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ABSTRACT Acoustic features extracted from speech can help with the diagnosis of neurological diseases
and monitoring of symptoms over time. Temporal segmentation of audio signals into individual words is
an important pre-processing step needed prior to extracting acoustic features. Machine learning techniques
could be used to automate speech segmentation via automatic speech recognition (ASR) and sequence
to sequence alignment. While state-of-the-art ASR models achieve good performance on healthy speech,
their performance significantly drops when evaluated on dysarthric speech. Fine-tuning ASR models on
impaired speech can improve performance in dysarthric individuals, but it requires representative clinical
data, which is difficult to collect and may raise privacy concerns. This study explores the feasibility of
using two augmentation methods to increase ASR performance on dysarthric speech: 1) healthy individuals
varying their speaking rate and loudness (as is often used in assessments of pathological speech); 2) synthetic
speech with variations in speaking rate and accent (to ensure more diverse vocal representations and fairness).
Experimental evaluations showed that fine-tuning a pre-trained ASR model with data from these two sources
outperformed amodel fine-tuned only on real clinical data andmatched the performance of amodel fine-tuned
on the combination of real clinical data and synthetic speech. When evaluated on held-out acoustic data from
24 individuals with various neurological diseases, the best performing model achieved an average word error
rate of 5.7% and amean correct count accuracy of 94.4%. In segmenting the data into individual words, amean
intersection-over-union of 89.2% was obtained against manual parsing (ground truth). It can be concluded
that emulated and synthetic augmentations can significantly reduce the need for real clinical data of dysarthric
speech when fine-tuning ASR models and, in turn, for speech segmentation.

INDEX TERMS Dysarthria, speech segmentation, speech recognition, orofacial assessment, data
augmentation.

I. INTRODUCTION

NEUROLOGICAL diseases cause major impairments to
oro-motor abilities and can lead to speech impairment

(i.e. dysarthria) and/or swallowing impairment (i.e. dyspha-
gia) [1], [2], [3], [4], [5]. Current diagnosis of neurological
diseases performed by clinicians often relies on subjec-
tive judgement and/or patients’ self-reports, both of which

introduce human error and are insensitive to early stages of
the disease [6], [7]. This can in turn delay the diagnosis and
treatment of neurological diseases at different stages [8], [9].

Limited in-person services and stay-at-home orders during
the COVID-19 pandemic motivated clinicians to expedite
the utilization of telehealth and remote assessments [10].
This acceleration was especially pertinent given that clinical
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services and resource allocation related to neurological dis-
eases were already disproportionately scarce, marked by a
clear shortage of trained clinicians [11]. In this context,
there arises an undeniable need for accessible and automated
remote assessments that can objectively detect subtle changes
in disease progression, particularly in the early stages of the
disease, where timely intervention is more substantive.

A core component of automated speech assessment sys-
tems is feature extraction (acoustic from audio and/or kine-
matic from video). Acoustic features such as speaking rate
and pause duration obtained from speech tasks have been
shown as valid measures to distinguish neurological diseases
at different stages [12], [13], [14]. Kinematic measures of
oro-motor control have also emerged as candidate physiologi-
cal markers of facial bradykinesia in Parkinson’s disease (PD)
as well as bulbar signs in amyotrophic lateral sclerosis (ALS).
These features are sensitive to early changes, and can provide
objective measures regarding particular muscle groups and
their corresponding functions [15], [16]. The automatic anal-
ysis of kinematic and acoustic features can support objective
oromotor structural and functional assessment to track treat-
ment progress in neurological disorders.

A substantial barrier to the adoption of automated speech
assessment, particularly in the case of remote assessments,
is the considerable post-processing of data samples that is
required prior to feature extraction. Given that speech assess-
ments often involve repeating phrases and syllables [17],
it is important to segment data into individual repetitions so
that features can be extracted [18], [19], [20]. This ‘‘pars-
ing’’ involves counting the repetitions, as well as identifying
the onset and offset times of each repetition in the record-
ing (audio or video data). Currently, parsing of audio/video
speech data is often performed manually by experienced
clinical assistants, making the procedure time-consuming and
labour-intensive. Automating the parsing process will con-
tribute greatly to the development of automated and objective
oro-facial assessment tools.

Current advancements in the field of machine learning
provide opportunities for the development of sophisticated
and automated parsing methods. Automatic Speech Recog-
nition (ASR) is a powerful and promising tool in this area.
Deep learning architectures, specifically transformer-based
models, have achieved state-of-the-art performance in a wide
variety of tasks, including ASR [21], [22]. However, the
performance of pre-trained ASR models significantly drops
in the presence of dysarthric speech [23]. A common prac-
tical approach for overcoming this issue is fine-tuning ASR
models with representative clinical data. Unfortunately, the
fine-tuning process requires large training corpora and the
logistical difficulties of clinical data collection and pri-
vacy concerns present serious barriers to adoption of these
approaches [13], [24].

