data. The hyperparameters of the pre-trained model were not
modified.

Upon introducing our new dataset into the model, rather
than restructuring or pruning the current decision trees, new
decision trees were constructed and appended based on the
patterns and information obtained from our data [36]. This
ensures that the model retains the knowledge and insights
it gained from the vast dataset on which it was originally
trained while simultaneously integrating the nuances of our
specific ear-EEG or scalp EEG datasets. This fine-tuning
approach capitalizes on the inherent strengths of gradient-
boosting frameworks, where new trees are added iteratively,
minimizing the residual errors from prior trees. The result
is a harmonious blend of generalized knowledge from the
pre-trained model with specific insights from the new scalp
or ear-EEG data. Due to the small size of the datasets used for
fine-tuning, the sum of the weights of the newly-added trees
amounted to only 0.15% of that of the pre-trained model.

For this study, the pre-trained LightGBM model under-
went a separate fine-tuning process for each dataset: one
for the ear-EEG data and another for the scalp EEG data.
The model was fine-tuned using the LightGBM method for
continued training, and the fine-tuned model was evaluated
using cross-validation across participants. The pre-trained
LightGBM model was fine-tuned using the scalp or in-ear
data of all participants except for one, and the fine-tuned

451



|EEE Journal of Translational

Engineering in
Health and Medicine

G. Hammour et al.: From Scalp to Ear-EEG: A Generalizable Transfer Learning Model

model was used to predict the sleep stages of the subject that
had been left out, iterating over all participants in the dataset.

G. SHAP ANALYSIS

SHapley Additive exPlanations (SHAP) is a game theoretic
approach to explain the output of any machine learning
model. In this study, SHAP values were utilized to interpret
the contributions of individual features to the predictions
made by both the pre-trained and fine-tuned models for ear-
EEG signals [37]. For every prediction made by the model,
a SHAP value was computed for each feature. The SHAP
value represents the average contribution of the given feature
to every possible prediction. It is computed based on Shapley
values from cooperative game theory. Given a prediction
model, f, for an instance x and a feature i, the SHAP value,
shapi(x), is calculated as

shap;(x)

- ¥

SCF\{i}

SIN(IF| — |S]| — 1)!
1511 ||F||!| X i (es U i) — fs o))

where F is the set of all features and § is a subset of F.

Higher magnitude SHAP values indicate features with
more influence on the model’s prediction for a specific
instance. By analyzing the top contributing features, we could
determine the key EEG features that the models relied upon
for sleep stage classification, and observe any shifts in feature
importance after model fine-tuning. The SHAP analysis and
subsequent visualizations were conducted using the SHAP
Python library. This library offers efficient algorithms to esti-
mate SHAP values for a wide range of models and provides
utilities for visualizing the results.

Ill. RESULTS

Both the ear and scalp electroencephalogram (EEG) were
recorded during a full-night sleep from a select group of
older adults (n = 13, Methods II-A). Figure 2 shows data
collected from one representative participant including the
time-frequency spectrogram from the ear-EEG, and the con-
sensus hypnogram (a sleep expert’s manually annotated
representation of the sleep cycle). Using these data, the sleep
stages were automatically estimated with an open-source
LightGBM model pre-trained on a very large scalp EEG
dataset, and the resulting hypnogram was generated for the
ear-EEG (Fig. 2C). The same analysis was conducted for the
scalp EEG recordings.

A comprehensive set of 65 distinctive features was
extracted from each 30-second epoch of both the in-ear and
scalp EEG channels (Methods II-C). Figure 3 illustrates the
distributions for one of the features (Higuchi fractal dimen-
sion) calculated from both in-ear and scalp EEG across all
sleep stages and participants. Initial visual inspection of these
distributions suggested a slight advantage for scalp EEG
(ANOVA F = 6900.3, p < 0.01), displaying less overlap
across sleep stages compared to ear-EEG (ANOVA F =
4530.3, p < 0.01). This visual inference was confirmed
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quantitatively by computing the mutual information—an
information-theoretic measure of the dependence between
the features and the sleep stages (Methods II-D). When
comparing mutual information scores, 62 out of 65 features
derived from scalp EEG demonstrated higher values than
their ear-EEG counterparts (Fig. 3C). The results point to a
relatively higher delineation of sleep stages using scalp EEG
features, although the ear-EEG data also offers a significant
level of differentiation.

