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ABSTRACT Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding
in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses
on utilizing various network architectures with different types of neurons to exploit the temporal, spectral,
or spatial information from EEG for classification. However, most studies fail to take full advantage of
the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel
and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS
information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme
approximately simulates the biological neural connection structures based on spiking neurons and a new
fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our
designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN
scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and
MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the
related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based
emotion recognition.

INDEX TERMS Electroencephalogram, fractal spiking neural network, inverted drop-path, emotion
recognition.
Clinical and Translational Impact Statement— The proposed scheme provides a promising solution for
EEG-based emotion recognition, which not only can aid in the diagnosis and treatment of mental disorders,
but also can assist in the nursing and healthcare during postoperative rehabilitation.

I. INTRODUCTION
Recognizing emotions automatically and accurately not only
can aid in diagnosis and treatment of mental disorders, but
also can assist in nursing and healthcare during postopera-
tive rehabilitation. Generally, signals available for emotion
recognition can be categorized into external and internal ones.
External signals mainly include expression, speech, behavior,
and so on. Internal signals primarily refer to physiological
signals, such as Electroencephalogram (EEG) and Electro-
cardiogram (ECG). Exterior signals have the merits of being
intuitive and easily accessible. However, exterior signals may
be unreliable if individuals deliberately conceal their emo-
tions. In contrast, interior signals are difficult to feign or
counterfeit, which can provide reliable evidence for emotion
recognition. EEG, as one kind of interior signal, usually

has different morphologies under different human emotional
states [1]. Besides, EEG is a measurement of neural activity,
which is closely related to human emotions. Therefore, EEG
is a highly reliable physiological cue for emotion recognition.

In recent years, there have been notable advancements
in the field of EEG-based emotion recognition. Cui et al.
[2] put forward a Regional-Asymmetric Convolutional Neu-
ral Network (RACNN), which is capable of extracting
spatio-temporal information, for emotion recognition. Li
et al. [3] brought forward a Bi-hemisphere Domain Adver-
sarial Neural Network (BiDANN), which encompasses a
global domain and two local domains of discriminators that
work adversarially with a classifier, to learn discriminative
EEG features for emotion classification. Wang et al. [4]
put forth a hybrid Spatial-Temporal Feature Fusion Neural
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Network (STFFNN), which is composed of CNN, feedfor-
ward network and bidirectional Long Short-Term Memory
(Bi-LSTM), to extract spatial-temporal features from EEG
and integrate complementary information from these features
to recognize emotions. Zhong et al. [5] brought forth a Reg-
ularized Graph Neural Network (RGNN), which effectively
captures both local and global relationships between EEG
channels, for recognizing emotions. Li et al. [6] put up a
Bi-Stream MLP-SA Mixer (BiSMSM), which captures EEG
features from spatial, temporal, local and global perspectives,
for classifying emotions. Peng et al. [7] brought up a temporal
self-attention mechanism and a channel self-attention mech-
anism, which can utilize the temporal and spatial information
of EEG signals, to classify emotions.

In addition to the above research, some researchers have
also used biologically-inspired neural networks to recog-
nize emotions from EEG. Typically, Spiking Neural Network
(SNN) employs spiking neurons with temporal dynamics to
construct the network with robustness for spatio-temporal
feature exploring and asynchronous event processing [8], [9],
[10]. Existing research has already demonstrated the capacity
of SNN to extract the spatio-temporal representation from
EEG [11], [12], [13]. For instance, Kasabov [8] devised
a unified computational framework based on an unsuper-
vised 3D evolving SNN architecture, which is named as
NeuCube; NeuCube allows for the integrative modeling and
learning of various spatial- and spectral-temporal brain data.
Luo et al. [11] extracted frequency features from EEG, then
transformed the features into spike sequences through the
step-coding rule, and finally employed Neucube to learn the
discriminative representation from these features. Alzhrani
et al. [12] presented a Brain-Inspired SpikingNeural Network
(BISNN) architecture to classify emotional states, and to
visualize the spatial-temporal relationships between the EEG
channels in a 3D SNN model. Tan et al. [13] came up with a
short-term emotion recognition framework, which can extract
the spatio-temporal spiking pattern features from EEG in the
trained SNN reservoir for classification.

In summary, many studies suggest that the Temporal-
Spectral-Spatial (TSS) information in EEG is useful for
emotion classification. Nevertheless, they only pay attention
to such information at one single scale rather than themultiple
scales, which may provide more assisting power for the issue
of EEG-based emotion recognition. Considering this, in our
paper, we propose a new and effective method, Fractal-SNN
scheme, to exploit the multi-scale TSS information for the
issue. In brief, the main contributions and innovations of this
work are as follows:

• We propose a novel method, the Fractal-SNN scheme,
which can effectively exploit the multi-scale TSS infor-
mation in EEG for emotion recognition.

• We design an F2(•) block based on Axon and Soma
operations to approximately simulate biological neural
connection structures. We generalize the F2(•) block
into the Fractal-SNN block Fc(•) via a new fractal
rule.

FIGURE 1. Framework of fractal spiking neural network (Fractal-SNN)
scheme, which consists of five components: feature extractor, multi-head
attention module, Fractal-SNN block, dimensionality reduction module
and classifier. In this figure, Fractal-SNN block Fc (•) is generated by a
new fractal expansion rule, which will be introduced in Section II-D.3.
And, we show two specific examples of F2(•) and F3(•). To facilitate
comprehension of the concept of ‘‘sub-networks with different path
lengths’’ within the block, we distinguish the three paths in the F3(•) by
three different background colors (i.e., green, red, and gray). The
operations (e.g., Axon(•) and Soma(•).) traversed by these three paths
respectively comprise ‘‘three sub-networks with different path lengths’’.
Note that the paths shown in the figure are the specific cases, and the
actual path depends on the inverted-drop path technique in the
Sum Layer , which will be introduced in Section II-D.4.

