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ABSTRACT Objective: Leveraging patient data through machine learning techniques in disease care offers
a multitude of substantial benefits. Nonetheless, the inherent nature of patient data poses several challenges.
Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-
ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism,
and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited
patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a
generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory
markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the
detection of specific cardiovascular event. Methods and procedures: GLP implemented a two-stage training
approach, leveraging the information embedded within interpolated data and amplify the performance of
SSL. After GLP pretraining, it is transferred for target vessel revascularization (TVR) detection. Results: The
proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited
distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged
accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority (p < 0.01)
compared to prior GLP processing. Conclusion: Our study effectively engages in translational engineering
by transferring patient progression of cardiovascular laboratory parameters from one patient group to another,
transcending the limitations of data availability. The transferability of disease progression optimized the
strategies of examinations and treatments, and improves patient prognosis while using commonly available
laboratory parameters. The potential for expanding this approach to encompass other diseases holds great
promise. Clinical impact: Our study effectively transposes patient progression from one cohort to another,
surpassing the constraints of episodic observation. The transferability of disease progression contributed to
cardiovascular event assessment.

INDEX TERMS Cardiovascular diseases, cardiometabolic disease, disease progression, laboratory exami-
nations, time-series data, pre-train model, representation learning, self-supervised learning, transfer learning.

I. INTRODUCTION
Regular surveillance stands as an imperative facet within car-
diovascular disorders management [1]. Laboratory analysis
constitutes a vital component, involving multifarious chemi-

cal tests that scrutinize blood, urine, or body tissue specimens.
These tests gauge the body’s response to food intake, med-
ication, and treatment, thus providing crucial insights into
disease progression and signaling the need for medication or
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dietarymodifications. For chronic diseases, laboratory results
are more meaningful when observed longitudinally rather
than episodically. A vast repository of longitudinal data has
been accumulated for prevalent diseases such as hypertension
(HTN) and diabetes mellitus (DM). Nonetheless, the inherent
nature of these data, characterized by irregularity, absen-
teeism, and sparsity, presents challenges in leveraging their
full potential for machine learning applications. Conversely,
rare or specific cases are frequently associated with a limited
patient population and episodic observations, also impeding
the integration of machine learning technology in their pro-
gression assessment. This study employed self-supervised
learning (SSL) to pretrain a generalized laboratory progress
(GLP) model. GLP captures the overall progression of com-
mon laboratory markers in prevalent cardiovascular cases,
with the intention of transferring this knowledge to aid in
the detection of target vessel revascularization (TVR) occur-
rences in patients undergoing percutaneous coronary inter-
vention (PCI).

A. CHALLENGING NATURE OF LABORATORY DATA
Diverse methodological approaches can be adopted depend-
ing on the distinct characteristics of the population under
study. Cross-sectional studies, which capture the patient sta-
tus at a single time point, provide only a temporary snapshot
and preliminary glimpses into future disease progression.
In contrast, cohort studies, with their longitudinal observa-
tions, offer a more comprehensive understanding of disease
development [2]. However, the collection of such data over an
extended period can be intricate, time-consuming, and costly,
frequently suffered from patient dropouts and incomplete
data [3], [4].

Consequently, rare or specific diseases frequently resort to
cross-sectional studies due to limited patient size, yielding
episodic observations. In the context of prevalent cases,
longitudinal data is more readily accessible owing to con-
tinuous follow-ups. Nonetheless, these observations heavily
rely on patient adherence, insurance regulations, clinical
guidelines, and the clinical judgment of physicians. Any
disruption to these factors can lead to irregularity and
sparsity, where observations may be skipped, or sampled
irregularly over a prolonged period [5], [6]. Similarly to
electronic health records (EHRs), laboratory test records
encompass a wealth of abundant and longitudinal patient
information, still, notable for their irregularity, temporality,
and sparsity, often accompanied by noisy outliers andmissing
values [3], [4], [6].

