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ABSTRACT During minimal invasive surgery (MIS), the laparoscope only provides a single viewpoint
to the surgeon, leaving a lack of 3D perception. Many works have been proposed to obtain depth and
3D reconstruction by designing a new optical structure or by depending on the camera pose and image
sequences. Most of these works modify the structure of the conventional laparoscopes and cannot provide
3D reconstruction of different magnification views. In this study, we propose a laparoscopic system based on
double liquid lenses, which provide doctors with variable magnification rates, near observation, and real-time
monocular 3D reconstruction. Our system composes of an optical structure that can obtain auto magnification
change and autofocus without any physically moving element, and a deep learning network based on the
Depth fromDefocus (DFD) method, trained to suit inconsistent camera intrinsic situations and estimate depth
from images of different focal lengths. The optical structure is portable and can be mounted on conventional
laparoscopes. The depth estimation network estimates depth in real-time from monocular images of different
focal lengths and magnification rates. Experiments show that our system provides a 0.68-1.44x zoom rate
and can estimate depth from different magnification rates at 6fps. Monocular 3D reconstruction reaches at
least 6mm accuracy. The system also provides a clear view even under 1mm close working distance. Ex-vivo
experiments and implementation on clinical images prove that our system provides doctors with a magnified
clear view of the lesion, as well as quickmonocular depth perception during laparoscopy, which help surgeons
get better detection and size diagnosis of the abdomen during laparoscope surgeries.

INDEX TERMS Deep learning network, depth from defocus (DFD), laparoscope, minimal invasive surgery
(MIS), 3D reconstruction.

Clinical and Translational Impact Statement—In our preclinical research, we design a portable system for
multi-magnification and real-time 3D reconstruction by integrating off-the-shelf lenses with the conventional
laparoscope. Auto-variable-view imaging and depth diagnosis are achieved.

I. INTRODUCTION
Laparoscopes are used in minimally invasive surgeries, can
help doctors diagnose diseases in the abdomen or pelvis,
and perform surgical procedures, including removing dam-
aged or diseased organs or taking tissue samples for further
testing. Obtaining different fields of view and having depth
perception during laparoscopic surgeries are critical. Conven-
tional laparoscopes are designed with a fixed magnification

rate and are moved forward and backward by the assistant
to obtain a magnified vision of the organ, which makes it
tiring during long surgery hours and may cause a collision
of instruments. Although many current techniques propose
designing stereo structures, structure light devices, or using
deep learning methods to conduct 3D reconstruction of the
laparoscopic scenes, these methods depend greatly on the
device itself and do not provide multi-magnifications for
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3D reconstruction. In addition, ways that provide multi-
magnification in laparoscopic surgeries mainly customize the
optical structure of the laparoscope to provide a wider field of
view, and therefore they cannot be applied to all conventional
laparoscopes. To obtain automated variable magnifications
and corresponding monocular 3D reconstruction applicable
to all conventional laparoscopes, designing a portable optical
device with automated algorithms is a solution.

3D reconstruction in laparoscopic surgeries is very criti-
cal in minimal invasive surgeries (MIS). Works have shown
that real time 3D visualization and reconstruction reduces
operation time, compared to high-definition 2D in laparo-
scopic liver resection [1]. 3D imaging improves the accuracy
of dissection and better intra-corporeal knotting. It is also
proven to provide better clinical outcomes in urology [2],
laparoscopic right colectomy [3], and laparoscopic gastrec-
tomy for gastric cancer [4]. The 3D reconstruction of a
wide view helps localize surgical instruments and the one
of a magnified view provides doctors with 3D morphology
recognition of organs and neoplasms. Many 3D reconstruc-
tion methods have been proposed for laparoscopes, mainly
classified into active and passive methods [5]. Kim et al. [6]
designed a two-camera system that provides a panoramic
view and depth perception using stereo cues. Sui et al. [7]
further proposed a stereo structure with structure light for
3D reconstruction. These active methods depend greatly on
the stereo system [8] and the projected patterns [9]. Fur-
thermore, stereo and structured light methods have working
distance limitations and fail to provide close observations,
which are critical in fluorescence imaging, especially in
colonoscopy [10].
On the other hand, passive methods depend mainly on

the images acquired. Many passive laparoscopic 3D recon-
struction methods are similar to those used in natural
images, Collins and Bartoli [11] used shape from shad-
ing to estimate 3D shapes in real-time from monocular
laparoscopy videos. Nakajima et al. [12] used shape from
focus to conduct 3D shape measurement in monocular
endoscopy. Widya et al. [13] used structure from motion
to reconstruct gastric organs. Lamarca et al. [14] proposed
using Simultaneous Localization and Mapping (SLAM) to
reconstruct deformable monocular sequences. Recent work
on passive methods mainly focuses on deep learning means.
Shao et al. [15] and Liu et al. [16] both designed a self-
supervised deep-learning network for depth and ego-motion
estimation. They also added appearance flow for better corre-
spondence. Bardozzo et al. [17] introduced a self-supervised
network that can conduct both mono and stereo real-time
depth estimation. Liu et al. [18] proposed a self-supervised
network that learns depth from monocular endoscopy videos
through features. The disadvantages of the above passive
methods are that they depend greatly on camera intrinsic and
feature cues, which are difficult to obtain in real surgical
scenes. The reconstructed scenes are based on a fixed field of
view, providing the same reconstruction resolution between

different reconstruction frames and simply overlayed and
stitched.