• We devise a training technique, inverted drop-path, for
Fc(•) block. Attributing to this technique, the block
can learn different TSS information from EEG features
based on different sub-networks in the training phase.

• Our experiments on the benchmark databases
DREAMER, DEAP, SEED-IV and MPED sufficiently
demonstrate the effectiveness of the Fractal-SNN
scheme for EEG-based emotion recognition.

II. METHODS
The whole framework of the Fractal-SNN scheme has been
illustrated in Fig. 1. In brief, the procedures of the Fractal-
SNN scheme are as follows: firstly, we extract the TSS feature
matrix from multi-channel EEG signals; next, we input the
feature matrix into the multi-head attention module to obtain
the weighted feature matrix; then, we feed the weighted
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feature matrix into the Fractal-SNN block to acquire the
high-level TSS feature matrix from different channels; after-
ward, we reduce the dimensions of the high-level feature
matrix; finally, we utilize the softmax function for emotion
classification.

A. FEATURE EXTRACTION
DREAMER [14] and DEAP [15] contain the raw EEG sig-
nals, while SEED-IV [16] and MPED [17] contain the EEG
features. Thus, it is imperative to extract features from EEG
in DREAMER and DEAP at first. Before extracting features,
we preprocess the EEG signals in the following way: we
select the signal intervals in the last 60 seconds of each EEG
at first, and then process the signals with a 4∼60 Hz bandpass
filter; after that, we perform z–score normalization on the
filtered signal data. We denote Preprocessed EEG (PE) as
XPE

∈ Rs×m, where s is the sampling point number per
channel of EEG, and m is the number of EEG channels.
We extract features from the PE of each channel. For

temporal-spectral features, we first segment the PE into EEG
segments using a sliding window method with a window
length of 1 second and a step size of 0.5 second. For each
EEG segment, we extract Power Spectral Density (PSD) and
Differential Entropy (DE) features in four frequency bands:
θ band (4∼8 Hz), α band (8∼14 Hz), β band (14∼30 Hz)
and γ band (30∼45 Hz). We concatenate the features of each
segment from four frequency bands into the four long fea-
ture vectors according to the order of the original segments,
respectively. Finally, the four feature vectors are further con-
catenated in the order of θ , α, β and γ . After extracting
the temporal-spectral features from all channels, XPE is con-
verted into a feature matrix X feat

∈ Rn×m containing TSS
information, where n denotes the feature number per channel
of EEG.

B. MULTI-HEAD SELF-ATTENTION MODULE
The multi-head self-attention module is widely used in the
field of emotion recognition [6], [7]. Based on the self-
attention mechanism, this module extracts features from
sequence data and effectively captures dependencies within
the data. In the Fractal-SNN scheme, we make use of the
multi-head self-attentionmodule to adaptively assign weights
to the EEG features of each channel.

Let X feat
= (xfeat[1]T , . . . , xfeat[i]T , . . . , xfeat[m]T ) ∈

Rn×m be the EEG feature matrix, where xfeat[i]T =

(xfeat1 [i], . . . , xfeatn [i])T ∈ Rn is the feature vector in channel
i, n denotes the feature length per channel of EEG, and m
denotes the number of EEG channels. Supposing that the
multi-head self-attention module has h heads, the feature
vector xfeat[i]T will be divided into h parts (i.e., xfeat[i]T =

(xfeat
α1 [i], . . . , xfeat

αh
[i])T ). Then the input of attention head α

is xfeatα [i]T = (xfeatα1
[i], . . . , xfeatαn/h

[i])T ∈ Rn/h, where α =

α1, . . . , αh. The output xα[i] of each attention head is cal-
culated by

xα[i]T = f (qiα, kiα, viα), (1)

where qiα = W (q)
α xfeatα [i]T , kiα = W (k)

α xfeatα [i]T and viα =

W (v)
α xfeatα [i]T ; W (q)

α ,W (k)
α ,W (v)

α ∈ Rn/h×n/h are the learnable
weight matrices; f (•) represents the attention pooling, i.e., the
scaled dot-product attention:

f (qiα, kiα, viα) = softmax(
qiαkTiα
√
n/h

)viα. (2)

Then for channel i, the output of the multi-head self-
attention module is x[i]T = Wio(xα1 [i], . . . , xαh [i])

T
∈

Rn, where Wio ∈ Rn×n denotes the linear transformation
matrix. Therefore, the output matrix after the input X feat

passes through the multi-head self-attention module is X =

(x[1]T , . . . , x[i]T , . . . , x[m]T ) ∈ Rn×m.

C. SPIKING NEURON MODEL
For SNN, there are mainly two types of spiking encoding
techniques: rate coding and temporal coding [18]. Rate cod-
ing, which is the representation of spike counts in a time
window, only considers the statistics of spike activity. The
SNN models based on rate coding are incompetent to learn
the sequence structure information in the signals. However,
in many fields including EEG-based emotion recognition,
the spike timing and sequence structure of spike trains also
contain the useful information [19]. Hence, we make use
of temporal coding, which encodes the signals by precise
spike timing, to represent the sequence structure informa-
tion in EEG. Besides, we take advantage of Infinite Impulse
Response formulated SNN (IIR-formulated SNN) [10] to
capture the spatio-temporal sequence information in EEG
signals. Dirac delta function is widely used to model the input
into the neurons of SNN, because this function is simple
and effective to represent the spike timing and the sequence
structure of the input.

