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ABSTRACT Objective: Epilepsy, an enduring neurological disorder, afflicts approximately 65 million
individuals globally, significantly impacting their physical and mental wellbeing. Traditional epilepsy
detection methods are labor-intensive, leading to inefficiencies. Although deep learning techniques for brain
signal detection have gained traction in recent years, their clinical application advancement is hindered by
the significant requirement for high-quality data and computational resources during training. Methods &
Results: The neural network training initially involved merging two datasets of different data quality, namely
BonnUniversity datasets and CHB-MIT datasets, to bolster its generalization capabilities. To tackle the issues
of dataset size and class imbalance, we employed small window segmentation and Synthetic Minority Over-
sampling Technique (SMOTE). algorithms to augment and equalize the data. A streamlined neural network
architecture was then proposed, drastically reducing themodel’s training parameters. Notably, amodel trained
with a mere 9,371 parameters yielded impressive results. The three-classification task on the combined
dataset delivered an accuracy of 98.52%, sensitivity of 97.99%, specificity of 99.35%, and precision of
98.44%.Conclusion: The experimental findings of this study underscore the superiority of the proposed
method over existing approaches in both model size reduction and accuracy enhancement. As a result, it is
more apt for deployment in low-cost, low computational hardware devices, including wearable technology,
and various clinical applications.

INDEX TERMS Electroencephalography, epilepsy detection, deep learning, data augmentation, lightweight
neural networks.
Clinical and Translational Impact Statement—This study is a Pre-Clinical Research. The lightweight neural
network is easily deployed on hardware device for real-time epileptic EEG detection.

I. INTRODUCTION
Epilepsy, a chronic ailment, ranks as the second most
prevalent neurological disorder [1], [2]. It manifests as tran-
sient brain dysfunction stemming from sporadic, abnormal
neuronal firing.

In order to effectively detect and recognize the epilepsy,
one effective way to determine this is through the electroen-
cephalogram (EEG). The EEG is a weak electrical signal
produced by the interaction of neural activity within the
brain [3]. Through EEG testing, clinical expert can diagnose
patients and help select appropriate treatment options.

In the clinical setting, clinical experts make diagnoses by
examining the recorded EEG data and make comprehensive
judgments based on the patient’s clinical symptoms. Given
the irregular and transient nature of seizures [4], long-
term EEG recordings are necessary. This requires experts

to recognize seizure characteristics from a large amount of
recorded EEG data over a long period of time. This time-
consuming and heavily empirical approach [5] can lead to
expert fatigue and possible misdiagnosis due to prolonged
diagnosis.

The recent surge in automated computer-aided epilepsy
detection research bifurcates into two domains: machine
learning and deep learning.

Machine learning processes EEG data through four stages:
noise reduction, feature extraction, feature selection, and
classification. The feature extraction stage is critical as
it impacts the classifier’s effectiveness. Standard feature
extraction methods include time-frequency analysis [6],
non-linear dynamics [7], and statistical features [8]. For
instance, the method delineated in [6] employs the Discrete
Wavelet Transform (DWT) for noise reduction, followed
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by frequency domain wavelet decomposition for feature
extraction, culminating in Nonlinear Vector Decomposition
Neural Network (NVDN) classification. This method boasts
a 95.60% accuracy on the Bonn University dataset. However,
thesemachine learning techniques, while effective on specific
datasets, falter on others. Their reliance on manual feature
design both burdens the process and curtails generalizability.

Deep learning based detection methods can automatically
extract high-level features from data through powerful
computational capabilities. These features are less inter-
pretable but possess desirable classification results. Key
models in deep learning, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
can directly learn feature representations for classification,
bypassing the need for data pre-processing. Compared to
manually designed feature extraction methods, deep learning
algorithms demonstrate more robust feature learning and
superior detection performance [9], [10]. For example,
in [11], the authors used the STFT algorithm to convert
EEG signals to 2D image data, and then used some pre-
trained model frameworks (VGG, AlexNet and EfficiectNet)
in the field of computer vision to recognize the image
data. The EfficientNet-B7 model, despite its 66 million
parameters [12], only achieved a 93.00% accuracy on the
Bonn University dataset. Such models, while computation-
ally intensive, often underperform due to limited EEG sample
availability.