To provide multi-magnifications and near observation
which help give a clearer observation of lesions and neo-
plasms, various optical systems have been designed to widen
the field of view and provide autofocus. However, these
systems are rather bulky. As conventional laparoscopes offer
a fixed field of view and depth of view, their working dis-
tance does not guarantee close observations under 3mm.
Assistants adjust the focus of the laparoscope before surg-
eries by rotating the ring on the imaging lens group to
ensure clear imaging. To provide a more automated way of
focusing, Liu et al. [18] appliedminimizedmotors to conduct
quick autofocus. However, this method still needs the phys-
ical movement of the optical lenses. Zou et al. [19] designed
Alvarez lenses that can conduct focus range without physical
movements, but the micromachining technique of the lenses
is complex. Wang et al. [20] demonstrated a 3D integral-
imaging endoscopy with tunable DOF by using a single
large-aperture focal-length-tunable liquid crystal (LC) lens.
Kanhere et al. [21] introduced a multi-camera system to cap-
ture different views and stitch them together for a wider
view. The above-mentioned methods add complexity to the
laparoscope. To obtain automated focusing and provide a
wider view range, a liquid lens-based design is also proposed
as a more practical alternative. Volpi et al. [22] designed an
optical structure containing a liquid lens that provides clear
observation of fluorescent imaging under near working dis-
tances.

To further provide variable magnification rates, a combi-
nation of multiple liquid lenses is proposed. Qin et al. [23]
proposed an optical structure with two liquid lenses which
can obtain a magnification range from 2x to 3x. Li et al. [24]
also proposed using two liquid lenses, but with fewer optical
lenses, and can also obtain 3x magnification. However, the
above structures are long, add weight to the conventional
laparoscope, and may require customized lenses. Magnified
views also suffer from poor light, chromatic and spheri-
cal aberration, as well as astigmatism. Additional optical
optimizations are required. Katz et al. [25] conducted opti-
mization of the double-liquid lens structure Qin proposed and
reduced chromatic aberration. He also dealt with the poor
light in the high magnification rate of the optical system [26].
The more optical elements the system contains, the more it is
vulnerable to light conditions and the more optimization it
should need.

Considering the drawbacks of the aforementioned meth-
ods, namely the inability to fit conventional laparoscopes,
and the dependency on camera intrinsic and the surgical
environment, a new portable and light-weighted optical struc-
ture using off-the-shelf lenses which can be easily mounted
between conventional laparoscopes and the camera is pro-
posed. A depth estimation network based on the depth from
defocus technique is also introduced to laparoscopy field to
fit the multi-magnifications system.
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FIGURE 1. The proposed methods and framework of the monocular variable magnifications
3D laparoscope system include two parts: the double liquid lenses optical structure (blue),
mounted on the laparoscope, and the monocular depth estimation network (yellow). The
magnification rate and ROI is selected on the computer and control commands are sent to the
double liquid lenses to conduct quick auto-focus and capture monocular images. The captured
monocular images under different focal lengths are then inputted into the monocular depth
estimation network, which outputs the corresponding depth and conduct 3D reconstruction.

In this paper, we design a laparoscopic system that provides
multi-magnification, auto-focus, near observation, and depth
estimation. We summarize our contributions as follows:

• Anovel optical structure with two liquid lenses and three
optical lenses is proposed that enables direct integra-
tion into the rear of a conventional laparoscopic lens
group and provides multi-magnification, autofocus and
close-up viewing for laparoscopes. The structure uses
off-the-shelf lenses and is lightweight. The entire optical
structure is tailored to the specific working distance
and field of view of conventional laparoscopes. This
customization ensures seamless integration into laparo-
scopic procedures.

• Our algorithm innovatively addresses the challenge of
varying camera intrinsic properties with changes in
magnification in endoscopic depth estimation, achieved
through the introduction of a real-time depth-from-
defocus (DFD) network. A specialized preprocessing
method is introduced to simulate laparoscopic blur con-
ditions, enhancing accuracy. Notably, our work enables
real-time laparoscopic depth estimation using a DFD
network for the first time.

II. METHODS AND PROCEDURES
To realize both multi-magnification and 3D reconstruction
in one system, an optical structure and a network are pro-
posed. The overview of our system is shown in Fig. 1.
Our system integrates a double-liquid-lenses optical struc-
ture and a monocular depth estimation network. An optical
structure using two liquid lenses is designed, which pro-
vide close observations suitable for fluorescence scenes,
multi-magnification range, and auto-focusing. The optical
structure’s imaging effect, including chromatic aberration,
astigmatism, and comet influence, is optimized.