Let the input spike trains from the presynaptic neuron b
be a sequence of time-shifted Dirac delta functions: xb =∑

k δ(t − tfirkb ), in which t
fir
kb denotes the k th spike arrival time

from the presynaptic neuron b, and ya =
∑

l δ(t − tfirla )
denotes the output spike trains from the neuron a. Thus, the
SNN model is reformulated as the linear constant-coefficient
difference equations:

va[t] = −λra[t] +

∑
b∈0a

wbafb[t], (3)

ra[t] = e
−1
τr ra[t − 1] + Vrestya[t], (4)

fb[t] = α1fb[t − 1] + α2fb[t − 2] + βxb[t], (5)

where va[t] is the membrane potential of the neuron a; ra[t]
represents the reset filter of the neuron a; fb[t] represents the
synapse filter b, which is a second order IIR filter; wab is the
learnable synaptic weight between synapse a and neuron b;
xb[t] denotes the bth input of synapse filter; α1 = e

−1
τm + e

−1
τs ,

α2 = −e−
τm+τs
τmτs , and β = e

−1
τm − e

−1
τs .

Let Axon(•) represent the operation of transmitting data
to the next neuron. This operation can be simulated by the
second-order exponential IIR filter in Eq. 5. Let Soma(•)
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FIGURE 2. The SNN model constructed from infinite impulse response
filters is divided into two sub-layers in this paper: Axon and Soma. Axon
contains b synapses, while Soma contains a neurons. There are
connections between all synapses and neurons, and the connection
strength is represented by the synaptic weight. For instance, the synaptic
weight between synapse b and neuron a is denoted as wba. And, the
calculation mechanism of synapses and neurons is also illustrated in the
figure, where Delayer means delaying the sequence data by one unit.

represent the behavior of neurons updating the membrane
potential and firing spikes. Specifically, the neuron’s mem-
brane potential va[t] is updated through Soma(•), as shown
in Eq. 3-4. At the same time, if the membrane potential va[t]
in the neuron a exceeds a certain threshold Vthre, Soma(•) will
produce an output spike ya[t] as

ya[t] = U (va[t] − Vthre), (6)

where U (•) represents the Heaviside step function. There-
fore, the SNN model simulated by the IIR filters can be split
into two operations: Axon(•) and Soma(•), as shown in Fig. 2

D. FRACTAL SPIKING NEURAL NETWORK BLOCK
Many studies have shown that the correlation between EEG
channels is beneficial for emotion recognition [20], [21],
[22]. Generally speaking, these methods involve the specific
modules to capture the correlation information between EEG
channels. Inspired by these methods, we design a block based
on spiking neurons to exploit the multi-scale TSS information
in EEG features across different channels.

To this end, we design an SNNmodel F2(•) with two path-
ways and describe the forward propagation in F2(•). Then,
we integrate F2(•) with the fractal structure to develop a more
generalized Fractal-SNN block Fc(•), and also equip this
block with the suitable training technique. Finally, we elu-
cidate the learning mechanism of the Fractal-SNN block.

1) DESIGN MOTIVATION
Advanced neural activities, such as cognition, learning, mem-
ory, and intelligence, rely on the cooperation and regulation
of the brain components with different functions. Inspired by

FIGURE 3. Neural analogue of F2(•) block. The left part of the figure
exhibits a connection structure consisting of three biological neurons,
while the right part displays the modeling of this connection structure
using two operations (Axon and Soma) in the spiking neuron. To better
illustrate the relationship between the two parts of the figure, we provide
an example in the right figure: each of Axon and Soma operations
contains only one synapse and one neuron, just like the specific case of
Fig. 2 where there is only one synaptic weight.

this biological mechanism, we use Axon and Soma operations
to model different functional modules, as shown in Fig. 3. In
some sense, the working mechanism of the designed SNN
model F2(•) block can be compared to the above biologi-
cal mechanism: two sub-networks with different ‘‘lengths’’
of paths have different functional characteristics, but their
outputs can be fused before being transmitted to the target
neuron a.

2) F2(•) BLOCK
Fig. 3 illustrates a neurobiological analogy, in which Axon
contains a synapse and Soma contains a neuron. In the calcu-
lation process, each of Axon and Soma contains n synapses
and n neurons, where n is the number of features of each
channel, as shown in Fig. 4. We denote the set containing
neurons bj as B, the set containing neurons dj as D, and the
set containing neurons aj as A, where j = 1, . . . , n. We use
the output of set B as the input of F2(•) block, and use the
input of set A as the output of F2(•) block.
The input of the F2(•) block can be described as XB =

(xb[1]T , . . . , xb[i]T , . . . , xb[m]T ) = (xb1 , . . . , xbj , . . . , xbn )
T

∈

Rn×m, where xb[i]T ∈ Rn is a feature vector in channel i and
xbj ∈ Rm is a channel sequence formed by selecting the jth

feature from each of the m feature vectors. The input XB of
the F2(•) block is then transmitted along two paths, namely
Path-1 and Path-2, to the neurons in set A.