Traditional visual diagnosis by clinical experts is time-
consuming, labor-intensive, and inefficient. Machine learn-
ing methods heavily depend on hand-extracted features and
exhibit poor generalization ability. Deep learning methods
can address these issues effectively, but their application
in a wide range of clinical applications is limited by
their own computational resources and the need for high-
quality data. To overcome these challenges, this study
proposes a lightweight PCNN-Bi-LSTM hybrid network
model. By adjusting the position and number of convolutional
kernels of the PCNN, the network’s parameters are reduced,
followed by the construction of a Bi-LSTM network, which
further extracts the data’s temporal features for classification.
This approach achieves high accuracy and a lightweight
network architecture, easily deployable on hardware devices
for real-time epilepsy EEG detection. Fig. 1 illustrates
the proposed method’s schematic figure. Furthermore, this
study selects two datasets of different quality for mixed
training to increase the dataset’s sample diversity and
enhance the trained model’s generalization. We also employ
small window segmentation and the SMOTE algorithm to
augment the data, achieving dataset expansion and balance,
reducing overfitting risk, and further enhancing the model’s
generalization ability.

The main contributions of this study are as follows:
• We propose a lightweight neural network architecture
for epilepsy detection, called PCNN-BiLSTM, featuring
a minimal number of parameters and high recognition
accuracy. This method is more suitable for hardware

FIGURE 1. The method of application of this work.

deployment in clinical applications compared to other
methods.

• To address the issue of limited EEG data and category
imbalance, we utilize a mixture of two datasets of dif-
ferent quality for training, and employ the small window
segmentation algorithm and the SMOTE algorithm to
expand and balance the data. The network trained from
this data exhibits better generalization ability compared
to those trained with data used by other methods.

The remainder of this paper is organized as follows:
Section II introduces recent related work. Section III
describes the methodology proposed in this paper, including
the dataset used, the data augmentation algorithm, the neural
network architecture, and the model evaluation metrics.
Section IV details the experimental setting, including the
experimental environment and processing steps. Section V
presents the detailed experimental results and analyses.
Section VI provides a comparison between the proposed
method and other methods, and discusses this paper’s
contributions and shortcomings. Finally, Section VII draws
conclusions and outlines future directions.

II. RELATED WORKS
Epilepsy detection has made significant strides in recent
years, primarily driven by two categories of approaches:
machine learning and deep learning. Both approaches have
demonstrated remarkable performance in this field.

Machine learning techniques have been employed exten-
sively in epilepsy detection. Bhattacharyya and Pachori [13]
utilized Empirical Wavelet Transform (EWT) to extract
multiple features from multivariate EEG signals, achieving
a classification accuracy of 97.91%. Gupta and Pachori [14]
used Fourier-Bessel series expansion (FBSE) to obtain EEG
rhythms and extracted features for classification, achieving
a triple classification accuracy of 97.3%. Sharma and
Pachori [15] proposed a novel Time-frequency representation
(TFR) based on the improved eigenvalue decomposition
of the Hankel matrix and Hilbert transform (IEVDHM-
HT), which reached a classification accuracy of 100%.
Sharma et al. [16] used a sparse autoencoder-based deep
neural network to extract essential structural details, achiev-
ing a classification accuracy of 99.6%. Serna et al. [17]
developed an EEG rhythm-specific Taylor-Fourier Filter
Bank, achieving a 94.88% accuracy.