A monocular depth estimation network trained using the
DFD technique is introduced to laparoscopic scenes to cope
with inconsistent camera intrinsic situations. It can estimate

FIGURE 2. Optical design of double liquid lens system.

depth from the images captured by the optical structure,
which are of different focal lengths and magnification rates.

A. DOUBLE LIQUID LENSES OPTICAL SYSTEM DESIGN
We develop an innovative optical configuration compris-
ing two liquid lenses and three auxiliary lenses positioned
between the conventional laparoscopic assembly and the
CMOS chip. This arrangement seamlessly integrates into the
traditional laparoscopic system, effectively enabling versa-
tile functionalities including multi-magnification, automated
focusing, and close-range observation. The optical config-
uration is meticulously customized to harmonize with the
working distance and field of view intrinsic to conventional
laparoscopes. Consequently, we propose an optical configu-
ration composed of five distinct lenses, comprising two liquid
lenses, one convex lens, and two concave lenses, as depicted
in Fig. 2.

The conventional laparoscope used is a 0◦, 325 mm long,
10mm diameter, and 70◦ field of view laparoscope (Shenda
J0800B SN 350.0110). A 1/1.8’’ charge-coupled device
(CCD) is used. The required focal length of the system can
be calculated according to the following Equation (1), in
which f is the focal length of the system, WD is the working
distance of the system, FOV is the field of view of the system,
and CCD is the size of the camera.

f =
WD

FOV
CCD + 1

(1)

Based on the focal length requirement above, an optical
configuration composed of five distinct lenses, comprising
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two liquid lenses, one convex lens, and two concave lenses is
proposed to accomplish the magnification adjustment with-
out physical movements.

The first lens should add adequate optical power to the
optical structure and helpminimize both chromatic aberration
and spherical aberration. Results show that placing a convex
lens as the first lens has less effect on speeding the drop of
the MTF curve. After several experiments, a doublet with
a focal length of 60mm is chosen. It is then followed by
an Optotune EL-10-30-TC liquid lens. As the first tunable
lens, it works as a focusing lens, which provides a diopter
range from 8 dpt to 20 dpt. The third and fourth lenses
should help diffuse the light rays so that they can intersect
on the image plane. Two biconcave lenses are chosen as they
show a better effect on reducing astigmatism than two plano-
concave lenses. The combination of two lenses with the same
refractive index can also help minimize chromatic aberration.
After several experiments, the focal length of -180mm each is
set.

The two biconcave lenses are then followed by another
Optotune EL-10-30-TC liquid lens, which acts as a mag-
nification ranging lens, by the back-lens configuration
requirement.

The structure is accommodated to the working distance
and field of view of conventional laparoscopes, the overall
structure is then optimized using Zemax optical ray-tracing
software. After deciding the focal lengths and the sequences
of the lenses in our system, the distances between the lenses
are set as variables and the optimizing function in Zemax is
further used to optimize these distances to achieve a better
image. The weight of the focal length (EFFL), spherical aber-
ration (SPFA), coma (COMA), and astigmatism (ASTI) are
set at 1.0 and these constraints are used as our merit function
optimization. As the lenses are all off the shelf, the thickness
and radius of our system cannot be further optimized. The
merit function of our system dropped to 0.969 after 10 cycles.
The imaging resolution and contrast of the system have been
optimized. After optimization, the influence of chromatic
aberration, astigmatism, and comet on the optimized system
is greatly reduced. The overall focal length of the system is
46mm-86mm, and provides clear view under 1mm-200mm
working distance.

Python is used to control the focal length of the liquid lens.
This entails the transmission of specific commands directed
at modulating the electric current traversing the liquid lens,
consequently orchestrating a corresponding adjustment in
its focal length. Notably, this intricate process is executed
within an impressively expedited interval of 2 ms. As the
focal length of one of the liquid lenses and the working
distance of the laparoscope change, the captured images may
defocus. By selecting the ROI in the viewed image, the con-
trast between the present ROI image and the previous ROI
image is compared by Sobel operator detection and a peak
search is conducted to find the best focusing position. Current
control is then sent to the liquid lens to conduct quick focus.
Auto-focusing of the laparoscope on the selected ROI can be

achieved as the laparoscope moves or changes magnification
at a speed of around 1.5s.

B. MONOCULAR DEPTH FROM DEFOCUS TRAINING
PIPELINE
To deal with inconsistent camera intrinsic due to magnifi-
cation change, defocus cues are introduced as an alternative
way to perceive depth. The depth from defocus (DFD) tech-
nique [27] provides better stability compared to feature-based
matching methods [28]. Traditional depth from defocus
requires at least 2-3 pictures from a focal stack to estimate
depth. To correctly estimate depth from single monocular
images, we model the focal stack by preprocessing blur on
both synthetic and real laparoscopic images, and train our net-
work with these preprocessed different focal lengths pictures.