Factors such as speech variability, articulation, audibility,
and accent can manifest different impacts on the performance
of ASR for dysarthric speech [25], bringing us to question
whether including the data of healthy individuals simulating

pathological speech can improve the performance of ASR
models. Moreover, research has shown that in facial analysis,
synthetic data can be as good, or sometimes even better than
real data for training/fine-tuning [26]. Establishing a similar
pattern in fine-tuning of audio datawould significantly reduce
the cost and effort of collecting impaired speech.

In this study, we propose an automatic speech segmen-
tation model that relies on ASR of dysarthric speech. For
this purpose, we sought to compare the performance of an
ASR system after fine-tuning with various types of relevant
speech data. Specifically, wewere interested in understanding
whether it is a requirement to use pathological voice data to
improve the performance of ASR systems on pathological
voice samples, or whether it would be possible to attain the
same effects using diverse, more-available speech samples
either from healthy individuals following standard clinical
procedures, or that have been synthesized using text-to-
speech (TTS). Particularly, we hypothesize that 1) fine-tuning
an ASR system with augmented clinical speech datasets
would improve its performance on dysarthric speech, mea-
sured using Word Error Rate/WER, and 2) our proposed
automatic speech segmentation model will achieve state-
of-the-art performance as quantified by intersection over
union (IoU) with manually parsed data.

II. METHODS
A. PARTICIPANTS AND DATA
We used three different datasets in this study. All three
datasets contain repetitions of a sentence ‘‘Buy Bobby a
Puppy’’ (BBP), which is a speech task commonly used during
an instrumental orofacial examination [27], [28].

The first dataset is a subset of speech recordings in the
extended TorontoNeuroFace dataset (TNF) [29]. The original
TNF contains video and audio data of 36 individuals perform-
ing various orofacial assessment tasks. For the purpose of this
study, only audio recordings of the BBP task were analysed.
We excluded 5 audio files from the original TNF due to back-
ground noise and/or chatter. The dataset was expanded with
additional speech data from 37 individuals collected using the
same protocol. The extended dataset (TNFx) contained the
audio files of 68 participants repeating BBP approximately
10 times (range 9 - 12) at a comfortable speaking rate and
loudness. This extended dataset included BBP repetitions
from 13 participants with ALS, 27 healthy control partici-
pants (HC), 13 post-stroke (PS) participants, 11 participants
with PD, 2 participants with primary lateral sclerosis (PLS),
and 2 participants with Kennedy’s disease (KD), with a
female:male ratio of 29:39. All audio files in this dataset were
manually parsed by a trained research assistant to indicate the
beginning and end of each BBP repetition. These parsed files
were used as the ground truth in this study.

In the compilation of the TNFx dataset, specific attention
was directed towards the delineation of dysarthria subtypes
corresponding to the varied neurological conditions repre-
sented. For the cohort ALS, dysarthria was predominantly
categorized as a mixed spastic/flaccid type, in alignment
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FIGURE 1. A general overview of our automatic speech segmentation model.

with typical ALS symptomatology [30]. Patients with PLS
were identified as exhibiting primarily spastic dysarthria,
consistent with the pathophysiology of PLS [31]. The dataset
also includes KD cases, characterized by flaccid dysarthria,
reflecting the neuromuscular impairments typical of KD [32].
PD cases within the dataset were characterized as hypokinetic
dysarthria as defined in [33] and [34]. The PS subgroup
within the dataset presented primarily a flaccid type, but a
formal evaluation of the dysarthria types for each of these
patients was not performed at this stage. The stratification
of dysarthria can be important in evaluating the efficacy of
ASR model across a spectrum of dysarthric manifestation,
particularly at the more advanced stages of the disease. For
the most part, the PS participants presented with a mild
dysarthria only.

The second dataset contains the audio recordings of 21 par-
ticipants aged 18 to 45, with a female:male ratio of 15:6,
with no history of speech or other neurological disorders,
no cognitive impairments, and representing various ethnici-
ties. Participants in this dataset were asked to repeat the BBP
sentence using each the following instructions:

1) at the normal speaking volume and rate,
2) at the normal volume and approximately twice the nor-

mal speaking rate,
3) at the normal volume and approximately half the normal

speaking rate, and
4) at a loud volume and with the normal speaking rate.