Deep learning techniques have also been employed
with great success. Raghavendra et al. [18] pioneered the

VOLUME 12, 2024 23



C. Wang et al.: Epileptic EEG Detection Method

use of CNNs for analyzing epileptic EEG signals, con-
structing a 13-layer deep CNN model, achieving an
accuracy of 88.67%. Vidyaratne et al. [19] developed a
Deep Cellular Recurrent Network (DCRNN) framework,
achieving an accuracy of 91.3%. Shen et al. [20] utilized
image-like data derived from the adjustable Q-wavelet
transform, reaching an impressive accuracy of 97.57%.
Qiu et al. [21] proposed LightSeizureNet, achieving an accu-
racy of 97.09%. Tang et al. [22] presented an evolution-
ary algorithm enhanced model, achieving an accuracy
of 98.16%. Varli and Yilmaz [23] created a combined
deep learning model, achieving an accuracy of 99.21%.
Duan et al. [24] proposed a deep metric learning model,
achieving 98.60% accuracy. Salafian et al. [25] developed
a Mutual Information-based CNN-Aided Learned factor
graphs (MICAL) algorithm, achieving 98.39% accuracy.
Qiu et al. [26] proposed a difference attention ResNet-
LSTM network (DARLNet), achieving 98.17% accuracy.
Zhao et al. [27] used a random channel ordering (OCR)
method for data augmentation, and Shyu et al. [28] proposed
a model with a combination of inception module and residual
module, achieving an accuracy of 97.11%.

With the progressive enhancement of hardware com-
puting power and reduction in costs, the deployment of
neural networks has become more accessible. Ai et al. [29]
successfully deployed a lightweight convolutional neural
network on a TSMC 65nm IP core for EEG-based epilepsy
prediction, yielding an impressive accuracy rate of 87.9%.
Similarly, Feng et al. [30] deployed an EEGNet on a Xilinx
KC705 FPGA for four-class classification utilizing event-
related potential (ERP) EEG data, resulting in a remarkable
classification accuracy of 96.03%.

A review of the literature reveals that while machine
learning depends on the selection of features, most of
the feature extraction methods are complex and rely on
manual extraction, leading to poor generalization. Deep
learning, on the other hand, can automatically extract features
from raw data and classify them with excellent recognition
results. However, most deep learning models transform
one-dimensional digital data into two-dimensional image
data or use deeper and more complex network modules,
thereby increasing computational complexity. Additionally,
most methods do not employ data augmentation algorithms,
resulting in trained networks that perform well only on
their single dataset but lack overall generalization. Some
studies have shown the feasibility of deploying deep learning
algorithms on hardware devices, but this may come at the cost
of reduced recognition accuracy.

Therefore, this study proposes a method that reduces
network complexity and parameters, saving computational
resources while ensuring model accuracy. By adopting
a hybrid dataset with data augmentation algorithms, the
network’s generalization ability is enhanced, facilitating its
deployment onwearable hardware devices. This approach has
significant clinical implications for enabling affordable and
expert-independent epilepsy detection.

III. METHODOLOGY
The pseudocode of the method is shown in Figure 2.

FIGURE 2. The pseudocode of this work.

Firstly, the original EEG data from the hybrid dataset is
segmented using a sliding window algorithm to transform
longer time series data into multiple shorter time series data.
This process increases the number of data samples. Secondly,
the SMOTE algorithm is used to proportionally expand the
smaller sample sizes, balancing the number of samples in
each category. Then, the data are randomly divided into ten
subsets. Nine of these subsets are used to train our PCNN-
BiLSTM hybrid network, which can automatically extract
features and perform triple classification. The remaining
subset is used for model testing. To reduce randomness, this
process is repeated ten times to ensure that each subset is
tested. The overall network architecture of our method is
depicted in Figure 3.

A. DATASET
To enhance the generalization capability of deep learning
networks across diverse datasets, this study proposes a
solution that merges datasets of varying quality for model
training. This approach combines datasets from Bonn Uni-
versity and CHB-MIT (specifically, the chb_02) to train our
network. By employing this cross-dataset training strategy,
we introduce diversity in the data samples, allowing the
model to learn more essential features of epilepsy.

1) BONN
The first dataset used in this study is the publicly available
epilepsy EEG dataset from Bonn University. This dataset
comprises five distinct subsets labeled as A, B, C, D, and E.
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FIGURE 3. Overall method architecture.