The defocusing in laparoscopes is modeled on two
abdomen datasets, one synthesized from Unity [29] and
the other obtained from SERV-CT [30]. The first dataset
provides synthetic laparoscopic images with different tex-
tures and with ground truth depths. This dataset is based
on pseudonyms taken from the original IRCAD 3D CT
liver dataset. The SERV-CT dataset is a stereo-endoscopic
reconstruction validation dataset based on cone-beam CT.
1900 photos and their corresponding depth from the first
dataset and another 30 real laparoscopic images from the
SERV-CT dataset are archived.

We model the defocusing effect in laparoscopic surgery
using a thin lens model. Assuming the object-space distance
is S1. The image-space focal distance f1 equals

FS1
S1−F

,D is the
aperture diameter. The size of the circle of confusion (COC),
denoted as c(x), pertains to a 3D point positioned at the object
distance x and can be defined as:

c (x) = α ·
|x − S1|

x
, where α =

f1
s1
D (2)

To model the defocusing effect in real laparoscopic surg-
eries, gaussian blur is manually conducted on the images
mentioned above to synthesize the COC diameter. The
object-space focal distance S1 is set in most laparoscopic
surgeries at around 100-150mm, and image-space focal dis-
tance f1is set ranging from 25 mm to 86 mm. The aperture
diameter D is 10 mm.
To simulate defocus effect in laparoscopic images, we con-

volve the image with Gaussian blur function based on the
different depth values of each pixel, and obtain a set of
defocused images formed at different focal lengths. The
depth values of the image come from the ground truth depth
image and the working distance we defined. A stack of
laparoscopic focus images includes the original unfocused
data and four subsequent simulated defocused images cal-
culated at randomly chosen f1 and S1. For each pixel, the
corresponding c (x) is calculated according to the given f1
and S1 through formula (2). The Gaussian function used for
filtering is calculated based on c(x), where the kernel standard
deviation σ (x) = c(x)/k . k is a constant that is related to lens
parameters such as aperture diameter. Here, we empirically
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FIGURE 3. Proposed architecture of Monocular Depth from Focusing Net (MDFNet). (a) The upper part shows the network
pipeline for synthetic and real defocused images, the bottom part shows the network pipeline for real in-focus image training.
The green and red boxes show the corresponding in-focus and defocus image pairs. (b) The edge refinement part of MDFNet.

set k = 2. In digital image processing, the kernel size of
Gaussian blur is always odd, and the kernel size of Gaussian
blur is calculated as:

r = round(max(0,
σ (x) − 0.8

0.3
+ 1)) × 2 + 1 (3)

We divide the image into four discrete layers based on
depth range, each layer using a Gaussian function of the same
kernel size, and then merge them to obtain the image with
simulated defocus. By computing four different sets of f1 and
S1, preprocessed laparoscopic focal stack images are obtained
and used to train the proposed network below.

C. DEPTH ESTIMATION NETWORK
The proposed depth perception network MDFNet, shown
in Fig. 3 (a), consists of two subnetworks: the depth-from-
infocus-images net I and the depth from defocus net. The
defocus network has three parts: generative adversarial net-
work, including the depth-from-blur-images net B as the
generator, and the discriminatorD, the edge refinement mod-
ule E, and the content preservation moduleC. Details of each
submodule are as follows:

The depth-from-blur-images net B is based on a pretrained
VGG-19 encoder and U-Net decoder with residual convo-
lution. Short skip connections are used to refine domain-
adapted features. Scale-wise auxiliary loss Laux is used in
our network at each up-sampling layer to guide multi-scale
prediction of the depth map.

Network B acts as a generator and our discriminator D
is based on 4 convolution layers with leaky rectified-linear-
unit (ReLU) activation. Due to the size gap between real

and synthetic laparoscopic images, a generative adversarial
network is essential. The discriminator and generator work
in a competitive way to help train the network to adapt from
synthetic images to real abdomen images.

After the convolution blocks of network B, an iterative
edge refinement module E, similar to the edge refinement
of [31], is connected, as shown in Fig. 3 (b). The edge
graph of the original image is computed using the Canny
function and convolved by double-three convolution layers.
The edge map detected by the Canny function is convolved
as the edges of speculation are also detected in the initial edge
map. Convolution layers help learn deeper edge features,
reducing specular effect and fitting the convolved size of
the initially estimated depth. The final convolution result is
superimposed with the initial edge graph, outputting an edge
weight graph. The weight is then iterated on the depth region
by region, which helps refine the edges of the estimated depth
output.