In each case, participants were asked to repeat the BBP
phrase approximately 5 times with a short pause between
consecutive repetitions (range 4-6 repetitions). This was part
of a larger data collection protocol and not all tasks were
performed by all participants. We excluded 1 participant
from our study due to all BBP files of the person not being
available. This dataset was collected online and via a web
application (App). More details regarding the complete App
dataset can be found in [18].
The third dataset used in this study consists of 3,663

artificially produced human voices using Google text-to-
speech (TTS) tool and Tacotron2 [35]. The TTS tool was
used to generate synthetic voices of men and women, with
55 various accents repeating the phrase BBP 1-3 times with
normal volume and 3 speaking rates: slow, normal, and fast.
We only included up to three repetitions to save the cost of
training long audio sequences while preserving repetition in
speech data.

TABLE 1. Demographic information of participants in all datasets.

Table 1 summarizes the number of participants and audio
recordings in all three datasets (TNFx, App, and TTS).

B. AUTOMATIC SPEECH RECOGNITION (ASR)
We used audio transcriptions to count the numbers of BBP
repetitions in each speech file. To obtain text transcriptions
from audio waveforms, we employed the pre-trained as well
as fine-tunedWav2Vec 2.0 (W2V) [21] ASR system. W2V is
a framework for self-supervised training that can be broken
down into feature encoder, contextualised representation, and
quantisation module [36]. The W2V framework exploits the
Connectionist Temporal Classification (CTC) [37] loss for
training. We used a large W2V model that was trained on
pseudo-labeled data [38] and is publicly available in the
HuggingFace1 repository.We further fine-tuned the model on
7 different subsets of the available datasets to observewhether
our augmentation techniques could improve the performance.
throughout this study, ‘ADT’ refers to ‘All Disease Types’.
The pre-trained model was fine-tuned on

(i) 22 speech files selected from a subset of TNFx which
only included HC data (TNFx–HC),

(ii) 44 speech files from all disease types within TNFx

(TNFx–ADT),
(iii) all speech files from App dataset (App),
(iv) all synthesized speech files from TTS dataset (TTS),
(v) combination of i and iv (TTS + TNFx–HC),
(vi) combination of ii and iv (TTS + TNFx–ADT), and
(vii) combination of iii and iv (TTS + App)

In our study, ASR model’s input consisted of various
speech recordings of a single sentence (BBP). These record-
ings included speech from different individuals, encompass-
ing a range of speaking conditions and neurological states.
The primary output of the ASR model was the accurate tran-
scription of these BBP repetitions (as depicted in Figure 1).

1https://huggingface.co
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TABLE 2. Evaluation results of ASRs on held-out test sets. WER: Word error rate. IoU: Intersection over Union. CCA: Correct Count Accuracy. (mean ±

standard deviation).

C. SEQUENCE-TO-SEQUENCE ALIGNMENT
We used Dynamic Time Warping (DTW) [39] to efficiently
compute the alignment between two variable-length BBP
speech files, i.e. the reference and target. DTW is robust
to temporal dilations and shifts of the audio signals and,
unlike other approaches like hiddenMarkov models, does not
require careful design and training [40]. The reference speech
data was selected from an HC audio file in TNFx which was
excluded from train/test sets. By cropping and concatenating
this audio file, we created 13 speech files that had 1 to
13 BBP repetitions. The 13 audio files were then manually
parsed. After identifying the correct count using ASR, the
corresponding reference file with the same repetition count
was aligned with the target speech using DTW.

In order to align reference and target speech, we followed
common practice [41] by converting the audio data to their
mel frequency cepstral coefficients (MFCC) representation
and performed feature matching using DTW. As a pre-
processing step, we performed peak normalization on test
set audio files, and normalized the MFCC vectors to have a
mean of 0, and a standard deviation of 1. The pre-processing
step was performed to mitigate the amplitude (loudness)
dependency in the reference and target audio, as well as to
bring the time-domain signal frames into comparable/similar
ranges [42].
In this step, we utilized the transcribed output from the

ASRmodel to quantify the repetitions of BBP. This repetition
count was crucial for pinpointing the correct reference audio
that needed to be sequentially aligned with the target audio.
The result of this sequence-to-sequence alignment process
was a set of temporally segmented audio files. Each file was
marked with precise start and end timestamps, identifying the
duration of each BBP repetition (as illustrated in Figure 1).

D. EVALUATION
The bootstrap resampling is a popular technique in ASR
evaluation [43]. This resamplingmethodwas used to generate
the training and test set pairs. We only selected the test sets
from TNFx as it contains speech files from a variety of
neurological diseases and can generalize the performance of
the models. We created 3 bootstrap test sets by sampling with
replacement. To ensure that train and test sets are balanced,

we randomly selected 5 speech files from HC, ALS, PD,
PS and included all KD and PLS speech files (2 from each
disease category) in each test set; this resulted in train-test
split ratio of 65:35.