B. RELATED WORKS
Machine learning techniques have undergone extensive
investigation, facilitating diverse applications that contribute
to clinical care through the utilization of EHRs [7], [8],
[9]. SSL has recently gained attention due to its ability
to derive labels for training data directly from the data
itself [10], [11], [12], [13], [14]. This offers a unique oppor-

tunity to leverage the vast amounts of data available with-
out relying on quality annotations [13], [15], [16]. Gen-
erally, SSL can be categorized into generative and con-
trastive learning approaches [17], [18]. Generative models
possess the capability to generate new samples from the
underlying distribution or recover the original data distri-
bution [13], [19]. For instance, Simone and Bacciu [19]
showcased the utilization of a generative adversarial net-
work (GAN) for the synthesis of electrocardiography (ECG)
data. Their study achieved remarkable results by generating
a wide spectrum of ECG patterns that preserved synchro-
nization and abnormalities. Yoon et al. [14] leveraged SSL
strategies to impute corrupted values and train on unla-
beled data in the domain of genomics and clinical data.
Furthermore, Lee et al. [20] employed GPT-4 to summa-
rize physician-patient conversations and generated clinical
notes.

Meanwhile, contrastive learning aims to capture the rela-
tionship between input data and prediction targets, thereby
generating a global contextual representation that is shared
among samples [13], [16]. For instance, Kiyasseh et al. [16]
devised a temporal and spatial discriminative approach
for ECG analysis, extracting patient-specific representa-
tions through leveraging contrastive loss. Zhang et al. [21]
employed contrastive learning to capture the distances
between temporal and frequency components, and applied
the pretrain representations to various time-series databases,
including ECG, human activity recognition, and physical
status monitoring. Wickstrøm et al. [22] proposed a con-
trastive framework based on mixing up augmentation for
uni- and multivariate time-series data, which was then trans-
ferred to ECG classification. Furthermore, Ouyang et al. [23]
trained an encoder using unlabeled retinal images through
contrastive learning, and subsequently fine-tuned the encoder
for the classification of reference and non-reference
cases.

Many SSL applications focus on learning from a pre-
text task and transferring the learned representations to
a different domain. This entails transfer learning, a con-
cept that improves a classifier in one domain (pretext
task) using more readily obtainable data and then applying
this acquired knowledge to another domain (downstream
task) [24]. For instance, Tang et al. [25] utilized a teacher-
student self-training model to capture information from a
large-scale unlabeled dataset of wearable and mobile sensing
data, which was subsequently transferred to seven different
datasets with varying sensor types, populations, and proto-
cols. Similarly, Spathis et al. [26] used activity accelerometer
sensor data as input to forecast heart rate and transferred the
learned representations to capture physiologically meaning-
ful and personalized information using linear classifiers.

Nontheless, the aforementioned works assume that signals
and information were collected on a regular basis and do not
address the issues of irregularity, absenteeism, and sparsity
commonly encountered in EHRs. Tipirneni and Reddy [27]
bypass the irregular, absent, and sparse nature of EHRs by
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training the model in a SSLmanner and mask out unobserved
forecasts in the loss function during training. Furthermore,
SSL applications have been recognized as challenging in
terms of finding effective pretrain tasks [17]. Most studies
have relied on an empirical trial-and-error approach to iden-
tify the most suitable pretext tasks. The transferability of
pretrain models has shown mixed results when applied to
more specific domains such as medicine [28]. For instance,
Liu et al. [29] were unable to successfully transfer ImageNet
for detecting lymph node metastasis in pathology images,
citing significant domain differences between natural scenes
and pathology images as the reason for the transfer fail-
ure. Another example is the discussion surrounding lan-
guage representation models for the biomedical domain [30].
Gu et al. [31] argued that models trained on domain-specific
vocabulary outperform those trained on general corpora due
to differences in word distributions between general and
biomedical corpora.

C. CARDIOVASCULAR DISEASES AND ASSOCIATED RISK
FACTORS
Cardiovascular disease stands as one of the leading causes
of global mortality. Established traditional risk factors incor-
porate HTN, DM, and smoking [32]. These risk factors
can contribute to endothelial injury, plaque formation, and
coronary thrombus formation [33], consequently driving the
progression of cardiovascular disease. PCI has emerged as
a widely employed treatment modality for cardiovascular
disease [34].

Although the implementation of drug-eluting stents (DES)
has significantly reduced the incidence of TVR in recent
years [35], [36], the occurrence of TVR after DES implan-
tation, with an incidence ranging from 3% to 20%, remains a
prevalent clinical concern [37], [38], [39]. Hence, the preven-
tion of TVR and the reduction of re-admission rates continue
to be significant clinical challenges in the field of cardio-
vascular medicine following PCI. With respect to the timing
of cardiac events, patients undergoing PCI face a risk of
subsequent adverse events, including TVR [40], [41]. How-
ever, achieving a consensus on accurate preprocedural risk
stratification and prognosis assessment to identify high-risk
patients prior to PCI remains an ongoing pursuit.