A content preservation module C composed of pretrained
VGG-19 decoder is followed. Network C adds content con-
sistency to the predicted depth and is trained using the similar
loss of [32].
The depth-from-infocus-images net I shares the same

structure as network B, and both these two networks are
trained using the mean square error (MSE) loss, specifically
the loss of the in-focus image depth estimation as LI and
the loss of the defocused image depth estimation after edge
refinement module as LD.
The network is first pre-trained on the KITTI dataset

and then fine-tuned using the previously mentioned pre-
processed datasets. Both preprocessed defocused real and
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FIGURE 4. (a) Overall system capsulation view of the lenses (b) The
focusing ability at different working distances (c) Comparison images of
USAF 1951 resolution target taken at 0.68x and 1.44x magnification rate.

synthetic images are inputted into the generator B and the
discriminator D. For data augmentation, Gaussian noise is
randomly added. The corresponding in-focus laparoscopic
images are inputted into the depth-from-infocus-images net I.
For each depthmap, four differently defocused image and one
in-focus image are inputted, which act as a focal stack and
provide different features. The in-focus and defocus image
of the same laparoscopic scene is trained by network I and
B correspondingly.

The depth-from-infocus-images net I is trained with loss
LI, the defocus network with loss LD, the U-Net encoder with
auxiliary loss Laux, the content preservation network with
loss LC, and the generative adversarial network with loss LG
and Ladv, as labeled in Fig. 3. The networks are trained in
two paths, namely the in-focus laparoscopic depth estimation
path and the depth from defocus cues path. After several
experiments, the two routes each accounting for 0.5 give the
best training result. The training goal is to minimize the sum
of the aforementioned losses:

Lall = 0.5 ∗ LI + 0.1 ∗ LD + 0.1 ∗ Laux
+ 0.1 ∗ LG + 0.1 ∗ Ladvz + 0.1 ∗ LC (4)

III. RESULTS
A. PROTOTYPE AND CAPSULATION
According to the optical system described above, a plastic
shell is designed for assembling the lenses. The plastic shell
is a symmetric structure and has holes on top of the lenses
for the flex cable of the tunable lens, as well as holes along
the sides of both the upper and lower part to immobilize the
structure. The eyepiece of the laparoscope and the C-mount
of the CCD are also considered in the model. It is then 3D
printed and matt black coated, as shown in Fig. 4(a). The
overall length of the system is 94mm, with a weight of 147g.

B. MAGNIFICATION RATE
According to the optical structure mentioned above, a mag-
nification rate of 0.68x-1.44x can be achieved.

The focusing ability at different working distances is
tested, as shown in Fig. 4(b). The image quality at dif-
ferent magnifications is also tested, as shown in Fig. 4(c).
References [25] and [26] stated that multi-zoom optical
structures for laparoscopes suffer from poor light and dis-
torted colors. The results show that our proposed sys-
tem can provide quick auto-focus with working distance
between 1mm and 200mm, and show better stability to
light and color constancy, achieving at least 5.04lp/mm
for a 1.44x magnification rate, and 4.00lp/mm for a 0.68x
magnification rate at 100mm working distance, accord-
ing to Rayleigh criterion. Therefore, at a working dis-
tance of 100mm, the spatial resolution of the system
is 0.27 µm/pixel and 0.34 µm/pixel at 1.44x and 0.68x
magnifications, respectively.

C. DEPTH ESTIMATION
The MDFNet network is trained using Nvidia 1080ti and
under 20 epochs, with a batch size of 1 and with an initial
learning rate of 0.0001, decaying by 0.8 every 5 epochs.
During the evaluation, the output depthmapsDout and ground
truth Dgt are compared under uint8 data type.
The effects of the different components of our network is

shown in Fig. 5. As is shown, the depth-from-blur-images
net B and discriminator network D learn the basic contours
of the image but suffer from artifacts. The added content
preservation network C reduces the artifacts and smooths the
output but is sensitive to light reflection. Edge refinement E
further differs the depth levels and lowers the influence of
specular highlight, shown in green in Fig. 5. Adding depth-
from-infocus-images net I means that the network is trained
jointly on both defocus images and in-focus images, as shown
in Fig. 5(e), provides a smoother depth output.

As this is the first paper conducting multi-magnification
and monocular depth estimation based on deep learning
defocus cues in laparoscopic scenes, two depth from defo-
cus networks proposed in the natural image field, namely
DMENet [32] andD3-Net [33] are used as comparison. These
two networks are trained on the same training data and tested
on in-focus datasets, namely the Hamlyn dataset [34] of
the abdomen images and the remaining SERV-CT dataset,
shown in Fig. 6(a). The networks are also tested on unla-
beled clinical laparoscopic defocused images provided by
Beijing Changgung Hospital, as shown in Fig. 6(b). The
last row in Fig. 6(b) shows the depth output of the mag-
nified scenes of the image above. The two depth outputs
show different depth details, which prove our method’s abil-
ity to improve resolution by estimating depth on different
magnifications.