The performance of each model was evaluated using three
metrics: WER, to measure the ASR accuracy, correct count
accuracy, which is the percentage of BBP recordings in
which the number of repetitions is counted correctly, and the
IoU, which measures the alignment between predicted and
manually parsed repetitions.

E. STATISTICAL ANALYSIS
We performed one-way ANOVAs on the values of each of
the three metrics (IoU, CCA, and WER) to evaluate whether
there were differences between data augmentation condi-
tions. In cases where there were significant main effects,
post-hoc testing was performed using Tukey’s honestly sig-
nificant differences (HSD) test.

III. RESULTS
Table 2 compares the test performance of pre-trained W2V
model versus when it is fine-tuned on various sets con-
taining healthy, pathological, emulated, and synthetic data.
The top two best performing models were fine-tuned on
1) TTS + TNFx–ADT and 2) TTS + App.
Tables 3, 4, 5 show the breakdown of correct count accu-

racy, WER, and IoU performance per each neurological
disease category, respectively.

One-way ANOVA test revealed significant differences
among the training sets for all metrics, with IoU show-
ing the most substantial variability ((F − value = 567.80,
p < 0.0001), followed by WER (F − value = 201.53,
p < 0.0001), and CCR (F − value = 30.75, p < 0.0001).
Post-hoc testing using Tukey’s HSD in IoU metric indicated
significant pairwise differences between top performing
models App (mean = 88.46, SD = 1.60), TTS + TNFx–
ADT (mean = 89.15, SD = 1.85), and TTS + App (mean =

89.62, SD = 1.80) and the rest of training sets. For CCA
andWER, significant differences were mainly noted between
pretrained and fine-tuned ASR models (a and rest of training
sets). We concentrated on IoU metric as it represents the
performance of our proposed end-to-end model, as opposed

VOLUME 12, 2024 385



S. A. Naeini et al.: Improving Dysarthric Speech Segmentation With Emulated and Synthetic Augmentation

TABLE 3. Breakdown of % Correct Count Accuracy per disease category (mean ± standard deviation).

TABLE 4. Breakdown of % WER per disease category (mean ± standard deviation).

TABLE 5. Breakdown of % IoU per disease category (mean ± standard deviation).

to the other metrics that only demonstrate the performance
of the ASR portion. Figure 2 shows the mean differences
between each pair of training sets with their confidence
intervals for IoU metric.

IV. DISCUSSION
This study demonstrated that combining an ASR model
together with a sequence-to-sequence alignment technique,
such as DTW, can provide reliable and accurate automatic
speech segmentation, leading to strong performance boost.
Top performingmodels in Table 2 (after fine-tuning) achieved
IoU values close to 90%. This is a minimum of 25% IoU
increase from our previous study [20] which used video data
to parse repetitions. These results highlight the value in using
representative data to improve ASR performance.

Observing the results in Tables 2-5, using synthetic data
alone led to a significant performance improvement, and
combining it with a relatively small real dataset led to
state-of-the art performance in all disease categories. It is
clear that fine-tuning the W2V model using our proposed
augmentationmethods can significantly improve its ASR per-
formance for dysarthric speech and allow for better extraction
of speech features from audio samples with repetition. This
work presents an important step toward developing auto-
mated remote assessment tools for diagnosis and tracking of
neurological disorders, and is significant as there is an urgent
need in healthcare to adapt such tools [44].

By taking a closer look at Table 2, the network fine-tuned
with control (App) and synthetic (TTS) augmentation data
(TTS + App) outperformed the one fine-tuned on only
real data, either healthy (TNFx–HC) or real pathological
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FIGURE 2. Tukey Honest Significant Differences (HSD) test results for IoU. This figure represents the groups being compared where axes
correspond to training sets in table 2. The numbers indicate the mean difference for each comparison, and the circles represent the
confidence intervals. The red circles indicate insignificant difference between two groups.

data (TNFx–ADT), and had equal performance when
fine-tuned on the combination of real and synthesized speech
(TTS + TNFx–ADT). The best models achieved average
WER of less than 6%, mean IoU of more than 89%, and
mean correct count accuracy of over 94%. This is inline
with the statistical analysis performed on training sets where
W2V Fine-tuned on App, TTS + TNFx–ADT, and TTS +

App showed a statistically significant higher performance
compared to the rest of training sets. The results of this
analysis indicate the importance of combining dysarthric and
augmented data for performance boost.

