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ABSTRACT This paper presents a novel low-cost and fully-portable instrumented shoe system for gait
phase detection. The instrumented shoe consists of 174 independent sensing units constructed based on an
off-the-shelf force-sensitive film known as the Velostat conductive copolymer. A zero potential method was
implemented to address the crosstalk effect among the matrix-formed sensing arrays. A customized algorithm
for gait event and phase detection was developed to estimate stance sub-phases including initial contact, flat
foot, and push off. Experiments were carried out to evaluate the performance of the proposed instrumented
shoe system in gait phase detection for both straight-line walking and turning walking. The results showed
that the mean absolute time differences between the estimated phases by the proposed instrumented shoe
system and the reference measurement ranged from 45 to 58 ms during straight-line walking and from 51 to
77 ms during turning walking, which were comparable to the state of art.

INDEX TERMS Instrumented shoe, gait phase detection, force-sensitive film, foot plantar pressure.
Clinical and Translational Impact Statement— By allowing convenient gait monitoring in home healthcare
settings, the proposed system enables extensive ADL data collection and facilitates developing effective
treatment and rehabilitation strategies for patients with movement disorders.

I. INTRODUCTION
Detection of gait phases within each gait cycle is fundamen-
tal for clinical gait analysis. Traditionally, the detection of
gait phases is based on the ground reaction force obtained
from the embedded force plate, or the lower body kinematics
obtained from motion capture system [1]. However, these
measurement systems are expensive and limited by space.
Thus, traditional gait phase detection methods cannot be
widely applied in clinical settings.

In recent years, many instrumented shoe systems have
been developed to provide portable solutions for the gait
phase detection. One popular solution is based on inertial
measurement units (IMUs) since they are easy to be imple-

mented, unobtrusive, and low-cost [2]. For example, Zhang
et al. [3] proposed a real-time gait phase recognition method
based on IMUs. Similarly, by using the lower limb kinematic
data collected by two IMUs attached to the shank and foot,
Sahoo et al. [4] developed a rule-based method for gait event
detection during level-ground walking, stair ascent, and stair
descent. Although various computational methods have been
proposed [2], gait phase detection by IMUs remains challeng-
ing because the accuracy and reliability can be deteriorated by
the sensor location and placement direction [5]. In addition,
IMU signals can be affected by some gait-related factors, such
as gait speed and gait progression direction (straight-line gait
versus turning gait) [6].
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In addition to IMUs, many instrumented shoe systems use
isolated or discrete force sensors for gait phase detection
[7]. For example, Godiyal et al., [8] presented a customized
wearable force myography data acquisition system based on
force resistive sensors to detect the events of heel strike and
toe-off during overground and ramp walking. By using foot-
force switches, Skelly and Chizeck [9] proposed a two-level
gait phase detection algorithm and Agostini et al. [10] pro-
posed a step-wise gait phase detection algorithm. Similarly,
Bae [11] developed a hidden Markov model to detect gait
phases based on four-foot force switches placed on the insole
surface. Some force sensors, such as force sensing resistors
(FSRs), are not durable when being exposed to long-lasting
repeated forces, which could result in a short lifespan for gait
phase detection applications [2]. More importantly, the accu-
racy and reliability of these gait phase detection methods is
affected by the number and locations of the isolated sensors.
There has been no consensus about the optimal number or
locations of the force sensors for gait phase detection [12].
Foot plantar pressure information could be used in gait

phase detection as it directly reflects foot-floor interactions
[13]. In addition, the application of such information in gait
phase detection may help avoid the effects caused by the
number and locations of force sensors. Furthermore, from
an instrument and measurement perspective, a system that
can simultaneously measure foot plantar pressure data and
detect gait phases can provide additional insights into the
pathological deviation of gait [14]. Some low-cost foot plan-
tar pressure sensing systems have been proposed recently.
Crea et al. [15], for instance, developed a pair of foot pres-
sure insoles equipped with 64 optoelectronic pressure sensors
for gait phase detection. Later, Martini et al. [16] improved
Crea et al.’s measurement system by using fewer pressure
sensors to detect gait phases.

One limitation in the existing studies using plantar pressure
information in gait phase detection is the limited num-
ber of pressure sensing units which was typically ranged
from 4 to 64 [17]. With such a small number of sensing units,
foot plantar pressure can only be estimated by computational
models without high accuracy [18]. Increasing the number
of pressure sensing units could be challenging because there
could be the crosstalk effect among the matrix-formed sens-
ing arrays.