For Path-1, the input XB passes through Axon(•). And the
change in the synapse bj is expressed as

fbj [i] = α1fbj [i− 1] + α2fbj [i− 2] + βxbj [i], (7)

where i = 1, . . . ,m, and fbj [−1] and fbj [0] are initial-
ized as zeros. The output sequence of synapse bj is fbj =

(fbj [1], . . . , fbj [i], . . . , fbj [m])
T

∈ Rm. All synapses operate
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FIGURE 4. Forward propagation of F2(•) block with n synapses in Axon
and n neurons in Soma. In the figure, the neurons of set B can transmit
signals to the neurons of set A along two different paths, where Path-1 is
represented by black arrow lines, and Path-2 is represented by red arrow
lines.

on their own input channel sequence according to Eq. 7. As
a result, we obtain the output matrix OB = Axon(XB) =

(fb1 , . . . , fbj , . . . , fbn )
T

= (fb[1]T , . . . , fb[i]T , . . . , fb[m]T ) ∈

Rn×m. Here, fb[i]T ∈ Rn denotes the feature vector in chan-
nel i. Subsequently,OB is input into the neuron setD. Soma(•)
operation assigns n × n learnable synaptic weights to the n
synapses connected to the n neurons in set D. All synaptic
weights are stacked into the matrix WBD ∈ Rn×n. Thus,
we can calculate the membrane potential vector vd [i]T ∈ Rn

of set D by

vd [i]T = −λrd [i]T +WBDfb[i]T , (8)

where rd [i]T ∈ Rn denotes the reset membrane potential
vector of setD. Then, Soma(•) judges whether the membrane
potential of the neuron dj in set D satisfies the condition for
sending a spiking sequence xdj = (xdj [1], . . . , xdj [m])

T
∈ Rm

to the synapse dj via

xdj = U (vdj − vthre), (9)

where vthre ∈ Rm is an all-ones vector multiplied by the scalar
coefficient Vthre. Afterward, the reset membrane potential
rdj [i] in channel i for the neuron dj in set D is updated by
taking into account two items: the reset membrane potential
rdj [i − 1] in channel i − 1 and the output xdj [i] of neuron dj
in channel i. The reset process is formulated by

rdj [i] = e
−1
τr rdj [i− 1] + Vrestxdj [i], (10)

where rdj [0] is initialized as zero and Vrest is a scalar coeffi-
cient. After completing the calculations in Soma, we can get
the output XD = (xd1 , . . . , xdj , . . . , xdn )

T
∈ Rn×m of set D,

FIGURE 5. Expansion rule of the Fractal-SNN block.

where xdj ∈ Rm is the output channel sequence of neuron dj
in set B. When XD passes through the second Axon(•), we can
obtain the output matrix OD = Axon(XD).
For Path-2, after the input XB passes through the single

Axon(•), we can obtain the output matrix OB′ = Axon(XB).
After completing all the calculations along both pathways,
we can acquire the output of F2(•) block as OS = F2(XB) =

OB′ + OD, which will be input into the set A.

3) FRACTAL-SNN BLOCK
We simulate the neural connection structure in the brain using
F2(•) block in a concise manner. However, the brain contains
a vast number of neurons that are connected in complex
ways. Inspired by assumed fractal structures of brain [23],
we further expand the structure of F2(•) by a new fractal
rule. Actually, fractal structures have been widely used in
the networks [24], [25]. These studies validate the potential
value of fractals in enhancing the representational power and
performance of neural networks.

Let Fc(•) be the Fractal-SNN block, then the expansion
rule of the Fractal-SNN block can be illustrated in Fig. 5,
in which Fc(X ) and Fc+1(X ) are the structures of the cth and
(c+ 1)th iterations of the fractal block, respectively. The new
expansion rule is defined as

F1(X ) = Axon(X ), (11)

Fc+1(X ) = Sum {(Fc ◦ Soma ◦ Fc)(X ),Axon(X )} , (12)

where X and F(X ) denote the input and output of the Fractal-
SNN block, respectively; Sum{•, •} means the element-wise
sum; ◦ represents the function composition. According to this
fractal rule, we can easily infer that the F2(•) block is actually
a model generated by this rule, especially for the case of
c= 2. The instantiation of F3(•) has been illustrated in Fig. 1.
In greater detail, we have described the forward calculation
process of F2(•) block. Without loss of generality, the output
of F2(•) can be extended to the output of Fc(•).

4) INVERTED DROP-PATH TECHNIQUE
Inspired by the inverted drop-out technique (i.e., a variant of
the dropout technique [26]) and the drop-path technique [24],
we design a new inverted drop-path technique for the Fractal-
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SNN block to enhance its generalization ability. This tech-
nique works at the Sum Layer of the fractal block in the
training phase. The inverted drop-path technique randomly
deactivates part of sub-paths at Sum Layer with a certain
probability p, and multiplies the output of each active path
with 1/(1−p). With the inverted drop-path technique, scaling
is applied in the training phase, but not applied in the test-
ing phase. With a normal drop-path technique in the testing
phase, the actual value of output is larger than the expectation
in training. Therefore, the inverted drop-path technique is
beneficial for improving the generalization performance of
the Fractal-SNN block. Suppose that there are a total of k
paths in the Fractal-SNN block, the input from the ck path
to the Sum Layer is Ock , and the inverted drop-path rate is
p = P(8 = 0), in which the random variable 8 satisfies
the Bernoulli distribution and P denotes the probability for
φ = 0. Thus, the output O of Sum Layer is

O = Sum{8Oc1 , . . . , 8Ock }/(1 − p). (13)

5) MECHANISM OF FRACTAL-SNN BLOCK
The inverted drop-path technique, through the random deac-
tivation of a portion of the path during the training phase,
allows for the training of various sub-networks within the
Fractal-SNN block in training instances. These sub-networks
exhibit paths of different lengths and possess varying degrees
of feature representation capability. Upon completion of the
training process, these sub-networks collaborate to exploit
the multi-scale TSS information of the data. Therefore, the
Fractal-SNN block with a group of long and short paths
implicitly benefits from the following mechanism: the deep
and shallow sub-networks can cooperate with each other to
adaptively exploit the complementary deep and shallow TSS
information from the complicated data, which is conducive
to the balance of discrimination and generalization abilities
of the learned block.