Each subset contains single-channel EEG data with specific
characteristics. Subset A and B consist of scalp EEG data
from healthy volunteers, while subsets C and D contain
intracranial EEG data from epileptic patients’ non-focal
and focal areas, respectively. Subset E contains seizure-
related intracranial EEG signals. Each subset comprises
100 files, with each file recording a 23.6-second-long EEG
activity at a sampling frequency of 173.61Hz. All data
have undergone pre-processing, primarily involving filtering
operations and visual detection techniques to eliminate
artefactual interference.

2) CHB-MIT
The second dataset used is the publicly accessible pediatric
epilepsy EEG dataset provided by CHB-MIT. This dataset
includes data obtained from both seizure and interictal peri-
ods, adhering to the 10-20 international standard electrode
placement system. The dataset comprises multi-channel EEG
recordings, with a fixed sampling frequency of 256Hz.
It includes a total of 23 recordings derived from 22 subjects.

The Bonn University dataset is divided into three cate-
gories: normal, interictal, and ictal. The latter two categories
consist of intracranial EEG signals that have undergone
rigorous filtering processes. In contrast, the CHB-MIT
dataset contains two categories: interictal and ictal, consisting
of scalp EEG signals with minimal preprocessing. For
consistency, we performed channel averaging on the multi-
channel data from the CHB-MIT dataset, resulting in a single-
channel signal. The datawere then downsampled to 173.61Hz
and segmented into multiple files, each containing 4097 data
points. The datasets from both sources were merged based
on their respective categories, resulting in combined datasets
of 200, 352, and 106 files for the three classes, respectively.
These merged datasets were then used for augment.

B. DATA AUGMENT
Acquiring a substantial amount of real data for seizure
periods is challenging due to their short and irregular
durations, privacy concerns related to EEG data, and the
complexities of labeling. In order to solve the problem
of small sample size and unbalanced categories in real
data acquisition, we propose a method that mixes two
data augmentation strategies. Our hybrid data augmentation

strategy includes small window segmentation and SMOTE,
which can effectively solve the problems of small data
samples and unbalanced categories, respectively. Small
window segmentation.

1) SMALL WINDOW SEGMENTATION
The Small Window Segmentation algorithm divides lengthy
data into multiple shorter segments by selecting an appropri-
ate window size and sliding step. Assuming the length of the
long data is l, the window size is w, and the sliding step is s,
the number of short data segments (num) can be calculated
using the following equation:

num =
(l − w)

s
+ 1 (1)

The integer part of num represents the actual number of
generated data segments. Thewindow size directly influences
the size of the generated data; with a fixed network architec-
ture, a larger window size yields larger data segments, which,
after passing through the Bi-LSTM layer, could lead to an
excessive number of connections to the fully connected layer,
thus increasing the network parameters. However, a window
size that is too small may fail to capture the intrinsic meaning
of the data. The step size, on the other hand, determines
the quantity of generated data. A smaller step size results in
higher overlap between segments, potentially affecting data
quality. Conversely, a larger step size generates fewer but
potentially higher-quality instances, which is beneficial for
training. Therefore, choosing the optimal window and step
size is vital for ensuring data quality and effective training.

2) SMOTE
Addressing the problem of epileptic EEG data classification
using neural networks, it is crucial to ensure the model can
fully learn the unique features of each category. This requires
an equal amount of data from each category for model
training. If data from a particular class is scarce, the model
may not fully learn its features, leading to classification
errors. However, it would not have a significant impact on
overall classification accuracy due to the relatively small
amount of data in this category. This can result in the
model’s learned features being skewed towards the other
classes, becoming overly specific and lacking generalization.

VOLUME 12, 2024 25



C. Wang et al.: Epileptic EEG Detection Method

To circumvent this issue, the SMOTE algorithm is employed
to expand the epileptic EEG data of minority classes.

The algorithm generates new samples using the K-nearest
neighbors algorithm and linear interpolation. The process
involves selecting a reference sample xi from the minority
class samples. Next, an auxiliary sample xj is randomly
selected from the k nearest neighbors of xi within the same
category. This k is the SMOTE upsampling ratio, which is
the ratio of the number of samples in the majority category to
the number in the minority category. If k is not an integer, its
fractional part is converted to a probability value for selecting
neighboring samples. Linear interpolation is then performed
between the reference sample xi and each auxiliary sample xj,
as defined in Equation (2).

xnew = xi + λ
(
xj − xi

)
(2)

where xnew is the newly generated sample with the same label
as the reference sample, and λ is a random number between
[0, 1].