There was also lack of robust gait phase detection algo-
rithms based on the plantar pressure information. The existing
gait phase detection algorithms can be generally categorized
into two types, i.e., threshold-based and machine-learning-
based [2]. In the threshold-based algorithms, a threshold that
could be either static or dynamic should be pre-determined
according to the domain knowledge [19], and a gait event
of interest is considered to be detected once the observed
variable exceeds the threshold. The advantages of the
threshold-based algorithms were their simplicity and com-
putational efficiency, which allowed them to be easily
implemented in real-time applications [2]. However, these
algorithms often had a comparably lower detection accuracy

compared to the machine-learning-based algorithms. Vari-
ous machine learning models including the support vector
machine [4], artificial neural network [20], hidden Markov
model [21], and convolutional neural network [22], have
been used in gait phase detection applications. Compared to
the threshold-based algorithms, the machine-learning-based
algorithms can often achieve superior detection accuracy.
However, these algorithms require a tremendous amount of
data for model training and development, and they are gener-
ally more computational demanding than the threshold-based
algorithms [2].
To address the above-mentioned limitations, this paper

presents a novel low-cost, and fully portable instrumented
shoe system for gait phase detection. The novelty of the
present study lies in the following two aspects.

First, unlike most extant low-cost foot plantar measure-
ment systems, the proposed instrumented shoe can offer a
high resolution for pressure sensing, given that it consists of
174 independent sensing units. Such high sensing resolution
not only provides more detailed information about the foot-
floor interaction, but also improves the gait phase detection
performance. It also enables gait phase detection applications
no longer to be restricted by the numbers and locations of
the discrete sensing units. The whole system costs approx-
imately 30 US dollars. Such high cost-efficiency gives this
system the potential to be used for remote and home settings.

Second, a customized gait phase detection algorithm was
developed based on the foot plantar pressure data. This peak
heuristic search algorithm was developed based on plan-
tar pressure data with relevant domain knowledge of the
foot-floor interaction at each critical gait event. Compared
to the extant gait phase detection algorithms, the proposed
method can detect the sub-gait phases with high accuracy
and marginal time errors for both straight-line walking and
turning walking. In addition, it has higher computational
efficiency than machine learning methods.

The remainder of the paper is structured as follows.
In section II, the design of the instrumented shoe is described
(Section II-A), followed by the description of the sensor char-
acteristic tests (Section II-B). Then, the gait phase detection
algorithms are introduced in Section II-C. The experiment
carried out for system evaluation is described in Section II-D,
and the evaluation process is detailed in Section II-E. The
evaluation results are reported in Section III. The discussion
is presented in Section IV. Finally, Section V summarizes this
research.

II. METHODS
A. HARDWARE DESIGN
The design of the instrumented shoe is depicted in Fig. 1.
The sensing arrays were constructed based on an off-the-shelf
force-sensitive film (FSF) known as the Velostat conduc-
tive copolymer (Adafruit Industries Inc., US) [24]. The FSF
was tailored according to the shape of a leather insole with
the size of US 9 (length=265 mm, largest width=90mm)
(Fig. 1(c)-1). One of the design goals was to provide high
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FIGURE 1. (a) Design concept of the pressure-sensitive insole; (b) the raw materials used for the insole; (c) the
step-by-step illustration of the making procedure: 1 - the tailored FSF (velostat), 2 - the rows of the sensing array, 3- the
columns of the sensing array (on the back side), 4 - the insulating and protective film cover, 5 and 6 – the insole connected
with FPCB, 7 - the appearance of the insole, 8 - the design of the sole, 9 – the sole with the insole inserted, 10 – the
appearance of the instrumented shoe.

plantar pressure sensing resolution. Thus, a matrix structure
of sensing arrays was created. Specifically, the FSF was
sandwiched by two layers of conductive tapes (width=5mm)
(Brand Co., Ltd., China). The upper layer of the conductive
tapes (N=26) aligned parallelly in rows with a gap of 5mm
in-between (Fig. 1(c)-2). Similarly, the lower layer of the
conductive tapes (N=8) aligned parallelly in columns with
the same gap width (Fig. 1(c)-3). This created a matrix of
sensing arrays at the crossing points of the upper and lower

conductive tapes. Some sensing arrays were cut off to meet
the shape of the insole. Another advantage of such a matrix
design with shared row and column lines is the computabil-
ity with reduced numbers of inter-connection lines and I/O
(input/output) pins. Overall, 174 sensing units were created
with 32 I/O pins. This sandwiched filmwas then adhered onto
the leather insole with double-sided insulating tapes made by
Polymethylethacrylate (PPMA) and silicone adhesive (Brand
Co., Ltd., China) (Fig. 1(c)-4).
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FIGURE 2. (a) The control board; (b) a zero potential circuit with 4-by-4
sensing arrays; (c) the equivalent circuit of the sensing array R11.

The surface of the insole was covered with an insulating
film made by flexible PVC (polyvinyl chloride) for protec-
tion. The end of the row conductive tapes and the end of the
column conductive tapes were affixed onto the customized
flexible printed circuit boards (FPCBs) (Fig. 1(c)-5-6) which
were in turn connected to the control board (length=68.7mm,

FIGURE 3. Experiment set-up of the sensor output characteristic test.
(a) with constantly increased force; (b) with cyclically changed force.

width=56.6 mm) by flat flexible cable (FFC) and FFC-FPC
connectors (Fig. 1(c)-7). The system was powered by a
3.7V-230mAh polymer Lithium-ion battery (size: 25mm ×

25mm × 4.5mm) and could operate for at least three hours.
An off-the-shelf soft rubber shoe sole wasmodified to accom-
modate the force sensing insole, the control board and battery
(Fig. 1(c)-8). Nylon straps were sewn onto the shoe sole
to endow the instrumented shoe with wearability (Fig. 1(c)-
9). The total weight of this instrumented shoe was 392 g
(Fig. 1(c)-10), similar to the weight of a normal sports shoe.