E. DIMENSIONALITY REDUCTION AND CLASSIFICATION
The inputs X ∈ Rn×m learned by the Fractal-SNN block form
the Fractal-SNN representation, e.g., Fc(X ) ∈ Rn×m, where
n is the feature vector dimension and m is the signal channel
number. Then, the data flow after the Fractal-SNN block is
as follows. Firstly, the Fractal-SNN representation flows into
Soma(•) to produce the output spike matrix Yo ∈ Rn1×m.
Next, the spike matrix Yo is fed into a linear layer, a leaky
ReLU layer, and another linear layer to reduce the dimen-
sionality of the features. Specifically, the first linear layer
increases the dimensionality of features of Yo to generate
Yo1 ∈ R2n1×m, which helps alleviate the loss of information
caused by the non-linear activation function [27]. The second
linear layer reduces the dimensionality of the features of Yo1
to generate Yo2 ∈ Rz×m, where z denotes the number of
categories to be classified. Afterward, a final linear layer
weights and sums the logits over all channels of Yo2, resulting
in the prediction vector yp ∈ Rz. Finally, this vector is

converted into a probability distribution through the softmax
layer for final classification.

III. EXPERIMENTS
A. EXPERIMENTAL SETUP
We evaluate our proposed Fractal-SNN scheme on four
public benchmark databases, DREAMER [14], DEAP [15],
SEED-IV [16], and MPED [17]. DREAMER contains
14-channel EEG signals. During data acquisition, 23 sub-
jects were watching 18 film clips. After this, the subjects
rated evaluation from 1 to 5 in the dimension of valence,
arousal, and dominance. DEAP contains 32-channel EEG
signals. During data acquisition, 32 subjects were watching
40 excerpts of music videos. After this, the subjects gave
evaluation values from 1 to 9 in the dimension of valence,
arousal, and dominance. Further, we separate the emotion
indicators into two classes for valence, arousal and domi-
nance, respectively. Specifically, we utilize the middle scale
as the threshold for labeling: if the scale is not less than the
threshold, the class label is set as ‘‘high’’, otherwise ‘‘low’’.
And, the middle scale is 3 for DREAMER and 5 for DEAP.
SEED-IV contains 62-channel EEG signals from 15 subjects
while they were watching 24 Chinese films. The films were
labeled for 4 discrete emotions (i.e., neutral, sad, fear, and
happy). MPED contains 62-channel EEG signals collected
from 23 subjects while they were watching 28 movies. The
movies were labeled for 7 discrete emotions (i.e., joy, funny,
anger, fear, disgust, sad and neutrality).

Two groups of experiments are conducted in this study: one
for the recognition of continuous emotions, such as arousal
and valence, and the other for the recognition of multiple
discrete emotions, such as happy, fear, and sad. DREAMER
and DEAP databases are utilized to evaluate the performance
of the proposed scheme for classifying of continuous emo-
tions, while SEED-IV and MPED databases are employed to
assess the performance of the scheme for classifying discrete
emotions.

For DREAMER and DEAP, considering the validity of
emotional information in EEG data, we use the signals cap-
tured in the last-60-second of each film clip, which has
also been recommended by the database establishers [14],
[15]. The evaluation protocols for Subject-Dependent (SD)
emotion recognition are described in the following. On
DREAMER, we adopt the 9-fold cross-validation protocol:
for the 18 samples of each subject, 16 samples are used as
the training data while the remaining 2 samples as the testing
data per fold, and the cross-validation results are further
averaged among all the 23 subjects as the final performance;
on DEAP, we adopt the 10-fold cross-validation protocol: for
the 40 samples of each subject, 36 samples are used as the
training data while the remaining 4 samples as the testing
data per fold, and the cross-validation results are further
averaged among all the 32 subjects as the final results. The
evaluation protocols for Subject-Independent (SI) emotion
recognition are described in the following. We adopt the
Leave-One-Subject-Out (LOSO) cross-validation protocol
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TABLE 1. Default parameter settings of the Fractal-SNN scheme.

for both DREAMER andDEAP: all samples from one subject
are used as the testing data while from the remaining sub-
jects as the training data in turn, and the validation results
are further averaged among all the subjects as the final
performance.

For SEED-IV andMPED,we directly use the EEG features
provided by databases. The SD protocols are adopted in the
experiments. To be more specific, on SEED-IV, we follow the
experimental settings in the original article [16] to use the first
16 trials for training and the remaining 8 trials that contain
all emotions for testing. On MPED, we adhere to Protocol
3 in the SD mode specified by the database establisher [17]
to divide the training and testing sets: 21 trials are used for
training and the remaining 7 trials containing all emotions are
used for testing.

All the experiments are conducted on the computer with
CPU of AMD Ryzen 7 5800X 8-Core Processor, GPU of
NVIDIA GeForce RTX 3080 Ti, and RAM of 32 GB.
In experiments, the Fractal-SNN scheme adopts the param-
eter settings in Table 1 by default, except those specified.