C. PCNN-BiLSTM
As computational power escalates, neural network architec-
tures grow increasingly intricate. While accuracy improves,
deploying these networks for long-term epilepsy detection
becomes a formidable challenge [31]. To facilitate the clinical
application of deep learning techniques, the adoption of
lightweight neural network architectures is advantageous.
The proposed framework in this study encompasses two
core modules: the PCNN and the Bidirectional Long Short-
Term Memory (BiLSTM). These modules, leveraging their
distinct computational approaches, collaboratively extract
multi-dimensional features from raw EEG signals.

1) PCNN
CNNs are a cornerstone of deep learning methodologies,
prized for their robust representational learning capabilities.
CNNs employ convolutional kernels to convolve input sig-
nals, generating multi-dimensional output features. Through
a series of convolutions, pooling, and activation operations,
these networks efficiently learn the most pertinent features.
Shared kernel features in CNNs significantly reduce learning
parameters compared to traditional fully connected networks.
However, recent CNN structures have grown increasingly
complex, encompassing more layers and, consequently,
a larger number of parameters. Such structures, when applied
to data-scarce tasks such as epileptic EEG recognition, tend
to overfit.

To mitigate this issue, Ullah et al. [32] proposed the
pyramid P-1D-CNN module. We use this module as part
of our network architecture. Unlike conventional CNNs
that employ pooling layers for size reduction, this model
utilizes larger convolutional step sizes to extract more
meaningful and distinctive features. By integrating numerous
convolutional kernels at the shallow layer and fewer at the
deep layer, the PCNNmodel significantly reduces the number
of trainable parameters. This architectural adaptation not only

simplifies the model’s complexity but also lessens the risk of
overfitting. The entire structure comprises three consecutive
convolutional blocks of decreasing sizes. Each block includes
a convolutional layer (Conv), a batch normalization layer
(BN), and a non-linear activation layer (ReLU), aiming to
achieve optimal detection accuracy with minimal complexity.

2) BI-LSTM
EEG signals are temporal in nature, with potential inter-
relationships among the signals. To decipher this latent
information, we employ LSTM, a type of RNN algorithm,
renowned for modeling sequential data. Unlike standard
RNNs that relay only a hidden state at each time step, LSTM
tackles the issue of learning long-term dependencies by
incorporating a cell state—essentially a long-term memory
component that preserves vital information from preceding
moments.

To counteract the problem of vanishing gradients during
backpropagation and to ensure sustained learning, LSTM
utilizes a dual memory system—comprising a hidden state
and a cell state—those aids in retaining and propagating
relevant information. The architecture of LSTM, illustrated
in Figure 3, accepts three inputs for each LSTM block: the
current network input value (Xt ), the previous LSTM hidden
state (ht−1), and the previous LSTM cell state (ct−1). LSTM
also generates two outputs: the updated hidden state (ht ) and
the updated cell state (ct ).

LSTM’s operation is governed by three crucial parameters:
the forget gate (ft ), the input gate (it ), and the output gate
(ot ). These parameters modulate the behavior of the cell state
(ct ). Specifically, the forget gate determines the amount of
information to be discarded from the cell state. Conversely,
the input gate dictates the volume of new information to
be incorporated into the cell state and subsequently outputs
this updated cell state. Lastly, the output gate is responsible
for generating the hidden state. The specific calculations for
these gates are as follows:

ft = σ
(
Wf [ht−1,Xt ] + bf

)
(3)

it = σ (Wi [ht−1,Xt ] + bi) (4)

ot = σ (Wo [ht−1,Xt ] + bo) (5)

c′t = tanh (Wc [ht−1,Xt ] + bc) (6)

ct = ft ∗ ct−1 + it ∗ c′t (7)

ht = ot ∗ tanh (ct) (8)

whereWf , bf ,Wi, bi,Wo, bo,Wc, bc, are the training weights,
c′t is the new Input, and tanh and σ (sigmoid) are the activation
functions.