B. THE DESIGN OF THE CONTROL BOARD
The design of the control board is depicted in Fig.2 (a).
A micro control unit (MCU) (32-bit ARM Cortex, ARM
Ltd., UK) was used for data processing and logging. A Blue-
tooth chip (HC-06, Wavesen Co. Ltd., China) was used for
data transmission. Given the network structure of resistors
in the pressure sensing arrays, the cross-talk effect inevitably
exists, which means that the output of a certain sensing unit
would be interfered by its nearby sensing units [25], [26].
To address the cross-talk effect, a zero potential method was
implemented [27]. Each row of the sensing units was con-
nected to a single-pole-double-throw (SPDT) switch (i.e., the
row gate), and each column was connected to a single-pole-
single-throw (SPST) switch (i.e., the column gate) (Fig. 2(b)).
Such design allowed the selected row to be connected to a
load resistor Rf (=10K ohm) and the selected column to be
connected to the negative input of an operational amplifier
(Opt-Amp), while the other columns and rows were con-
nected to the ground.

Fig. 2(c) shows the equivalent circuit when the sensing unit
R11 was selected to be assessed. By connecting the column
switch S1 and the row switch S5 while keeping all the other
switches off, R11 can be connected to the negative feedback
path of the Op-Amp with all the other sensing units isolated
from it. As a result, the resistance change of this sensing
unit can be monitored directly by the output voltage (Vout)
of the Opt-Amp (without the effect of other sensing units).
Likewise, by manipulating the SPDT and SPST switches at
the row and column gates, the resistance of any sensing unit
Rij can be isolated and assessed based on the measured Vout,
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FIGURE 4. (a) An example of the sensor output response of three
randomly selected sensing arrays, SU=sensing unit; (b) An example
showing the delayed response effect when the force was no longer
applied on sensing arrays. The sensor output was normalized from the
12-bit digital data ranging from 0-4095. Note: data shown in (a) and (b)
were from different testing trials.

Rf, and the input voltage Vi (which was set at 3.3 V) without
the cross-talk effect by the following equation.

Rij =
Vi
Vout

Rf (1)

Since Rij and Vout had an inverse relationship, Vout was
directly measured and converted into 12-bit digital data rang-
ing from 0-4095 by the ADC module integrated in the MCU.

C. SENSOR CHARACTERISTICS TESTS
Two tests were carried out to characterize output response
of the sensing units. Because the gait events detection algo-
rithms were later developed based on the sensing output
from the fore foot (SA1), foot arch (SA2) and heel (SA3),
one sensing unit was randomly selected from each of these
sub-plantar areas during the characteristic test. Thus, three
sensing units in total were selected for testing.

The first test aimed to investigate how the sensor output
changed under linearly increased force. Although such lin-
early changed force did not imitate the forces applied on
the foot plantar area during gait, it can help quantify the
relationship between the applied force and the sensor out-
put. An omni-mechanical tester (SANS; MST System Co.
Ltd., China) was used to apply linearly increased force on
the insole. A customized testing probe was designed with
the tipping area fitting the exact size of the sensing unit
(length=width=5mm), as depicted in Fig. 3(a). Given the
size of each sensing unit (25mm2), the foot plantar loading on
this area is approximately between 5 and 9.5 N during normal
walking and running [28]. Thus, the maximum loading level
was set as 10N. The loading rate was set at 10N/s with the
initial contacting force (i.e., the entry force) at 0.05N. The
loading force was kept at 10N for five seconds.

The second test aimed to mimic the force applied on the
foot plantar area during each gait cycle so as to investigate
how the sensor output changed under cyclic force. The same
testing probe was attached to a customized tester that was
actuated by a motor with an eccentric rotor (ZhengMotor Co.
Ltd., China). As depicted in Fig. 3(b), this tester can allow its
shaft to generate a reciprocatingmotion with adjustable speed
from 2 rpm to 200 rpm.

To mimic different levels of walking cadence, the motor
speed was set at 40 rpm (i.e., 40 reciprocating motions per
minute), 60 rpm, and 80 rpm, which simulated the cadence
levels of 40, 60, and 80 strides per minute, respectively. The
selected cadence levels were considered to be representative
of slow walking speed, normal walking, and fast walking
speed, respectively [29]. Similar to the aforementioned test,
the motor was set to generate force approximately at 9.8 N to
mimic the foot plantar loading on this area during gait [28].
Under each condition, the force was applied on the sensor
unit for approximately 1.25 second per cycle (s/c), 1 s/c, and
0.75 s/c.