The accuracy of sleep stage classification utilizing the
pre-trained LightGBM classifier on both in-ear and scalp
EEG features is visualized in Figure 4. Overall, scalp EEG
offered a higher accuracy rate of 77.3%, in comparison to
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70.1% accuracy achieved by ear-EEG. In terms of sensitiv-
ity, the largest difference between the two modalities was
observed in the N3 stage, where scalp EEG achieved a notably
higher sensitivity of 77.8% compared to the ear-EEG sensitiv-
ity of 48.9%. A more detailed account of the results for each
participant is provided in Table 2. Here, it was observed that
scalp EEG yielded higher kappa scores—indicating superior
model performance—for 10 out of the 13 participants and
averaged a kappa score of 0.685. In contrast, the ear-EEG
yielded a lower average kappa score of 0.589.

The pre-trained LightGBM model was fine-tuned by con-
tinued training using the present in-ear and scalp EEG
datasets (Methods II-F). This procedure aimed to optimize the
model’s performance by fine-tuning it on the specific charac-
teristics of ear-EEG with respect to sleep stages. The impact
of this refinement process was evaluated via cross-validation
across all participants. Figure 5 displays the results of the
continued training using the in-ear dataset. The confusion
matrix (Fig. 5A) reveals a marked improvement in the per-
formance of the model, particularly in the sensitivity for N3,
which rose from 48.9% to 74.1%. Additionally, the overall
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FIGURE 6. Results of continued training on the scalp EEG dataset,
illustrating the contrasting effect compared to ear-EEG fine-tuning. (A)
Confusion matrix presenting the classification outcomes of the fine-tuned
model using scalp EEG data over all sleep epochs across participants,
underscoring the limited improvement in performance. SE/PR denote
respectively sensitivity (above) and precision (below). (B) Scatterplot
offering a direct juxtaposition of kappa scores: values derived from the
pre-trained model on the x-axis against those from the fine-tuned model
on the y-axis, indicating the minimal variance in model efficacy despite
the continued training approach.

accuracy increased to 73.7%. The model fine-tuned on ear-
EEG demonstrated increased kappa values for 10 out of the
13 participants (Fig. 5B), yielding an overall kappa score of
0.639, which constitutes a statistically significant improve-
ment over the performance of the pre-trained model (p <
0.05, dependent t-test). Importantly, the continued training
strategy did not yield similar improvements for scalp EEG.
As demonstrated in Figure 6, the fine-tuned model on scalp
EEG data yielded similar accuracy (Fig. 6A; average accu-
racy: 76.7%) and kappa values (Fig. 6B; overall kappa-score:
0.681) as those observed in the pre-trained model, suggesting
a limit to the improvement possible with this strategy on our
scalp EEG dataset.

The SHAP analysis, an approach used for interpreting
machine learning models, was next conducted on the ear-EEG
dataset (Methods II-G). The results are depicted in Figure 7,
which demonstrates the highest average SHAP values for
predicting the N3 sleep stage during N3 epochs, comparing
the pre-trained model (Fig. 7A) and the fine-tuned model
(Fig. 7B). A notable difference in the two models can be
observed in the significance attributed to different EEG fea-
tures. The fast delta power, an EEG feature closely associated
with the N3 sleep stage, had the highest SHAP value in the
fine-tuned model. However, this feature did not appear among
the top five most influential features in the pre-trained model.
Similarly, the beta power—strongly linked to awake brain
activity—had the third highest SHAP value in the pre-trained
model but was not among the top five in the fine-tuned model.
These results highlight how continued training reconfigures
the importance of various EEG features for sleep stage clas-
sification, enhancing the model’s precision in predicting the
N3 stage based on ear-EEG data.