Our results demonstrate that for the purpose of fine-tuning
ASR models and enhancing dysarthric speech segmenta-
tion it is beneficial to introduce additional variability into
the fine-tuning dataset, in order to improve performance
without requiring the complex collection of clinical data
for fine-tuning purposes. It is important, however, to note
that our approach focused on partial emulation of simple
dysarthric symptoms and not on replicating the full com-
plexity of dysarthric speech. This approach aligned with a

previous study, where similarly simulated dysarthric speech
served as an augmentation strategy [45]. This approach can
significantly reduce the need for extensive collections of
real pathological speech from individuals with neurological
diseases.

Results in Tables 3, 4, 5 show that in 4 out of 5 disease
categories, the top two models were able to correctly count
the BBP repetitions more than 90% of the time, and that the
percentage in the remaining category (PD) was 86.7%. This is
inline with previous research [46] as ASR performance in PD
is usually poor due to the presence of hypokinetic dysarthria
which is associated with quiet, slow, but sometimes rapid,
and mumbling speech. In addition, for the top two models, %
WER is lowest for KD, HC, and ALS, respectively. The best
performing models also had % IoU above 80% in all disease
categories, demonstrating high temporal segmentation match
with ground truth annotation.

Audio parsing can provide insight into the specific type and
severity of dysarthria a patient is experiencing. For instance,
the speaking rate, which is a well-accepted objective measure
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of dysarthria [47], [48], can be estimated by obtaining parsing
information. Audio parsing can also be used to segment and
analyze recordings of patients performing language tasks
that allow for the assessment of various linguistic features,
including phonology, syntax, and semantics [49]. These anal-
yses offer insights into the effectiveness of rehabilitative
therapies for neurological patients by tracking their progress
over time, serving as a valuable tool in the rehabilitation
process. As these analyses are automated, they also contribute
to the advancements in tele-health and remote assessment of
patients.

In this study, we categorized our findings by disease type,
recognizing the potential overlaps in dysarthric presentations
between different diseases, such as ALS and PS. While we
have elaborated on the dysarthria types associated with each
disease category in our Methods section, it is important
to acknowledge that the TNFx dataset did not specifically
classify speech samples by dysarthria subtype in PS cases.
This presents a constraint in our analysis, as it may not
fully capture the nuances of subtype-specific dysarthric char-
acteristics. Future work in this field should aim to collect
and categorize speech datasets based on detailed dysarthria
subtypes to enhance the clinical applicability of ASRmodels.

A limitation of this study was the analysis of only a single
speech task, ‘Buy Bobby a Puppy’, which was utilized as
a key element in evaluating our proposed methodology for
dysarthric speech analysis. This sentence was selected due to
its mix of phonetic components, including both voiced and
unvoiced consonants, as well as high and low vowels and
diphthongs. It is often used in dysarthria research as it offers
some advantages in segmentation (i.e., has easily identifiable
boundaries) [18], [50]. While our research focused on this
single sentence to enable a clear and controlled comparison
of the methodology’s efficacy, we recognize the importance
of generalizability in speech analysis. Future research could
build upon this foundation by incorporating a broader spec-
trum of phrases and linguistic variations, thus extending the
applicability and robustness of our methodology to a wider
range of dysarthric speech patterns.

Another limitation of this studywas the use of a single ASR
model (i.e W2V). While we acknowledge that comparing our
results with newer models could be insightful, we consider
this to be a potential area for future research. Extensions of
the methods presented in our study could indeed be applied
to newer models, providing a valuable direction for subse-
quent investigations. This current study, however, focuses on
demonstrating the significant impact of training data variabil-
ity and composition on the performance of a well-established
ASR model.

Additionally, this study employed a relatively small sam-
ple size, which was due to difficulties associated with
in-person data collections during the COVID-19 pandemic.
Even though the small datasets led to a good performance,
there still remains the question of whether there is an
optimal amount of data for obtaining best results (and
what the optimal amount is). Future studies could answer

this by comparing the effect of fine-tuning using different
amounts of HC and clinical data to help establish the optimal
sample size.

V. CONCLUSION AND FUTURE WORK
This study demonstrated the feasibility of using emulated
and synthetic pathological speech as an augmentation strat-
egy to improve dysarthric speech segmentation in people
with neurological diseases. Future work will focus on further
refining the algorithm, expanding its dataset compatibility,
and enhancing its adaptability to a diverse range of speech
patterns. These efforts aim to evolve the current framework
into a more universally applicable solution, bridging the gap
between theoretical development and practical application in
dysarthric ASR technology, resulting in minimal real neuro-
logical data for training.
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