The example sensor output response of the sensing unit
(quantified by the voltage output) from the first test was
shown in Fig. 4. The voltage output of each sensing unit
increased almost linearly with respect to the applied force
(Fig. 4(a)). Notably, the changing rate of the resistance for
each sensing unit seemed diverse. This was likely due to the
slightly uneven interface between FSF, the conductive tapes,
and the leather insole.
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FIGURE 5. Sensor output response under cyclically changed force.
(a) motor speed = 40 rpm; (b) motor speed = 60 rpm; (c) motor speed =

80 rpm; SU=sensing unit. rpm = reciprocating motion per minute. The
sensor output was normalized from the 12-bit digital data ranging from
0-4095.

Furthermore, it was also notable that there existed a
delayed response effect. As depicted in Fig. 4 (b), when the
loading force was lifted from the surface of the insole, the
sensor output did not decrease immediately. Instead, it kept

increasing for approximately one second before starting
to decrease. Such delayed response effect can possibly be
attributable to the small mechanical distortion of the insole
surface and the conductive tapes due to the applied normal
force [30]. The shoe sole structure was elastic. The applied
force can lead to a slight surface distortion, which made the
conductive tapes bound with the FSF more tightly. When the
force was removed and the affected surface area began to
restore to its original shape, the sensor output increased at the
beginning and then started to decrease. Thus, at this moment,
this instrumented shoe system is not expected to be reliable
for the measurement of the actual magnitude of the applied
force.

The sensor output with respect to the cyclically applied
forces were shown in Fig. 5, which demonstrated clearly
cyclic pattens in response to the cyclic force applied with
different frequencies. No apparent delayed response was
observed in the sensor output, which suggested that the sen-
sor output could be reliable when the force was applied on
the sensing unit cyclically and briefly (from 0.75 second to
1.25 second). Nonetheless, it also showed that the output
of each sensing unit seemed diverse, especially when the
applied force lasted longer (i.e., 1.25 second). The variations
in baseline resistance and sensor output are possibly caused
by two main factors. One possible factor is the manufacturing
variances. Slight differences in manufacturing processes can
lead to variations in the conductive properties across different
areas on the Velostat film. These variations can affect the
baseline resistance of the sensing unit, leading to differences
in the initial output. The second factor is the variations in
the mechanical properties of each sensing unit, such as stiff-
ness or stretchability, which are influenced by the conductive
tapes on both sides of the Velostat film. Since the baseline
resistance and output from a single sensing unit might not be
consistent with the other sensing units, it is not reliable to
detect gait events based on a single sensing unit alone.

1) GAIT PHASE DETECTION ALGORITHM
A peak heuristic algorithm was developed based on the
above-described characteristics of the sensing arrays. Since
the resistance of the sensing arrays had different changing
rates, instead of using the data from a single sensing unit,
this algorithm was based on the average value of multiple
sensing units from different foot plantar sub-areas. The use of
the output frommultiple sensing units allowed us tominimize
the effect of resistance difference between the sensing units.
The sensing units were divided into four main plantar sub-
areas, including the heel, foot arch, fore foot, and toe based on
the subdivision method introduced in an early study [31]. For
each sub-area, the sensor output (Psub−area) was calculated
by averaging the outputs of all the sensing units within this
sub-area as follows,

Psub−area =

∑N
i=1 Pi
N

(2)
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FIGURE 6. The block diagram illustrating the work flow of the proposed gait phase detection algorithm. Pheel, Pforefoot, Ptoe, Parch represent
the calculated sensor outputs of the heel, forefoot and toe sub-areas, respectively; t1 is the moment of the first peak of the sensor output in
the gait cycle from the heel sub-area; t2 is the moment of the first peak of the sensor output in the gait cycle from the forefoot sub-area;
HC-heel contact; FC-Forefoot Contact; HO-Heel Off; TO-Toe Off.

where Pi was the 12-bit digital output from each single sens-
ing unit of the corresponding sub-area. As the relationship
between Pi and the applied force is close to be linear (Fig. 4a),
Pi can reflect the pressure under the corresponding sub-area.
A gait cycle can be divided into two gait phases that are the
stance phase and swing phase [1]. The stance phase can be
further partitioned into three sub-phases, i.e., initial contact
(IC), flat foot (FF), and push off (PO) [2]. These stance
sub-phases are defined by key gait events including heel
contact (HC), fore foot contact (FC), heel off (HO) and toe
off (TO). Specifically, initial contact is defined by the interval
between heel contact and fore foot contact, flat foot is defined
by the interval between forefoot contact and heel off, and
push off is defined by the interval between heel off and toe
off. Thus, to determine durations of the stance subphases, key
gait events must be detected. Fig. 6 illustrates the work flow
of the proposed gait phase detection algorithm. The times of
HC, FF, HO, and TO were determined by the sensor outputs
(Psub−area) from different sub-areas. Specifically, to locate
the time of HCwithin each gait cycle, the first peak in the gait
cycle (t1) of the sensor output from the heel sub-area (Pheel)
was identified first,

t1 = T (max
local

Pheel) (3)

and the time of HC (tHC) was the moment of the local
minimum right before the peak, as follows.

tHC = T
(
min
local

Pheel

)
(tHC < t1) (4)