B. FEATURE EVALUATION
We compare the performance of our scheme with four feature
extraction methods, including PE, Temporal Encoding (TE)
[28], PSD and DE under the SD protocols on DREAMER
and DEAP. These methods convert EEG signals into various
forms of features, which enhance the hidden information in
the original signals from different perspectives. a) The PE
signals are the electrical signals expressed in the form of
time series, and the mean value of the signals is guaranteed
to be zero after preprocessing; b) TE features preserve the
information such as the time position, duration, and sequence
of EEG signals; c) PSD and DE features are more effective in
reflecting the periodicity and frequency distribution in data.
If the EEG signal is given to the model without undergoing
any preprocessing, the amplitude of the input signal that
is usually too large can present challenges in selecting an

TABLE 2. Evaluation on the features for the Fractal-SNN scheme on
DREAMER and DEAP (Accuracy / %).

FIGURE 6. Performance of the Fractal-SNN scheme with different
thresholds for spiking neurons on DREAMER and DEAP.

appropriate spiking neuron threshold. Without an appropri-
ate threshold, a significant number of spiking neurons may
become deactivated or activated during the training process,
making it difficult to optimize the model effectively. The
results have been shown in Table 2. From the results on
DREAMER, we can see that PSD features are beneficial
for our proposed scheme to acquire a superior performance
compared to the other features. From the results on DEAP,
we can find that PE signals are conducive to our scheme
to achieve an advantageous performance. By contrast, the
proposed scheme performs poorly based on the TE features
on both databases.

C. THRESHOLD SELECTION FOR SPIKING NEURONS
We investigate the impact of threshold Vthre for spiking neu-
rons on the performance of our scheme under the SD protocol
on DREAMER and DEAP, when using PSD features as the
input data. As shown in Fig. 6, when the threshold Vthre
increases from −0.5 to 0.5, we can notice that all the per-
formances of our scheme for valence classification, arousal
classification and dominance classification exhibit a general
trend on the two databases: the accuracy first increases and
then decreases. The reason behind this phenomenon is as
follows: when the threshold is too small, the spiking neurons
are easily to be activated, but the discrimination ability of
the model is weakened; when the threshold is too large,
the spiking neurons are difficult to be activated, and too
many inactivated neurons incline to cause a decline of model
classification performance. Furthermore, there exists small
difference between the performance trends on DREAMER
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TABLE 3. Evaluation on the Fractal-SNN block with different structures
on DREAMER and DEAP (Accuracy / %).

FIGURE 7. Evaluation on the sub-networks in the Fractal-SNN block on
DREAMER and DEAP (Accuracy / %).

and DEAP. This difference stems from the inherent dis-
crepancy of data distributions between these two databases.
Even so, when the threshold Vthre is around 0, our scheme
can consistently obtain relatively high performances on both
databases. Therefore, we recommend setting the threshold
Vthre to a value around 0.

D. FRACTAL ARCHITECTURE EVALUATION
At first, we evaluate the effect of the Fractal-SNN block with
different fractal structures on the performance of the proposed
scheme under the SD protocols on DREAMER and DEAP,
when using the PE as the input data. The results have been
provided in Table 3, from which we can see F3(•) is a better
choice than F1(•) and F2(•); and, when using F4(•) as the
Fractal-SNN block, the performance is degraded to a certain
extent compared with using F3(•). Moreover, F3(•) block
retains both F1(•) and F2(•) structures and does not have so
complicated structure as F4(•). The above results show that
appropriately increasing the complexity of the fractal block
structure is beneficial to enhancing the scheme performance,
but an over complex structure tends to bring about overfitting
for the scheme.

Then, we evaluate the sub-networks with only one path in
the F3(•) block and the block itself with all the paths. Here
we test three situations: Path-1, Path-2, and Path-3, which
respectively correspond to the three paths in the F3 (•) block
instantiation given in Fig 1. The results have been shown in
Fig. 7. From the results, we can see that the Fractal-SNN
block with all the paths performs better than one single path
on both databases. In greater detail, it is difficult to summarize
a fixed relationship between the performances of sub-network

TABLE 4. Evaluation on the Fractal-SNN block learned by different
drop-path techniques on DREAMER and DEAP (Accuracy / %).

and the ‘‘length’’ of paths. The main reason is as follows.
On the one hand, the long-path sub-network has advantage
in learning the deep, detailed and discriminative features
from signals; such kinds of features are usually strong in the
classification ability but probably weak in the generalization
ability. On the other hand, the short-path sub-network has
advantage in learning the robust, rough and representative
features from signals; such kinds of features are probably
weak in the classification ability but usually strong in the
generalization ability. An ideal feature learning block should
be good at both abilities. However, in practice, which ability
is more important for enhancing the sub-network perfor-
mance also depends on the actual conditions of task objective
and data distribution. Even so, the consistent superiority of
the Fractal-SNN block with all paths in different conditions
manifests that its fractal architecture is able to well balance
both classification and generalization abilities in EEG-based
emotion recognition.

E. INVERTED DROP-PATH TECHNIQUE EVALUATION
We evaluate the performance of the Fractal-SNN schemewith
different drop-path techniques under the SD protocols on
DREAMER and DEAP, when using the PE as the input data.
By default, the Fractal-SNN block is instantiated as F3(•),
and the inverted drop-path and original drop-path rate are set
to 0.15. The results have been provided in Table 4. It can be
seen from the results that, on both databases, the Fractal-SNN
scheme employing the inverted drop-path technique yields
superior performance compared to utilizing the drop-path
one, which also outperforms the case without using any drop-
path strategy. This is because the proposed scheme trained
without any drop-path strategy is easy to incur overfitting,
but the scheme trained with the inverted drop-path technique
obviously improves such a phenomenon. In other words, the
inverted drop-path technology can effectively enhance the
generalization ability of our scheme.