TVR is associated with complex pathophysiological
mechanisms involving lipid metabolic disorders [42] and
inflammatory processes [43]. Several previous studies have
explored potential predictive factors linked to a high inci-
dence of TVR based on patient and procedure-related vari-
ables [44], [45], [46]. However, dedicated applications for
TVR prediction are yet to be developed. Most studies have
focused on identifying comprehensive predictors for TVR
or developing prediction models without specifically target-
ing individualized risks [45], [47], [48]. The collection of
data for comprehensive predictors may introduce burden and
complexities when integrating such applications into routine
clinical practice and thus warrants careful consideration.

D. LABORATORY MARKERS OF CARDIOVASCULAR
DISEASES
Earlier studies have indicated that preprocedural parameters
are associated with cardiovascular disease. Total cholesterol
levels (Chol) and low-density lipoprotein cholesterol (LDL-
c) are strongly linked to cardiometabolic diseases and widely
accepted in diagnostic practices. Conversely, the plasma
level of high-density lipoprotein cholesterol (HDL-c) exhibits
an inverse relationship with the risk of cardiovascular dis-
eases [49]. Clinical studies have highlighted the connection
between circulating white blood cells (WBCs) and cardio-
vascular outcomes, demonstrating that elevated WBC count
increases the short- and long-term risk in patients with acute
coronary syndromes (ACSs) [50]. Hage et al. [51] reported
that baseline fasting blood glucose (glucose AC) predicts
restenosis, suggesting that focusing on glucose reduction
rather than solely normalizing glucose levels is more bene-
ficial [51]. Additionally, serum uric acid (UA) has been iden-
tified as a prognostic cardiovascular biomarker, predicting
total and cardiovascular mortality in the context of secondary
prevention of coronary artery disease, as demonstrated by the
Verona Heart Study [52]. Furthermore, the National Choles-
terol Education Program III (NCEP III) recommends the use
of Chol or LDL-c in conjunction with HDL-c (Chol/HDL-c,
LDL-c/HDL-c) as markers for screening and treating patients
with cardiovascular disease, along with the utilization of the
10-year risk Framingham scoring assessment [53].

II. METHODOLOGY
To address the challenges previously mentioned, we have
devised the following propositions for our work: (1) In
order to address the challenges stemming from irregularity,
absenteeism, and sparsity within longitudinal observations,
we have deployed interpolation and SSL techniques to infer
absented data. (2) For patients with limited numbers and
episodic observations, we developed a pretrain model specif-
ically tailored to capture the temporal latent representation
of prevalent cases and transfer disease progress knowledge
to these smaller cohorts. (3) Our work is based on com-
monly available resources, avoiding the need to initiate new
trials for extensive patient data collection. We focused on
six laboratory parameters: the Chol/HDL-c ratio, LDL-c, the
LDL-c/HDL-c ratio, glucose AC, WBC, and UA. (4) Our
work leverages the intercorrelation among cardiometabolic
diseases as an indication of pretext and downstream tasks.

Our objective is to construct a two-stage pretraining model
that captures the laboratory progress of general cases and
utilizes this information to predict cardiac events in another
patient group. Prior research has indicated that incorporat-
ing a two-step training approach, involving pretraining the
model on a domain-general dataset followed by training on
domain-specific datasets, yields enhancements in transition-
ing representations to the downstream task [12], [23], [30].
Hence, we propose a two-stage training process: Stage 1
involves learning general laboratory progress information

VOLUME 12, 2024 45



L.-C. Chen et al.: SSL-Based General Laboratory Progress Pretrained Model

based on interpolated data, followed by Stage 2, where SSL
is employed to refine the model’s progression representation
using non-interpolated data. Subsequently, GLP model is
fine-tuned to classify the occurrence of TVR.

The following sections outline the detailed methodology
of GLP. Initially, we introduced the interpolation and framing
method for longitudinal data. Subsequently, we outlined the
design of the GLP model, along with the training algorithm
and the design of downstream classifier. We also elucidated
the validation methods employed for both the pretext and
downstream tasks. Lastly, we provided details regarding the
patient recruitment process and the datasets utilized for both
tasks.