IV. DISCUSSION
This study aimed to examine the efficacy of automatic sleep
staging in older adult participants using ear-EEG signals,
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TABLE 2. Sleep analysis results for all participants (pre: pre-trained model; fine: fine-tuned model.

Gender Cohen’s Kappa Accuracy
Scalp (pre) Scalp (fine) In-ear (pre) In-ear (fine) | Scalp (pre) Scalp (fine) In-ear (pre) In-ear (fine)
Female 0.758 0.693 0.687 0.750 0.824 0.778 0.771 0.819
Male 0.673 0.678 0.550 0.642 0.749 0.756 0.666 0.734
Male 0.641 0.680 0.608 0.682 0.741 0.775 0.717 0.766
Male 0.577 0.553 0.578 0.603 0.695 0.673 0.700 0.721
Male 0.699 0.659 0.546 0.547 0.792 0.756 0.686 0.683
Male 0.623 0.701 0.587 0.623 0.724 0.779 0.700 0.722
Male 0.719 0.702 0.513 0.652 0.793 0.777 0.643 0.736
Female 0.671 0.641 0.545 0.517 0.763 0.735 0.665 0.643
Female 0.723 0.746 0.467 0.679 0.795 0.805 0.602 0.757
Male 0.623 0.622 0.651 0.626 0.740 0.729 0.765 0.740
Male 0.735 0.743 0.584 0.586 0.802 0.806 0.689 0.687
Female 0.792 0.729 0.792 0.778 0.848 0.800 0.848 0.836
Male 0.664 0.705 0.542 0.628 0.765 0.792 0.669 0.740
A as quantified by kappa scores, showed consistency across
both types of EEG inputs, though it was slightly higher for the
Deltarbeta power ratio (7.5 min) scalp EEG. This supports previous research suggesting that
despite the varying locations and spatial resolutions, in-ear
Inter-quartile range (2 min) ] and scalp EEG can capture similar neuronal activity patterns
essential for sleep stage identification.
Beta power (2 min) One intriguing observation from the present analysis was
the higher mutual information of scalp EEG with sleep stages
Theta power (2 min) as compared to ear-EEG. This result is, to some extent,
intuitive given the closer proximity of scalp electrodes to
Higuehi fractal dimension cortical processes that generate the slow EEG waveforms
| . | | | typically associated with sleep. Such waveforms include delta
B W e B and theta waves which are crucial for defining certain sleep

Fast delta power (7.5 min)

Theta power (7.5 min)

Theta power (2 min)

Delta/beta power ratio (7.5 min)

Delta/theta power ratio (7.5 min)

00 02 04 06 08 10
mean |SHAP value|

FIGURE 7. Comparative analysis of the highest average SHAP values
associated with predicting the N3 sleep stage using ear-EEG features. (A)
Bar chart depicting the top 5 SHAP values and their corresponding
features as determined by the pre-trained model, offering insights into
the most influential features before fine-tuning. (B) Corresponding bar
chart for the top 5 SHAP values and their associated features for the
fine-tuned model, highlighting the shift in feature importance and
relevance post model refinement.

by leveraging an open-source model pre-trained on a large
scalp EEG dataset. The results demonstrated substantial
agreement between the sleep stages predicted from in-ear and
scalp EEG, suggesting a high degree of similarity between
these two modalities. The overall performance of the model,
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stages. Previous studies have emphasized the importance of
electrode location in achieving accurate sleep staging, with
optimal locations often being directly on the scalp [38]. These
superior feature metrics naturally favored scalp EEG, leading
to its enhanced performance for sleep stage classification
compared to ear-EEG. However, it is worth noting that,
despite its relative disadvantage in terms of feature salience,
ear-EEG demonstrated a reasonably high level of accuracy
and sensitivity.

The fine-tuning of the pre-trained model led to significant
enhancements in sleep stage prediction from ear-EEG data,
most notably for the N3 sleep stage. The initial underper-
formance of the pre-trained model in detecting the N3 sleep
stage from ear-EEG could be attributed to the distinct patterns
of neuronal activity that define this stage of sleep, often
referred to as slow-wave sleep. Given the inherent differences
in spatial resolution and proximity to the brain between scalp
and ear-EEQG, it is plausible that the pre-trained model, trained
largely on scalp EEG data, was not fully equipped to rec-
ognize the unique manifestations of N3 sleep stage in the
ear-EEG data.