Results show that DMENet suffers greatly from specularity
and fails to estimate depth in laparoscopic scenes. D3-Net
performs better on specularity but still fails to give accurate
depth and suffer most from outliers. As both the Hamlyn
and SERV-CT test images are in-focus, the two networks do
not suit small depth range situations like the abdomen and
fail to estimate depth on in-focus images. On the contrary,
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FIGURE 5. Depth outputs generated with different components of our network. The green boxes show that the added edge refinement
module helps reduce specular issues. (a) is the original laparoscopic image input. (b) is the proposed network trained only with the
depth-from-blur-images net B and discriminator network D, which means only defocused images are inputted. (c) is the proposed
network trained with the depth-from-blur-images net B, the discriminator network D, and the content preservation network C. (d) is
the proposed network trained with the depth-from-blur-images net B, the discriminator network D, the content preservation network
C, and the edge refinement E. (e) is the network trained with both defocus images and in-focus images, and with all the modules
described. (f) is the ground truth depth of the inputted laparoscopic image.

FIGURE 6. (a) Depth outputs of DMENet [27], D3-Net [29] and our proposed MDFNet on the Hamlyn dataset no.18, no.1, no.22, SERV-CT dataset, (b)real
defocused and in-focus clinical surgeries images provided from Changgung Hospital real defocused and in-focus clinical surgeries images provided from
Changgung Hospital using a Storz laparoscope (patients suffering from hepatolithiasis which need minimally invasive hepatectomy), with the last row a
magnified view of the clinical scene, used to show our depth estimation of magnified scenes help improve the depth resolution.

TABLE 1. Evaluation performance of depth estimation on hamlyn dataset.

MDFNet fits laparoscopic scenes better, and can estimate
depth monocularly from images of different focal lengths,
namely defocused images and in-focus images.

The performance evaluation of MDFNet compared with
DMENet and D3-Net is shown in Table 1. The Hamlyn
dataset provides stereo images and camera calibration intrin-
sic. The ground truth depth is then calculated by Endo-
Depth [35]. The results are compared under uint8 format.
While for RMSE, as uint8 ranges from 0-255, the two
depth images are normalized by dividing each value by
256 before comparison. The depth outputs show that the
original DMENet and the D3-Net trained on laparoscopic
data do not fit small depth range situations and both suffer
from outliers. Our depth network is shown to also be able

to estimate depth monocularly from in-focus images. How-
ever, as the ground truth depth is calculated according to the
camera calibration intrinsic, the GT depth is a relative value
and there may also be error caused during the GT calculation.
We therefore further conduct system validation on ex-vivo
models, and use 3D scanners for the real GT output.

D. SYSTEM VALIDATION
The overall performance of our system is validated in both
qualitative and quantitative ways. The light source used in all
experiments are the cold light source LED DELON 300 with
a luminous power of 180W and a color temperature of 6500K.

Ex-vivo experiments are conducted on a porcine kidney,
a porcine liver, a porcine heart, and a porcine lung, as shown

38 VOLUME 12, 2024



F. Mao et al.: Monocular Variable Magnifications 3D Laparoscope System

FIGURE 7. Ex-vivo experiment results. (a) Photo of a porcine kidney, the
measured area is circled by the dashed circle (magnification ratio 0.68x,
working distance 100 mm). (b) The reconstructed surface of the porcine
kidney. (c) Photo of porcine liver with a hole (magnification ratio 0.68x,
working distance 30 mm). (d) The reconstructed surface of the porcine
liver with hole. (e) Photo of porcine heart (magnification ratio 0.68x,
working distance 100 mm). (f) The reconstructed surface of porcine heart.
(g) Photo of porcine lung (magnification ratio 0.68x, working distance
2 mm). (h) The reconstructed depth range of (g).

in Fig. 7(a), (c), (e), and (g). The reconstructed surfaces are
shown in Fig. 7(b), (d), (f), and (h). The reconstructed surface
curve agrees with the morphology of the organs. In Fig. 7(h),
our system proves feasibility in near observation situations.

To further validate the robustness of dynamic scenes,
a porcine heart model is reconstructed, whose ground truth
point cloud is obtained via the Artec Eva scanner. The heart
model is moved clock wisely, and the 3D reconstruction
is conducted in real-time with a speed of 6fps. During the
process, three points on the model are measured and the
depths are compared with the ground truth, with the MAE
results and the standard deviation values shown in Fig. 8.

Images of an ex-vivo porcine heart are then captured,
and 3D reconstruction is conducted according to the depth
estimation. The result further confirmed the feasibility of
the proposed system. The Artec Eva scanner is again used
to capture the 3D point cloud of the pig heart as ground
truth. Fig. 9(a) shows the captured RGB image by our pro-
posed optical structure at a high magnification rate, (b) shows
the 3D reconstruction of the magnified view, and (c) shows
the captured image at a low magnification rate, with (d) the
corresponding monocularly 3D reconstructed porcine heart
of (c). The red box in Fig. 9(c) shows that the proposed
method still fails in strong speculation situations, which needs
to be further improved. The green box in (c) shows the
corresponding part of the high magnification view on the low

FIGURE 8. (a) Picture of the heart model, captured by the proposed
system with magnification ratio of 0.68x and working distance of 150mm.
(b) Reconstruction errors of three points tracked on a clock wisely moving
rigid heart model. The inserted figures are the corresponding
reconstructed surfaces at three instants, with the three measured points
in red.