The obtained tHC was subsequently used to identify the time
of FC within the gait cycle (tFC ), which was determined as
the local minimum right before the first peak of the sensor
output in the forefoot sub-area (t2), as follows,

t2 = T (max
local

Pforefoot ) (5)

tFC = T
(
min
local

Pforefoot

)
(tHC < tFC < t2) (6)

Due to the delayed response effect, the sensor output of the
heel sub-area could slightly increase at HO. Thus, the time of
HO within a gait cycle (tHO) was identified at the time when
the corresponding sensor output started to increase, i.e., the
first local minimum in the sensor output of the heel sub-area
after tFC as follows.

tHO = T
(
min
local

Pheel

)
(tHO > tFC ) (7)

Such delayed response effect was also observed at the time
of TO. Thus, the time of TO (tTO) was identified at the time
of the first local minimum in the sensor output of the toe sub
area after tHO, as follows.

tTO = T
(
min
local

Ptoe

)
(tTO > tHO) (8)
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Subsequently, the durations of the sub-stance phases were
calculated as follows.

TIC = tFC − tHC (9)

TFF = tHO − tFC (10)

TPO = tTO − tHO (11)

Fig. 7 shows exemplary sensor output trajectories of the
defined sub-areas with the identified key events based on the
detection algorithm.

D. EXPERIMENTS
Eight young male participants (age=24.0±1 years,
height=173.6±3.7 cm, weight=63.3±5.1 kg) were involved
in an experiment. All the participants had the shoe size of
US 9 (foot length=25.8±0.4 cm). They all self-reportedwith-
out any disease that would affect their normal gait pattern.
The experimental protocol was approved by the Institutional
Review Board of Shenzhen University on January 17, 2019
(Approval #: 20190012). Informed consent was obtained
from all participants.

Two force plates (Bertec, Sweden) placed underneath
the walking platform with approximately 1 cm apart along
the progression direction were used to obtain the ground
reaction forces, which were in turn used as the reference
measurements for the evaluation of the proposed gait phase
detection algorithm. The force plates were synchronized with
the instrument shoe at a sampling frequency of 50Hz. Prior
to data collection, the participants were asked to wear the
instrumented shoe system (see Fig. 8) and walk on a 10m-
long walking platform with their comfortable walking speed
for at least tenminutes. This allowed them to get familiar with
the equipment and helped the experimenter to determine the
starting point so that each participant could have a complete
stance phase captured by a single force plate.

At the beginning of data collection, the participants were
asked to step one foot on and off the force plate for three
times. The resulted signals from the instrumented shoe sys-
tem and the force plate were used for synchronizing these two
systems. After that, the participants were asked to carry out
straight-line walking and turning walking in different trials on
the walking platform with their comfortable walking speed.
In the straight-linewalking trials, the participants started from
the starting point and stopped at the end of the walking plat-
form. The distance between the starting point and the force
plate was approximately seven meters. A revious study [32]
showed that such distance allowed the participants to reach
a steady-state speed. Each participant repeated straight-line
walking for five minutes. Ten gait cycles where the partic-
ipants had a complete stance phase (right foot) on a single
force plate were randomly selected for further analysis. In the
turning walking trials, the turning routes were marked by
color tapes on the ground which guided the participants to
make a left 90◦ step turn (i.e., a change in direction opposite to
the stance limb [33]) on the first force plate without stopping.
Similar to the straight-line walking, each participant repeated

turning walking for five minutes. Ten turning gait cycles were
randomly selected for analysis. In total, data from 160 gait
cycles were used for the system evaluation.

The raw data were transmitted wireless to a PC (Lenovo
model Y50p, Intel Core i5 2.9GHz, 8GB RAM, with Intel
Bluetooth module version LMP6.1280) via Bluetooth series
communication, and the gait phase detection algorithm was
run on the PC. The sampling data rate was 50 Hz, and
the required data transmission speed was approximately
83200 bytes/s. Thus, the Baud rate was set at 921600 bps to
ensure sufficient wireless data transferring speed. For sensor
conditioning, the raw data obtained from each sensing unit
were filtered using a third-order, zero-phase lag, low-pass
Butterworth filter with the cut-off frequency of 7 Hz. The
filtered data were recorded when no external load was applied
on the instrumented shoe for approximately ten seconds. The
mean data output from each sensing unit within this period of
time was calculated. This was registered as the zero-off-set
and later deducted from the actual sensor output [34].

E. EVALUATION
The sensor output collected from the experiment was trans-
ferred and stored in the PC. The above-described gait phase
detection algorithm was implemented based on these sensor
output data with by a custom Python script (Python version
3.7.9). The references of the key temporal gait events were
obtained according to the vertical component of the ground
reaction force measured by the force plate, following the
approach proposed in [35]. Specifically, the times of HC and
TO were determined when the vertical ground reaction force
increased above 10 N and decreased below 10 N, respec-
tively., the time of FC was determined as the first peak in the
ground reaction force, and the time of HO was determined as
the second peak in the ground reaction force. Fig. 9 shows an
exemplary trial of the vertical ground reaction force for the
specification of key gait event references.