A. INTERPOLATION METHODS
Interpolation serves the purpose of inferring values that lie
between two known observations. It aims to approximate
the values of f̂ (x) that fulfill the interpolation conditions
f̂ (xj) = yj for j = 0, 1, . . . , n. This study encompassed
the evaluation of three interpolation techniques: linear inter-
polation, piecewise cubic Hermite interpolating polynomial
(PCHIP), and barycentric interpolation. The values in linear
interpolation were derived by considering the gradients of the
known observations, denoted as:

ŷj = yi + (tj − ti)
(yk − yi)
(tk − ti)

, (1)

where t signifies the time of estimation, ŷj denotes the esti-
mated value at tj, and i < j < k . Meanwhile, PCHIP
interpolation [54] defines dj = (yk − yj)/(tk − tj) as the
slopes at xj. If the signs of dj and di differ or either of them
equals zero, ŷj is set to 0. Otherwise, it is determined using
the weighted harmonic mean, expressed as:

ŷj =
(w1 + w2)
w1
di

+
w2
dj

, (2)

where w1 = 2(tk − tj) + (tj − ti) and w2 = (tk − tj) + 2(tj −
ti). Finally, for barycentric interpolation [55], [56], a given
set of nodes x0, x1, . . . , xn and masses w0,w1, . . . ,wn are
utilized to determine the functions w0(x),w1(x), . . . ,wn(x)
satisfying:

x =

∑n
i=0 wi(x)xi∑n
i=0 wi(x)

. (3)

Here, x represents the barycenter of the nodes, which can be
employed for interpolation using:

ŷ =

n∑
i=0

bi(x)fi, (4)

where bi corresponds to the linear function. Fig. 1 illustrates
the segmented period of glucose AC, employing different
interpolation methods.

FIGURE 1. Interpolation results based on different methods. This
showcases a segmented period of glucose AC. The x-axis corresponds to
the timeline, while the y-axis represents the laboratory values.

B. LONGITUDINAL DATA FRAMING
By defining the laboratory observations for each patient dur-
ing the study period as yt0 , yt1 , . . . , ytn , where ti represents
the months in the timeline and ti ∈ R, we designate yt0 and
ytn as the actual observed values. Let ytm denote the second-
to-last observed value of a patient. Interpolation takes place
between yt0 and ytm when yti is missing. The observations
were organized into a frame with a designated time interval r .
Therefore, the longitudinal data is framed as yti : yti+r , with
subsequent frames incrementing by one step (i + 1) while
i+ r ≤ m− 1. If ∥ti, tm−1∥ ≤ r , the frame is omitted. These
segmented frames, denoted as the interpolated data, serve as
the input of Stage 1. Their corresponding prediction target is
yti+r+1 , where i+ r + 1 ≤ m.

From the previous stage, the frame ytm−r : ytm and the last
observed value ytn are isolated. They are the non-interpolated
data in Stage 2, with ytm−r : ytm serving as the input and
yn as the prediction target. Considering that coronary stent
trials primarily focus on target vessel/lesion-related clinical
outcomes within the shorter term, particularly in the first
12 months post-PCI [57], we set r as 12 months. The framing
process is visually depicted in Figure 2.

C. GLP MODEL DESIGN
GLP was designed to monitor the laboratory progress of
patients and forecast their observations for the subsequent
month. Fig. 3 presents the model architecture of GLP, which
consists of two main components: the longitudinal iterative
block (LIBC) and a regressor . The LIBC comprises a Bidi-
rectional Long Short-Term Memory (BiLSTM) layer and a
Fully Connected (FC) condensing layer. A Rectified Linear
Unit (ReLU) activation function is applied after each layer
to enhance the non-linearity of the model. The BiLSTM
processes the input data in both the forward and backward
directions [58], enabling the capture of contextual informa-
tion from past data. The number of hidden nodes for the
BiLSTM layer was set to 5. The FC condensing layer is
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FIGURE 2. Logitudinal data framing for two-stage training. SSL:
self-supervised learning; r : time interval (frame size); g: time gap
between the input frame and prediction target, where g ≤

r
2 .

FIGURE 3. GLP model design. g: time gap between the input frame and
prediction target; Progressemb: latent output of LIBC ; Progressout : latent
output of regressor .

utilized to compress the output of the BiLSTM layer back
to the original input, facilitating an autoregressive flow.