The Bidirectional-Long Short-Term Memory (Bi-LSTM)
architecture is characterized by the amalgamation of two
distinct LSTM networks. This arrangement enables par-
allel processing of inputs in both forward and backward
sequences, facilitating comprehensive feature extraction.
By merging the outputs of these two LSTM networks,
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a final output is generated, yielding a more comprehensive
representation of the input data.

With this methodology, each data instance is analyzed
from dual perspectives—considering not just preceding
information but also subsequent information. Consequently,
the Bi-LSTM model captures a broader perspective of the
input sequence, enabling the extraction of features with
a larger global context compared to conventional LSTM
models.

D. EVALUATION METRICS
In the realm of multi-classification problems, algorithm
performance assessment often employs a confusion matrix.
This matrix forms the foundation for four fundamental evalu-
ation metrics: Accuracy (Acc), Sensitivity (Sens), Specificity
(Spec), and Precision (Prec).The calculated formulae are as
follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
(9)

Sens =
TP

TP+ FN
(10)

Spec =
TN

FP+ TN
(11)

Prec =
TP

TP+ FP
(12)

These metrics elucidate the results of the algorithm’s clas-
sification. Within the confusion matrix framework, several
pivotal terms are used to calculate thesemetrics. True Positive
(TP) signifies situations where the sample is positive, and
the algorithm correctly identifies it as such. True Negative
(TN) pertains to instances where the sample is negative, and
the algorithm correctly classifies it as negative. False Positive
(FP) embodies scenarios where the sample is negative, but the
algorithm erroneously classifies it as positive. Lastly, False
Negative (FN) includes cases where the sample is positive,
but the algorithm incorrectly classifies it as negative.

IV. EXPERIMENTAL SETTINGS
A. EXPERIMENTAL ENVIRONMENT
The experimental setup for this study leveraged a 64-bit
Windows 10 operating system. The computational workload
was handled by an Intel(R) Core(TM) i5-7200U CPU.
The programming language of choice was Python 3.9,
and TensorFlow 2.10.0 was utilized as the deep learning
framework.

B. EXPERIMENTAL PROCEDURE
The experimental procedure in this study is bifurcated into
two core segments: data augmentation, feature extraction
and classification. To enhance the network’s generalization
capability, a 10-fold cross-validation method was employed
for training. The dataset was partitioned into a training set
and a test set in a 9:1 ratio, culminating in 10 subsets.
Sequentially, 9 subsets were used for training and 1 subset

TABLE 1. Parameters of the models.

was reserved for testing, with each subset iteratively serving
as the test data.

1) DATA AUGMENTATION
The data augmentation segment includes small window
segmentation and the SMOTE. During the small window
segmentation phase, choosing suitable window and step
sizes is vital for producing high-quality data. To ascertain
the optimal segmentation size, several experiments were
performed to compare the classification performance of
different methods with window sizes of 1024, 512, 256, and
128, and step sizes of 64 and 32, respectively (refer to Table 1
for specific experimental parameters).

The SMOTE algorithm tackles the issue of imbalanced
sample distribution across categories. The mixed dataset
used in this study consists of three categories: normal,
interictal, and ictal, with 200, 352, and 106 data samples
in each category, respectively. To assess the effectiveness
of the SMOTE algorithm, two experiments were conducted
using the same model—one with the SMOTE algorithm and
another without any data balancing process (refer to Table 1
for specific experimental parameters).

2) FEATURE EXTRACTION AND CLASSIFICATION
The feature extraction and classification phase is executed
using a PCNN-BiLSTM hybrid network. Initially, the data
undergoes normalization to improve convergence speed and
accuracy, and to prevent gradient explosion. Following this,
the normalized data is fed into the neural network. The
network’s weight is optimized by minimizing parameters in
each layer, ensuring a lightweight structure while preserving
prediction efficacy. The proposed PCNN architecture com-
prises three convolutional blocks, with kernel sizes set at 5,
3, and 3, and step sizes at 3, 2, and 2, respectively. For detailed
specifications of each network layer, refer to Table 2.