The relative difference (RD), mean absolute difference
(AD), and the median error (ME) were calculated between
the times of events detected by the instrumented shoe system
(tshoe) and the references (tref ). These parameters were calcu-
lated as follows.

RD = tshoe − tref (12)

AD = |tshoe − tref | (13)

ME = median(|tshoe − tref |) (14)

The RD represents the arithmetic error of the shoe-detected
event timings compared to the references [36]. A positive
value suggests a time lag of the detected event, and a negative
value suggests an early detection (i.e., time lead) of the event.
The AD, on the other hand, represents the magnitude of the
error regardless of the direction [37]. The ME is the median
value of absolute difference [16].

The durations of stance sub-phases were estimated by the
determined gait events. The RD, AD andME were calculated
between the durations of each phase detected by the instru-
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FIGURE 7. Illustration of the sensor outputs of the toe, fore foot, and heel sub-areas during gait. The identified key gait events
based on the detection algorithm are marked by 1. HC-heel contact; FC-Forefoot Contact; HO-Heel Off; TO-Toe Off.

FIGURE 8. A participant wearing the instrumented shoe system and the
overview of the experiment set-up.

FIGURE 9. Key temporal gait events determined by the vertical ground
reaction force.

mented shoe system and by the references across the ten gait
cycles. The percentage difference (%D) was used to quantify
the errors of the estimated duration of each phase, which
was calculated as the AD divided by the reference duration

(t_stref ) [16].

% D =
AD
t_stref

= |
tshoe − tref
t_stref

| × 100% (15)

The above calculations and data analysis were done by
a custom Python script. Note that we did not evaluate the
duration of the swing phase mainly due to two reasons. First,
the swing phase is defined as the interval between TO andHC.
In cyclic gait trials, knowing the performance of the proposed
detection algorithm in detecting TO, and HC will help pre-
cisely evaluate the performance of the algorithm in detecting
the swing phase. Second, the force plate can only measure
one complete stance phase. Thus, we cannot determine two
consecutive reference HCs, which makes the reference swing
duration unavailable for evaluation.

III. RESULTS
The detection of the key gait events and gait sub-phases
was done offline with the signals obtained by the instru-
mented shoe from the experiment and the gait phase detection
algorithm. All the key gait events (i.e., heel contact, fore foot
contact, heel off, and toe off) and gait sub-phases (i.e., initial
contact, flat foot, and push off) under the testing trials were
successfully detected, suggesting 100% detection rate.

The detection performance was further evaluated by the
measurements obtained from the force plate which served
as the benchmarking system. Given that the data output rate
was 50Hz, the temporal accuracy level was 20ms. Table 1
shows the results of gait event detection. For straight-line
walking, the ADs between the estimated time of each gait
event and the reference measurement ranged from 1.9 to
2.8 data frames (i.e., 38-56 ms), and the MEs were within
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2-2.5 data frames (i.e., 40-50 ms). The estimated times of
HC and FF had a positive sign in the RDs, indicating that the
detection was slightly delayed compared to the references.
In contrast, early detections were generally found for the
estimated times of HO and TO. Nonetheless, the magnitude
of the RDs were all within 2 data frames (i.e., 40 ms).

The errors slightly increased during turning. The ADs
ranged from 2.0 to 4.2 data frames (i.e., 40-83 ms) for turning
walking, with the largest AD at TO (4.2±2.7 data frames).
Similar to the straight-line walking, the estimated times of
HC and FF had a positive sign in RDs, indicating that the
detection was slightly delayed compared to the references.
In contrast, early detections were generally found for the
estimated times of HO and TO.

Table 2 shows the results of the estimated durations of
the gait phases. For straight-line walking, the ADs ranged
from 2.3 to 2.9 data frames (i.e., 45-58 ms). The results
showed that, in general, the estimated durations of IC and FF
were shorter than the references as indicated by the negative
sign in RDs. In contrast, the estimated duration of PO was
slightly longer than the reference. The MEs were about 2-3
data frames (40-60 ms). The percentage difference for each
phase ranged from 5.48% to 5.88%. For turning walking, the
ADs ranged from 2.6 to 3.9 data frames (i.e., 51-77 ms). The
estimated durations were shorter than the references for all
the phases of stance, as indicated by the negative sign in RDs.
The MEs ranged from 2 to 3 data frames (40-60 ms), which
was the same as the straight-line walking. The percentage
difference of each phase ranged from 5.13% to 5.56%.

IV. DISCUSSION
This study presented a novel instrumented shoe system that
can detect gait phases based on foot plantar pressure data.
As being unobtrusive, our instrumented shoe system would
not lead to discomfort for its wearers. There are a few
low-cost pressure sensing insoles reported previously. For
example, Shu et al. [48] proposed an in-shoe plantar pres-
sure measurement system with 15 sensing units covering the
corresponding anatomical areas. Zhao et al. [49] designed
a flexible sensor matrix film that involved 16 piezoresistive
sensing units. Martini et al. [16] designed a pressure-sensitive
insoles with 64 sensing units. Plus, Chen et al. [50] designed
a piezo-resistive fabric material based insole which consists
of 96 pressure sensors. Compared to these previous systems,
there are 174 sensing units with our proposed instrumented
shoe, which provide much higher sensing resolution com-
pared to the existing low-cost instrumented shoe systems.
Higher sensing resolution suggests higher precision of the
plantar pressure data. Therefore, we argue that our proposed
system can serve as a better solution to low-cost plantar
pressure measurement and assessment than the existing ones.