However, through continued training and refinement with
the specific ear-EEG dataset, the model was effectively
fine-tuned to better recognize and interpret these distinc-
tive signal patterns. Particularly interesting was the rising
importance of fast delta power— a feature strongly associated
with N3 sleep stage— in the fine-tuned model. This feature,
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which was not among the top influencers in the pre-trained
model, emerged as the most influential feature in the fine-
tuned model, underscoring the adaptive nature of the machine
learning algorithm and its ability to optimize its predictive
capabilities according to the input data. This shift in influen-
tial features after fine-tuning also illustrates the importance
of domain-specific knowledge and model personalization in
the development of accurate sleep stage classifiers.

In our study, the pre-trained LightGBM model attained an
average kappa score of 0.685 on single-channel scalp EEG
data from our cohort. This figure contrasts with findings from
Vallat and Walker [32], who reported a higher median kappa
score of 0.782 using the same model on single-channel EEG
data. They also identified a significant negative correlation
between model accuracy and both the age of subjects and
the severity of sleep apnea symptoms. They suggested that
diminished model performance might be attributed to the
increased frequency of stage transitions common in indi-
viduals with sleep apnea. Given these insights, the lower
performance observed in our dataset can likely be attributed
to the demographic characteristics of our cohort, which has
an average age of 71.8 years, significantly older than the
45.3 years average age of the cohort in Vallat and Walker’s
study [32]. Additionally, the potentially higher prevalence of
sleep apnea within our older cohort could further explain the
reduced kappa score. This divergence underscores the need to
consider the impact of demographic and clinical variables on
model performance in sleep study analyses, which may have
implications for the generalizability of findings across differ-
ent populations. Due to the small sample size of our dataset,
comprising 13 subjects, the results obtained are indicative
but not definitive, necessitating further validation through
larger-scale studies in the future.

In a broader perspective, these results mark a significant
advancement towards the realization of user-friendly, home-
based sleep monitoring solutions, particularly beneficial for
the estimated 50% of older adults who suffer from sleep
disorders [39]. The advantages of ear-EEG, with its non-
invasive nature, compact size, and reduced susceptibility to
artifacts compared to traditional scalp EEG, not only make
it well-suited for use in various clinical and research settings
but also offer a promising avenue for continuous, long-term
sleep monitoring in the community. This approach could
significantly enhance our capacity for personalized sleep
research and treatment strategies, offering a tailored approach
to managing and mitigating sleep disorders in the ageing
population, thereby improving their overall quality of life and
health outcomes.

V. CONCLUSION

The present findings have illuminated the potential utility
of ear-EEG as a viable, minimally invasive technique for
sleep stage classification, particularly in older populations
where comfort and ease of use are critical factors. The robust
performance of the pre-trained model on the ear-EEG data
— further optimized through fine-tuning — has provided
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compelling evidence for the adaptability and practicality of
this modality. The significant improvement in N3 sleep stage
classification achieved through the fine-tuning process has
indicated that, with model personalization, the potential barri-
ers associated with the use of ear-EEG for sleep staging can be
effectively addressed. Moreover, the shift in influential EEG
features post fine-tuning further underscores the ability of the
model to adapt to unique data characteristics and optimize its
predictive power.

Our study has introduced the application of ear-EEG for
sleep analysis within an older population, a group often
overlooked in sleep research yet significantly affected by
sleep disorders. This approach not only explores new ground
but also suggests potential for developing accessible, non-
invasive monitoring tools that could improve quality of life.
Additionally, opting for LightGBM over the previously used
deep learning frameworks for transfer learning [2], [3], [5]
provides a new feature-based method. LightGBM’s advan-
tages in terms of explainability, lower computational needs,
and ease of use contribute to its potential for fostering quicker
advancements and applications in the field of sleep study,
making it a valuable tool for future research and development
in sleep monitoring technologies.
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