On the other hand, the regressor consists of two FC layers
followed by a ReLU activation function in between. The
number of hidden nodes for the regressor is set as 5, 2, 2,
and 1, respectively. The model used the Mean Squared Error
(MSE) as loss function, which measures the average squared
difference between the predicted values and the actual values.

D. TWO-STAGE TRAINING ALGORITHM
During Stage 1 training, the interpolated data were utilized
in supervised learning. An additional parameter called the
number of certainty mask (certain) was introduced in Stage
1. It denotes the required number of real observations within
a frame, indicating the level of real observations the mod-
els require to generate reliable predictions. It also serves
as a means to address uncertainty within the training data.
Adhering to insurance regulations, patients were scheduled
for cardiovascular disease examinations every three months,
resulting in a maximum of four actual observations within a
12-month timeframe. Consequently, the range of 0 to 5 was
explored for certain, and the optimal value was determined
as a parameter setting for GLP.

In Stage 2 training, we employed an autoregressive based
SSL, which takes inputs from a time series regressed on
previous inputs from the same time series. The probability
of each input is conditioned on the preceding input, and can
be formulated as:

max
θ

pθ (x) =

T∑
t=1

log pθ (xt | x1:t−1), (5)

where xt represents the input at time t , pθ denotes the prob-
ability, and maxθ pθ signifies the maximized likelihood [13].
Starting from frame ytm−r : ytm , the model utilizes the
parameters θ obtained from Stage 1 and predicts ytm+1 . The
subsequent input frame becomes ytm−r+1 : ytm+1 , with the
prediction target located at ytm+2 . This process continues until
the prediction target reached ytn . The predicted data then
becomes part of the training data for the next frame, allowing
the model to learn from its own generation.

To summarize, in Stage 1, there is no time gap (g = 0)
between the input frame and the prediction target. The input
passes through the LIBC once and then enters the regressor .
On the other hand, in Stage 2, g = n−m− 1 and g > 0, and
the process iterates until the prediction target is reached. The
training algorithms for Stage 1 and 2 are explicitly outlined
in Algorithm 1 and 2. Each laboratory parameter was trained
individually and optimized to achieve the best performance.
The six pretrained GLP models were subsequently concate-
nated in amultimodal fashion and utilized for domain transfer
to perform TVR occurrence classification, as illustrated in
Figure 4.

E. INPUT VECTOR AND NORMALIZATION
The input of GLP consists of five features: age, gender,
certain, discrete value encoding, and normalized laboratory
values. Numeric values, such as age and laboratory values,
are normalized using the natural logarithm of one plus the
input (log1p). This transformation ensures that the values are
projected into a vector space above zero, preventing potential
errors that could arise from maldistribution between positive
and negative values. Additionally, log1p is accurate for small
values of x, ensuring that 1 + x = 1 with floating-point
accuracywithout significantly altering the original value [59].
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Algorithm 1 Stage 1 Training
Input: Xinterpolated , batch size N
1: for epoch = 0 to 50 do
2: for batch{xk}Nk=1 ∈ Xinterpolated do
3: pass xk through LIBC and regressor
4: Optimize using Adam optimizer
5: end for
6: Save the parameters θ of the model
7: end for

Output: ŷ

Algorithm 2 Stage 2 Training
Input: Xnon−interpolated , batch size N , time gap between the
input frame and prediction target g, parameters θ from stage 1
training
1: for epoch = 0 to 50 do
2: for batch{xk}Nk=1 ∈ Xnon−interpolated , {gk}Nk=1 ∈ g do
3: if max(gk ) = 0 then
4: pass xk through LIBCθ

5: end if
6: if max(gk ) > 0 then
7: for t ∈ {1, 2, . . . ,max(gk )} do
8: pass xk through LIBCθ

9: end for
10: for gi ∈ {1, 2, . . . , k} do
11: select estimated ŷk at time stamp gi + 1
12: end for
13: end if
14: pass ŷk through regressorθ
15: Optimize using Adam optimizer
16: end for
17: Update the parameters θ of the model
18: end for
Output: ŷ

The use of log1p also prevents information leakage [60],
unlike scaling which necessitates knowledge of themaximum
and minimum values.