F. METHOD ABLATION
1) ABLATION ON MULTI-HEAD ATTENTION MODULE
We carry out an ablation study on the multi-head attention
module in the Fractal-SNN scheme under the SD protocol
on DREAMER. The goal of this study is to evaluate the
contribution of this module to the performance of our scheme
and probe into how different settings of this module influ-
ences the performance of the whole scheme. In the ablation
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TABLE 5. Ablation of the multi-head attention module on DREAMER
(Accuracy / %).

FIGURE 8. Different neural networks available to substitute for the
Fractal-SNN block in the proposed scheme.

study, we evaluate three variants of our scheme with differ-
ent configurations of the attention module. The first variant
is the scheme without any attention module; the second
variant is the scheme with the one-head attention module;
the third variant is the scheme with the four-head attention
module.

The results presented in Table 5 indicate that the scheme
with one single attention head has achieved the highest
classification performance in terms of both valence and
arousal indicators, with an accuracy rate of 71.01% and
78.50%, respectively. The scheme with four attention heads
has achieved the best classification performance in terms of
the dominance indicator, with an accuracy rate of 81.88%.
When the attention module is disabled, the scheme shows the
poorest performance. Based on these results, we can conclude
that the multi-head attention module plays an important role
in our proposed scheme for EEG-based emotion recognition.

2) ABLATION ON FRACTAL-SNN BLOCK
To evaluate the effectiveness of the Fractal-SNN block,
we conduct an ablation study to evaluate overall performance
of the proposed block under the SD protocol on DREAMER,
when using PSD features as the input data. As depicted in
Fig. 8, the Fractal-SNN block in the architecture can be
replaced by different neural networks, including the IIR-
formulated SNN, one-dimensional CNN (1d-CNN), LSTM
and bidirectional LSTM (Bi-LSTM). These results have been
presented in Table 6. The results clearly show that the Fractal-
SNN block surpasses the performance of the other alterna-
tives by a significant margin, which provide strong evidence
for the effectiveness of the design of the Fractal-SNN block.

G. SIGNAL CHANNEL DISCUSSION
We evaluate the performance of Fractal-SNN scheme based
on different choices and combinations of EEG signal chan-
nels under the SD protocol on DREAMER, when using PE
as the input data. For this database, the electrode layout
follows the International 10-20 system, where the electrodes

TABLE 6. Ablation of the Fractal-SNN block on DREAMER (Accuracy / %).

FIGURE 9. EEG channel conditions (the green nodes represent the
disabled channels, and the red nodes represent the used channels) on
DREAMER.

TABLE 7. Evaluation on the Fractal-SNN scheme under different
conditions of signal channels on DREAMER (Accuracy / %).

are placed symmetrically. So, we disable different portions
of signal channels in a symmetric manner to evaluate the
Fractal-SNN scheme. The six conditions of disabled signal
channels have been visualized in Fig. 9. The experimen-
tal results have been given in Table 7. From the results,
we can observe that when all the signal channels are used
(i.e., Condition A), the proposed scheme performs the best.
This is mainly because more channels can bring more data
resources for our scheme to exploit the useful information.
Moreover, when the number of used channels is reduced
with a certain limit (i.e., Conditions B to E), the scheme
accuracy fluctuates slightly overall, which in some extent
reflects the robustness of our scheme to the disability of
signal channels. Furthermore, when much fewer channels are
used (i.e., Condition F), the scheme performance declines
dramatically. Unsurprisingly, in this condition, insufficiency
of the available sample data unavoidably impedes the scheme
performance into full play.
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FIGURE 10. Saliency mapping of the Fractal-SNN scheme on subject-8
from SEED-IV.

H. INTERPRETABILITY ANALYSIS
We take advantage of saliency mapping to highlight the
regions of the input features that have the largest contributions
to the performance of the Fractal-SNN scheme for discrete
emotion classification under the SD protocol. The 62-channel
features from SEED-IV [16] have been utilized for experi-
ments: DE in five frequency bands (δ, θ, α, β and γ ). The
feature vectors of these five frequency bands are further
concatenated into a feature matrix X feat

∈ Rn×m, where
n = 500 is the number of features and m = 62 is the number
of channels. Specifically, the index intervals of the features of
the δ, θ , α, β and γ bands are [0, 100), [100, 200), [200, 300),
[300, 400), and [400, 500), respectively. Here, we randomly
select subject-8 from this database to illustrate the saliency
maps, without loss of generality.

To generate the saliency maps, we normalize the feature
matrix of the selected subject and deliver the data into the
Fractal-SNN scheme at first, and then backpropagate the
output classification scores to the input and calculate the gra-
dient. Finally, we normalize the gradient and generate the
saliency maps for four discrete emotions: neutral, sad, fear
and happy. In Fig. 10, the maps display that the Fractal-SNN
scheme is able to capture the TSS features discriminative for
different emotions. More concretely, for the fear emotion,
signal bands δ and θ oscillate in almost all the channels,
while, for the happy state, the oscillations of signal bands δ, θ ,
α and β from channel-0 to channel-5 are relatively stronger.
Obviously, different emotions have caused different oscilla-
tions of the frequency bands of signals. These results readily
demonstrate the effectiveness of the Fractal-SNN scheme in
capturing the emotion-discriminative information from EEG.

I. RELIABILITY ANALYSIS
We evaluate the reliability of the Fractal-SNN scheme under
the SD protocol on SEED-IV by the reliability diagram in
Fig. 11. For every emotion class, we calculate the mean

FIGURE 11. Reliability diagram of the Fractal-SNN scheme on SEED-IV
(the dotted line indicates the perfect calibration).

predicted probability of all the testing samples in each of
the four interval bins, including [0, 0.25), [0.25, 0.5), [0.5,
0.75), and [0.75, 1.0]; at the same time, we calculate the
true probability of the samples correctly classified in each
bin [29].