In gait phase detection applications, what is more impor-
tant is knowing when the gait phase starts, when it ends and
how long it lasts, rather than just knowing whether it occurs.
Gait sub-phases are determined by key gait events as specified
in the present study, and their durations are the time intervals

between the key gait events defining them. Thus, we used
detection time error measures (i.e., AD, RD, ME, and %D)
reflecting the gait event and phase detection time differences
between our proposed system and the reference measure-
ment system (i.e., force plates) in performance evaluation.
The results showed that the mean absolute detection time
errors ranged from 38 to 58 ms during straight-line walking.
Similar ranges of detection time errors have been reported
in earlier studies. For example, Martini et al. [16] reported
that their pressure sensitive insoles had mean detection time
errors ranging from 40-60 ms for the key gait events, which
could lead to similar levels of errors in the sub-phase dura-
tion estimation. The eSHOEs system developed earlier [12]
had detection time errors ranging from 29-46 ms. Smaller
errors in the gait events/phases detection have been reported
earlier, which could be as low as milliseconds [21], [22].
However, most of them focused on detecting heel strike
and toe off, or the stance and swing phases only, while our
proposed system can be used to detect sub-gait phases. For
commercial systems, previous studies demonstrated that the
Medilogic® insoles can estimate the stance phases with the
detection time error at approximately 10% of stance duration
[40]. Another study showed that the F-scan® insoles had a
20–30 ms delayed detection compared to the data of a force
plate [41].

By comparing the performance of our proposed system
with the abovementioned published results, we could tell that
the detection time errors of our systemwere within an accept-
able range. Nevertheless, it is worth noting that there existed
differences in the experimental design, evaluation parame-
ters, and targeting gait events/phases between our study and
other studies. Thus, to draw more convincing conclusions,
comparisons should be done between studies with consistent
evaluation protocols. This could be one possible direction for
future research.

This study offered a practical solution to eliminating the
cross-talk effect in the networked sensing-array structure.
The matrix design of the pressure sensing arrays makes the
instrumented system compact and easily embedded with the
shoe sole. However, the cross-talk effect inevitably exists in
such structure. This study showed that such cross-talk effect
can be eliminated by the zero penitential method. Since the
zero penitential method can be scalable to different numbers
and types of sensing arrays (e.g., piezoelectric sensors), this
practical method can shed a light for future relevant studies.

Unlike extant force-sensor-based insole/shoe systems
where gait phase detection was mainly based on the output
from isolated sensor(s), we developed a novel gait phase
detection algorithm based on foot plantar pressure data.
More specifically, this algorithm depends onmultiple sensing
arrays collectively in different sub-areas of the foot plantar
surface. In the previous studies, key gait events were usually
detected by one single sensing unit or a couple of discretely
distributed sensing units [5], [6], so the detection accuracy
was highly dependent on the locations of the sensing units.
In contrast, using foot plantar pressure data can provide a
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TABLE 1. Evaluation results for gait event detection compared to the reference. (Gait events detected by the force plate as the ground truth.)

TABLE 2. Evaluation results for gait phase duration estimation compared to the reference. (Gait phase estimated from the force plate as the ground truth.)

greater insight into feet-floor interaction, which can help
reveal gait patterns more accurately than the isolated sensing
units.

The novel gait phase detection algorithm was designed
to search the peak heuristic of the pressure sensing data.
Similar peak heuristic approaches have been proposed in
some earlier gait phase detection studies [42]. However,
previous studies were mainly based on IMU signals. The
results in the present study showed that this peak heuris-
tic search algorithm worked well for pressure sensing data.
One advantage of the peak heuristic search algorithm is its
high computational efficiency. Compared to the machine
learning methods, the peak heuristic search algorithm did
not require a large set of training samples. Instead, it was
developed based on the relevant domain knowledge. It can
be seen from the pseudo code (in the supplementary doc-
ument) that this rule-based algorithm was straightforward
and can be easily distributed on the onboard system. Thus,
it is feasible to apply this algorithm in real-time gait phase
detection.

Besides straight-line walking, this algorithmwas also eval-
uated for turning gait. Turning gait can bring additional
challenges when developing IMU-based gait phase detection
models, because the change of walking direction can result in
more intensive IMU signal changes compared to straight-line
walking [43]. However, this would not be a problem for force-
sensing-based gait phase detection methods. Our results in
deed showed that the proposed algorithm worked well for
turning gait. The mean detection errors in gait phase esti-
mation during turning walking were between 51 and 77 ms.
Like the straight-line walking, the errors during turning gait
were also within the acceptable range, which showed that
this instrumented shoe system can be more versatile than
previously reported IMU-based systems.