For training the entire network, a cross-entropy loss
function and an Adam optimizer are utilized. The hyper-
parameters of the Adam optimizer are set as follows:
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TABLE 2. Detailed parameters of the layers.

learning rate (0.00002), beta1 (0.9), beta2 (0.999), epsilon
(0.00000001), decay (0.0), and amsgrad (False). The training
process spans 1000 epochs as determined for this experiment.

V. RESULTS
Due to the limited number of training samples, the data
used in our experiment is augmented using small window
segmentation and SMOTE algorithms. The small window
segmentation experiments involved eight models (Model 1-
Model 8), using four different window sizes (128, 256, 512,
and 1024) and two sliding step sizes (32 and 64). All other
parameters remained constant for comparative analysis. The
results, visualized in Fig 6, were evaluated accordingly.

FIGURE 4. LSTM architecture.

FIGURE 5. Bi-LSTM.

Fig 6(a) illustrates the relationship between the num-
ber of model parameters and the corresponding FLOPS
(Floating Point Operations Per Second). FLOPS is a metric
for measuring computational load in a neural network,
representing the number of floating point operations per
second in millions. Higher FLOPS values signify increased
computational operations, implying greater computational
demands and higher hardware requirements.

FIGURE 6. (a) Parameters and FLOPS. (b) Evaluation metrics.

The results indicate that the number of model parameters
is solely influenced by the window size, showing an
almost exponential increase as the window size enlarges
exponentially. This pattern is similarly observed in the
FLOPS value.

Fig 6(b) demonstrates that, for a given stride size,
the model’s accuracy improves with larger window sizes,
especially when transitioning from a window size of
128 to 256, where significant performance improvements
are observed. However, further increases in window size
result in marginal improvements of about 1%. Additionally,
the model’s accuracy improves by roughly 1% for each
metric when using smaller stride sizes at a fixed window
size. Notably, the network achieves an accuracy of 99.56%
(Model 8) without considering computational complexity,
underscoring the effectiveness of the proposed network
structure.

In the SMOTE algorithm experiments, the SMOTE
algorithm was used for the first 8 models (Models 1-8), while
the last 8 models (Models 9-16) acted as a control group
without the SMOTE algorithm. This control group was used
to validate the algorithm’s effectiveness.

Fig 7(a) displays the number of samples used for training
each model, the model parameters, and the time required for
training per epoch. Analysis of the test results shows that,
after applying the SMOTE algorithm, the total number of
samples in Models 1 to 8 increased by 60.48%, resulting in
an equal number of samples across all classes.

The training time was influenced by both the number of
network parameters and the number of samples, with the
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FIGURE 7. (a) Samples, Params and Time. (b) Accuracy.

former having a more significant impact, while the latter
had a relatively minor effect. Therefore, when choosing a
model, it is recommended to select one with fewer parameters
and a larger sample size. It should be noted that while the
training time is significantly affected by the experimental
environment (CPU load status), this experiment aimed to
maintain a consistent experimental environment as much as
possible. As a result, the collected data somewhat reflects the
model’s performance.

In Fig 7(b), among the twelve models with window sizes of
256, 512, and 1024, significant improvements were observed
inModels 2 to 8 (exceptModel 5) with the SMOTE algorithm
compared to Models 10 to 16 (except Model 13) without it.
Specifically, for the 4models with a window size of 256, there
were substantial improvements in the Acc indicator of around
3% to 4%, which is considered a significant advancement.

However, in the 4models with awindow size of 128,Model
9 and Model 13 without the SMOTE algorithm showed
slightly better indicators than Model 1 and Model 5 with
the SMOTE algorithm. This can be attributed to the poor
quality of the data after small window segmentation, which is
unsuitable for network training. Furthermore, the use of the
SMOTE algorithm further exacerbates the data quality issue,
thereby reducing the effectiveness of the network.