FIGURE 9. 3D reconstruction of our proposed system on a porcine heart
(working distance 100 mm). (a) shows the image under 1.44x
magnification; (b) shows the 3D reconstruction of (a); (c) shows the
captured RGB image under 0.68x magnification, and (d) shows the 3D
reconstruction of (c). The red box in (c) shows that the proposed method
still fails in strong speculation situations. The green box shows the
corresponding magnified part of the porcine heart on the low
magnification image.

magnification view. The depth estimation is 0.17s per image,
tested on Nvidia RTX 3080.

We again normalized and aligned our point cloud of the
porcine heart captured under high magnification rate with
the ground truth in CloudCompare, shown in Fig. 10. The
3D reconstruction of the porcine heart in Fig. 10 is based
on the monocularly captured right view in Fig. 9(a), corre-
sponding to the upper right part of the porcine heart, which
is colored in Fig. 10. The distance heat map between the
3D reconstruction of the porcine heart by our system and
the 3D scanner is shown. The depth of the whole porcine
heart varies from 0mm to 62.07mm, while the colored part
varies from 0mm to 41.50mm. We measured two parts of the
blood vessel on the porcine heart, drawn in red and purple
on the heat map. The length of the vessels is 44.198mm and
37.108mm measured by our system, while the ground truth
length is 40.03mm and 32.06mm correspondingly, given by
the 3D scanner Artec Eva. The blood vessel length estimation
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FIGURE 10. Distance heat map between 3D reconstruction alignments of
the porcine heart (colored), with two parts of a blood vessel (purple and
red lines) measured (magnification ratio 0.68x, working distance
100 mm).

average error of our system is 4.61mm. The overall registra-
tion error is shown in the color bar, with the blood vessel area
averaging at around 4.39mm. The above results show that our
system can give a reference length estimation of anatomical
morphological features like blood vessels, which can help
surgeons get better length and size concept of the abdomen
during laparoscope surgeries. Different viewing angles and
magnification rates should be blended to achieve a higher
resolution and smoother overall reconstruction in the future.

We also conducted consecutive depth estimation, our sys-
tem can estimate depth on 7 consecutive frames captured
under different focal lengths, meaning the blurriness and
the magnification rates of the image are different, so the
image resolution is also different. The average depth error
is 0.78mm, with standard deviation 0.22mm, proving that our
system can provide stable depth estimation under different
imaging qualities, which is the advantage of our proposed
method.

IV. DISCUSSION
While most studies in the literature focus only on design-
ing bulky structures to provide a field of view change or
only on combining depth estimation with semantic segmen-
tation, camera pose, or scene flow estimation, we proposed
integrating a multi-magnification system with real- time 3D
reconstruction ability. The proposed system was evaluated
both on its imaging ability and depth estimating ability.

The experimental results confirm that our system promises
to address limited magnification, blurred near imaging and
lack of depth perception. As compared to another monoc-
ular laparoscopic system which enlarges FOV and provide
depth perception [6], our system shows slightly higher recon-
struction accuracy (5.31mm vs 4.608mm). Compared to a
stereo system composing of a stereo laparoscope with 6mm
baseline distance and Monodepth2 [36] depth perception
method, our system shows smoother and higher depth results
(7.69mm vs 6.35mm).

Compared to other studies providing near observation [22]
and multi-magnifications [23], we substituted the need for

such complex and bulky designs with a portable off-the-shelf
solution that can fit conventional laparoscopes. As cam-
era intrinsic is inconsistent, we introduce using defocusing
cues as an alternative way for real-time monocular depth
estimation and 3D reconstruction. Compared to other state-
of-the-art depth estimation methods in laparoscopy, [15]
and [16] require consistent camera intrinsic, which fails in
multi-magnification situations. Our depth estimation results
are compatible in smoothness, speed, and accuracy, and we
can work well with images of different focal lengths. Com-
pared with stereo laparoscopes like Olympus, our system
shows better depth estimation accuracy in specularity and
smooth organ surfaces, the 3D reconstruction error of our
system is also slightly better than stereo laparoscopes. Com-
pared with Rubina series of Karl Storz, our system does not
require 3D glasses and can further provides magnification
changes through optical zoom. Therefore, the proposed inte-
grated system can achieve multi-magnification, autofocus,
near observation, and real-time 3D reconstruction all in one.

The above advantages state our system can provide better
reference during laparoscopic surgeries. Our system is more
specifically targeted at global and magnified imaging as well
as depth estimation of incisions, blood vessels, fluorescence
and other anatomical morphological features. We provide a
monocular depth estimation system which help surgeons get
better length and size concept of the abdomen during laparo-
scope surgeries. With the ability to change views and the
given reference depth as well as 3D reconstruction, surgeons
can conduct diagnosis of lesions more efficiently. The system
also reduces depth uncertainty caused by limitation of optical
imaging resolution.