Fig. 11 shows that, for most bins, the mean predicted
probability is close to the true one for the proposed scheme.
Meanwhile, we also observe that the actual calibration of our
scheme has more or less deviations from the perfect one.
In greater detail, for the neutral, sad and happy classes, the
mean predicted probability in the range between 0 and 0.75 is
close to the true one for our scheme. Such results indicate the
reliability of our scheme in this probabilistic range for class
prediction. However, our scheme tends to overestimate the
probability in the range between 0.75 and 1.0 for predicting
the neutral, sad and happy classes. As for the fear class,
the class prediction of our scheme is more reliable in the
probabilistic range between 0 and 0.5. But, the scheme seems
over-conservative for the samples with the mean predicted
probability between 0.5 and 0.75 and over-confident for those
between 0.75 and 1.0. On the whole, these results indicate the
overall reliability of the Fractal-SNN scheme for four-class
emotion prediction of most data samples.

J. METHOD COMPARISON
1) RESULTS ON DREAMER AND DEAP
We compare our proposed scheme with the related methods
under the SD and SI protocols on DREAMER and DEAP.
The compared methods include [3], [5], [6], [10], [13], [30],
[31], [32], [33]. It is worth mentioning that some of the
compared methods have been evaluated in different ways
in their original papers. For fairness, we implement all the
methods under the same evaluation protocols in this work.
The training loss curves of Fractal-SNN have been displayed
in Fig. 12.

From the results on DREAMER in Table 8, we can find
that the Fractal-SNN scheme has acquired remarkable per-
formances: the accuracy of 71.01% in the SD mode for
valence classification, 78.50% in the SD mode and 70.53%
in the SI mode for arousal classification, and 80.92% in
the SD mode and 75.12% in the SI mode for dominance
classification. Moreover, the proposed scheme with the core
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TABLE 8. Comparison of the Fractal-SNN scheme with related advanced methods on DREAMER and DEAP (Accuracy / %).

of the Fractal-SNN block has outperformed the other two
SNN-based models, i.e., IIR-formulated SNN and Neucube-
based NeuroSense. Further, our scheme has outperformed all
other related methods in the SD mode. All these results have
validated the advantage of our Fractal-SNN scheme for EEG-
based emotion recognition, particularly in the SD mode.

From the results on DEAP in Table 8, we can see that
the Fractal-SNN scheme has achieved the best results on the
whole: the accuracy of 69.84% in the SD mode and 60.70%
in the SI mode for valence classification, 69.61% in the
SD mode for arousal classification, and 73.20% in the SD
mode for dominance classification. As a special case, we may
notice that Neucube-based NeuroSense [13] has obtained
the best performance for valence and arousal classification
in the SI mode on DEAP. Since the computational cost of
NeuroSense in this mode is so high that the out-of-memory
problem inevitably occurs for a normal PC with 32-GB
RAM, we directly report the result of this method from its
original paper here. Nevertheless, we are concerned that the
excessive memory consumption may greatly limit the method

practicability in real applications. Moreover, there seems no
comparability for the reported high accuracy of NeuroSense
in the SI mode, because of its different experimental setting
from ours. But our scheme still outstrips by a large margin
under the same evaluation protocol in the SD mode. Further-
more, the proposed scheme with the core of the Fractal-SNN
block performs the best among all comparison methods in
the SD mode. However, we also notice that the performance
of our scheme in the SI mode is lower than that in the SD
mode overall, which is mainly caused by the data distribution
discrepancy between different individuals. On the whole,
these results have confirmed the advantage of our Fractal-
SNN scheme for SD EEG-based emotion recognition again.

2) RESULTS ON SEED-IV AND MPED
We compare our proposed scheme with the related methods
under the SD protocols on SEED-IV and MPED. The com-
pared methods include [5], [6], [10], [13], [17], [32], [34],
[35], [36], [37]. In order to ensure the fairness of perfor-
mance comparison among different methods, a unified data
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FIGURE 12. Training loss curves of the Fractal-SNN scheme on DREAMER
and DEAP.

FIGURE 13. Training loss curves of the Fractal-SNN scheme on SEED-IV
and MPED.

TABLE 9. Comparison of the Fractal-SNN scheme with the related
advanced methods on SEED-IV and MPED (Accuracy / %).

division way mentioned in Section III-A is adopted for all the
methods. The training loss curves of Fractal-SNN have been
displayed in Fig. 13. As can be observed from the results in
Table 9, the accuracy of the Fractal-SNN scheme surpasses
the compared SNN models [10], [13] and all the other rivals
on SEED-IV and MPED. Specifically, our proposed scheme

has obtained an accuracy of 68.33% on SEED-IV and 42.23%
onMPED. These results readily confirm the capability of our
proposed scheme for multi-class emotion recognition based
on EEG.

IV. CONCLUSION
In this paper, we have proposed a new and effective Fractal-
SNN scheme, which can well take advantage of the useful
multi-scale TSS information, for the issue of EEG-based
emotion recognition. Besides, we have devised the inverted
drop-path technique for scheme training to enhance its gen-
eralization ability. The experimental results on DREAMER,
DEAP, SEED-IV and MPED have demonstrated the suitabil-
ity and capability of the proposed scheme for EEG-based
emotion recognition, especially in the SD mode. Moreover,
the bionic idea contained in Fractal-SNNmay hopefully shed
light on the innovation of more SNN-relevant models for this
issue and broader related topics in the future.
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