This instrumented shoe system was developed based on
off-the-shelf low-cost FSF known as the Velostat, which is a
conductive polymer composite consisting of carbon- impreg-
nated polyethylene [44]. Apart from its low cost, this FSF
has demonstrated its unique advantage. Specifically, this thin
film pressure sensor was softer and thinner than the FSR
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or optoelectronic pressure sensors. Thus, they can be less
intrusive than the other types of pressure sensors and be easily
integrated into the shoe soles.

When fabricating the sensing arrays, the force-sensitive
film was sandwiched by two layers of conductive tapes. This
structure can be viewed as a mini capacitor. The electric field
between the closed sensing units might cause electric charges
stored on them which might induce the capacitive effect.
However, given that the permeability (dielectric constant) of
this kind of carbo-impregnated polyethylene composite was
approximately 3-6 (depending on the volume fraction of the
carbon fiber) [45], the capacitance of each sensing unit can
be estimated to be approximately 0.06-0.13 nF. This suggests
that the capacitive effect can be neglected. Additionally, the
frequency of input signals was typically less than 1Hz (in
accordance with the stepping frequency during gait), which
was considered low. Given this, the delay in the output signal
resulting from the parasitic capacitance can be negligible.
This was also evidenced in the sensor characteristic test with
cyclically applied forces (Fig. 5), where no delay in the sensor
output can be observed with respect to the changing force.

By providing important temporal gait information, this
instrumented shoe system can be used in several clinical
and scientific applications. For example, it can be used in
pathological gait diagnosis, gait rehabilitation evaluation, and
control of lower-limb robotic assistive devices. Pappas et
al. [46] proposed an automatic gait assistive system which
detected gait phases by both the force sensors and gyroscope,
and used such information to control electrical stimulation in
order to assist people with injured spinal cord. Early studies
also suggested that the detection latencies of up to 150 ms
were acceptable for online functional electrical stimulation
[22], [23]. The detection errors of our algorithm were about
38-83 ms, which were within the acceptable range.

Several factors may have contributed to the detection
errors. First, as indicated in the characteristic test, due
to the inherent limitations of the sensing array, the rela-
tionship between the sensor output and input cannot be
perfectly linear. Though we adopted collective output from
multiple sensing units to reduce the effects of nonlinearity,
such effects cannot be completely avoided. Second, there is
manually-induced unevenness of the FSF-tape-insole inter-
face, which would bring noise to signals for gait phase
detection. Thus, to improve detection accuracy, standard
manufacturing processes should be adopted to replace man-
ual operations in assembling the sensing structure. Third,
detection errors may be affected by the data frame inter-
vals. Although the current data output rate (i.e., 50 Hz) can
meet the minimal requirement for capturing the plantar pres-
sure dynamics associated with typical walking patterns [47],
it could be further increased to shorten data frame intervals
and reduce detection errors. A possible way to increase data
output rate is to process the raw data onboard and only send
out key gait event data wirelessly.

There existed some other limitations in the present study.
One is that the swing phase duration was not reported in this

study, despite that the swing phase duration can be estimated
as the time difference between toe off and subsequent heel
contact. The reason for this limitation is that the force plate
system we used only allowed us to register one complete
stance phase, which made it impossible to have reference
measurement for the subsequent heel contact. To address
this problem, future research should be conducted with a
modified force plate system that allows for multiple stance
phase registrations. Another limitation is that only one single
size (US 9) of the instrumented shoe was tested. Other shoe
sizes will be tested in the future to better validate the proposed
gait phase detection system. In addition, instrumented shoe
system was only tested on healthy participants. To be more
clinically significant, patients with pathological gait should
be included when evaluating the gait event detection per-
formance of this system in future research. Lastly, though
the increased number of sensing units can lead to higher
resolution in measurement, it may also require higher power
consumption which may limit the practical applications of
the proposed system. Thus, there is a need to figure out the
relationship between power consumption and the number of
sensing units in future research.

V. CONCLUSION
This study presents an instrumented shoe system that can
detect gait phases by foot plantar pressure data. Experimental
results showed that the accuracy of the proposed gait phase
detection algorithm is within the acceptable range for both
straight-line walking and turning walking. This low-cost and
portable instrumented shoe system has high wearability, mak-
ing it suitable for personal use. It has significant potentials
for translational engineering applications in healthcare and
telemedicine. By allowing convenient gait monitoring outside
of clinical settings, it can help translate gait-related research
from lab to home healthcare settings. This kind of wearable
technology will enable more extensive data collection on
patients during activities of daily living. The data can provide
deeper insights into movement disorders and facilitate devel-
oping more effective treatment and rehabilitation strategies.
The instrumented shoe system also has the potential to aid in
developing personalized care solutions and monitoring treat-
ment outcomes over time. Overall, it represents an innovative
wearable platform that can help accelerate the translation of
bioengineering and medical research insights into practical
tools and approaches to improve patient care and outcomes.
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