The influence of depth resolution on clinical detection
and diagnostic decision-making is pivotal in evaluating the
practical implications of our proposed system. A higher depth
resolution can enhance the precision of lesion localization,
tissue characterization, and overall diagnostic accuracy. Con-
versely, limited depth resolution can introduce challenges
in accurately assessing the spatial relationships between
anatomical features, particularly in scenarios where precise
depth cues are integral to distinguishing between healthy
and pathological tissues. The integration of our proposed
multi-magnification deep learning depth estimation into clin-
ical settings introduces an innovative dimension to these
considerations. Addressing the challenges posed by depth
limitations can contribute to more accurate and informed
clinical decision-making. Further research and validation,
including the assessment of sensitivity and specificity, will be
pivotal in establishing the clinical benefits and applicability
of our proposed approach within the dynamic landscape of
surgical interventions.

However, our system still needs to increase the magnifica-
tion range and may fail in extreme situations such as smoke
occlusion and blood flow with strong specularity. We further
discuss the future focus of our system as follows.

To improve the depth accuracy of our deep learning-based
depth estimation algorithm,we have addressed the limitations
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posed by optical resolution of the laparoscopic images. Our
solution was to implement an optical zoom feature in our
system’s design, which covers a range of 0.68x to 1.44x.
This zoom functionality is critical in enhancing the optical
resolution as the magnification of the laparoscopy increases.
However, the optical design is constrained by factors such
as volume and weight of the optical structure of multiple
lenses, and the maximum magnification range achievable
is 1.44x. This range may not be sufficient for imaging smaller
lesions, such as tumors, in clinical applications. To expand the
potential clinical use cases of our system, we need to consider
further increasing the optical zoom range.

Artifacts and noises are the drawbacks of estimating depth
from defocusing cues. As our 3D reconstruction is conducted
monocularly, in the future, we intend to conduct 3D recon-
struction onmulti consecutive frames under different viewing
angles. As the resolution under different magnification rates
is different, we also propose to conduct 3D reconstruction
based on multi-consecutive frames in the future. During the
conducted experiments, a 3D reconstruction model captured
under low magnification rate has 3527781 points, whereas a
3D reconstruction model captured under high magnification
rate has 4496022 points, therefore blending the two images
before 3D reconstruction can improve accuracy and density,
which shall be our future focus.

As proposed in [37], different focus rate images are cap-
tured as the laparoscope moves towards the neoplasia for
size estimation. In our system, after the depth estimated from
MDFNet, we can also obtain the real-time focal length of the
system and further conduct neoplasm size measurements.

As using the robot arm for laparoscopic control is proposed
in [38], our proposed liquid lens optical structure can autofo-
cus on the selected ROI, which can further be coordinated
with the robot arm and accomplish an integrated diagnosis
and treatment system.

In laparoscopic procedures, minimizing surgeon overhead
and optimizing workflow efficiency are crucial considera-
tions. The proposed system requests manually selecting the
ROI for autofocus adjustment each time the laparoscope
shifts or the image is magnified can potentially burden the
surgeon and interrupt the surgical flow. In future studies
we will integrate automatic ROI tracking into the proposed
system. This advancement seeks to empower the system
to autonomously detect and track the pertinent ROI as the
laparoscope moves or the field of view is adjusted. By doing
so, the need for repeated manual ROI selections is obviated,
streamlining the autofocus process and allowing the surgeon
to maintain their focus on the surgical task at hand.

V. CONCLUSION
Modern laparoscopic surgeries pose several specific chal-
lenges such as fixed magnification rates, physical focus-
ing, and lack of depth perception. We have proposed a
laparoscopic system including an integrative optical struc-
ture for conventional laparoscopes using two liquid lenses
and three optical lenses to obtain multi-magnification rates,

auto-focusing, and near observations, as well as a depth
network for real-time monocular depth estimation and 3D
reconstruction of photos under different focal lengths. The
proposed optical structure has been shown to exceed current
liquid lens-based optical structures in both light stability
and weight. The real-time deep-learning approach can esti-
mate depth monocularly from laparoscopic scenes without
restriction to camera intrinsic. The system can perceive depth
monocularly in laparoscopic scenes at a rate of 6 fps, and less
than 6 mm in error. Results also show that jointly training
the network with in-focus and defocused image pairs helps
perceive depth in a smoother and edge-awareway and provide
a way to cope with texture-less environments. This method
provides an alternative to state-of-the-art laparoscopic 3D
reconstruction techniques and proves its feasibility. The sys-
tem is targeted at providing multi-magnification view of
anatomical morphological features during laparoscopy, and
give surgeons depth and size reference to aid their diagnosis.

The proposed laparoscopic system offers the advantages
of low cost, lightweight, multi-magnifications, near observa-
tions, and real-time depth estimation. Therefore, the proposed
system can be regarded as a favorable system prototype for
integrated imaging and diagnosis in laparoscopic surgeries.
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