To build a lightweight framework, the preferred approach
is to adopt a data processing scheme with fewer trainable
parameters and reduced training time, while still achieving
satisfactory accuracy. After considering the aforementioned

TABLE 3. Fold training metrics.

experimental results, a processing scheme using a window
size of 256, a sliding step size of 32, and incorporating the
SMOTE algorithm (Model 6) was identified as the optimal
solution. Table 3 presents the detailed training results for each
metric of Model 2.

The ten-fold cross-validation resulted in an average Acc
of 98.52%, Sens of 97.99%, Spec of 99.35%, and Prec of
98.44% for the comprehensive model, all of which indicate
favorable results. Figures 8(a), 8(b), and 8(c) depict the
fluctuation curves and the categorized confusion matrices for
each metric, showing a smooth transition for all the metrics
and gradual convergence of the model as the epoch increases.

VI. DISCUSSION
Table 4 presents a comparison of studies that utilize the
Bonn University and CHB-MIT datasets for epileptic EEG
classification, thereby underscoring the sophistication and
effectiveness of the framework proposed in this research.

Among the comparison methods discussed above, the
approaches proposed in [21] and [38] both achieve an
accuracy of approximately 97%, but their network parameters
are extensive, hundreds or even over a thousand times that of
the methods proposed in this study. This makes them more
challenging to train and places higher demands on hardware
equipment. References [22] and [39] employ traditional
machine learning methods, and [20] uses a combination
of deep learning and machine learning methods. Both of
these methods also yield good recognition results, but their
principles are complex and require manual extraction of
the right features. Reference [28] employs deep learning to
achieve a high accuracy rate with fewer overall parameters.
In the PCNN-BiLSTM framework proposed in this study, the
parameters to be trained are much less than these methods,
and at the same time, our method achieved 98.52% accuracy.
Moreover, none of the aforementioned methods adopt data
augmentation algorithms, and the trained networks lack
generalization.

From a comprehensive perspective, the data augmentation
and lightweight neural network-based approach proposed in
this study has a competitive recognition accuracy and low
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FIGURE 8. Metrices. (b) Loss. (c) Confusion Matrix.

parametric count. By using a mixed dataset for training and
incorporating the data augmentation algorithm, the model
demonstrates robust generalization. Furthermore, the entire
network architecture is compact, with only 9371 parameters
to be trained, a model size of merely 186kb, and a FIOPS
of 0.139M. This minimal resource requirement makes it
well-suited for applications in clinical medical devices and
wearables, thereby offering a significant advantage over
recent research advances.

However, there are limitations to this study that warrant
consideration. First, although data augmentation techniques
are used to expand the dataset, the quality of the generated
data still falls short of real-world data. Second, validation
on hardware devices has not been conducted. Lastly, the
impact of various factors in real life on model recognition

TABLE 4. Comparison between studies.

performance needs to be more thoroughly considered. These
factors include device aging, discomfort from prolonged
usage, and emotional fluctuations due to extended wearing
of the device, all of which may lead to a decline in signal
quality.

VII. CONCLUSION
In this study, a novel lightweight PCNN-BiLSTM hybrid
network is presented, coupled with a data augmentation
algorithm for the detection of epileptic EEG. The employed
methodology involves segmenting the original data using
a small window technique to increase the sample size,
followed by the application of the SMOTE algorithm to
balance the class distribution by expanding minority class
samples. The processed data is then introduced into a neural
network for feature extraction and classification via the
PCNN-Bi-LSTM architecture. Rigorous validation on the
epileptic EEG datasets from Bonn University and CHB-
MIT yielded impressive classification accuracies of 98.52%,
demonstrating a high level of competitiveness in the fieldwith
only 9371 trainable parameters.
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Future work is warranted to further enhance the per-
formance and applicability of the proposed method. This
includes training the network with lower-quality data,
which more accurately represents real-world conditions, and
revising the network code to facilitate deployment and further
validation on hardware devices. These improvements will
augment the model’s compatibility with practical application
scenarios, thereby enhancing its robustness and reliability to
cater to a wide array of real-world requirements.
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