One-hot encoding is employed for gender, certainty mask,
and discrete value encoding. Gender is binary-encoded, with
a value of 1 assigned to male and 0 assigned to female. The
certain is also binary-encoded. It indicated whether the value
is a real observation or an estimation obtained through inter-
polation (true observation/estimated value). Discrete value
encoding categorizes laboratory results into two groups (low
and high) or three groups (low, normal, and high) based on
different threshold values (summarized in Appendix B).

F. GLP VALIDATION
The validation of GLP was conducted by forecasting yn
without interpolation support within r

2 . To further assess
the performance of the proposed two-stage training process,
we used SSL as baseline (Stage 2 training), and compared
with the following approaches: (1) Supervised training based

FIGURE 4. Training pipeline. GLP: general laboratory progress pretrain
model; Chol/HDL-c: ratio of total cholesterol and high-density lipoprotein
cholesterol; LDL-c: low-density lipoprotein cholesterol; LDL-c/HDL-c: ratio
of low-density and high-density lipoprotein cholesterol; Glucose AC:
fasting blood sugar; WBC: white blood cells; UA: Uric Acid; PCI:
percutaneous coronary intervention; TVR: target vessel revascularization.

on interpolated data (Stage 1 training). (2) Hybrid training,
which combines interpolated and non-interpolated data, and
performs supervised and self-supervised training simultane-
ously. (3) Two-stage training, where GLP first reaches a local
minimum loss using interpolated data and then undergoes
domain-specific adjustments using SSL.

Regardless of the employed training approaches, the data
were randomly divided into training and testing datasets in an
80:20 ratio. All training processes utilized the 5-fold cross-
validation technique, and the reported results represent the
mean value obtained from five repetitions of the training
process [61]. Ablation studies were conducted to analyze the
performance of different training processes combined with
various interpolationmethods. The outcome of themodel was
assessed using the R-squared (R2) metric, which indicates the
proportion of variance in the dependent variable that can be
predicted by the independent variables in the model. R2 val-
ues range from zero to one, with a value of one representing
a perfect fit to the data and a value of zero indicating a poor
fit. R2 < 0 suggests that the model performs worse than
a horizontal mean line passing through the mean value of
the data. Statistical significance to determine differences in
model performancewas assessed using an independent T-test,
with p < 0.05 indicating statistical significance.

G. DOWNSTREAM CLASSIFIER DESIGN AND VALIDATION
The collection of the six laboratory values occurred at the
time of performing PCI. Subsequently, g (month-based) was
computed based on the temporal disparity between the PCI
and TVR dates. Patient information, including gender, age,
and the six laboratory parameters, was collected and normal-
ized following the aforementioned procedures. Due to the
imbalanced distribution of patients between those with TVR
occurrence (42) and those without (441), TVR-negative cases
were randomly downsampled. As a result, only 84 patients
entered the training process. Patient data are processed by the
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frozen GLPs, which are concatenated in a multimodal fashion
(as shown in Figure 4).

Owing to the limited patient volume, non-neural net-
work algorithms were chosen for training the downstream
classifier. The included methods are Light Gradient Boost-
ing Machine (LightGBM), Support Vector Machine (SVM),
Logistic Regression (LR), and K-Nearest Neighbors (KNN).
These approaches were selected for their diverse mecha-
nisms. Cohen’s Kappa was calculated to assess the agree-
ments between the classifiers, and the mean value of Cohen’s
Kappa represented the overall agreements among the pair-
wise classifiers. A value of Kappa ≤ 0 indicates no agree-
ment, while an increase in Kappa signifies an increase in
agreement, with a value of 1 indicating perfect agreement.

Additionally, we compared the latent progress repre-
sentations produced by GLP by extracting the outputs of
LIBC (Progressemb) and regressor (Progressout ), depicted in
Figure 3. The transferred results based on the original data
(normalized but not processed with GLP), Progressemb, and
Progressout were compared. The reported performance rep-
resents the mean value obtained after executing the training
process five times. The downstream classifier is a binary clas-
sifier that distinguishes TVR occurrence (positive/negative).
The evaluation metrics for TVR incidence include the area
under the receiver operating characteristic curve (AUROC),
accuracy, sensitivity, specificity, precision, and F1 score.
To determine the statistical significance of the differences in
evaluation metrics between the original data and the extracted
representations, an independent T-test was also conducted.

Furthermore, we plotted the distribution of the original
data, Progressout at g/2, and Progressout at g to visually
depict the contribution of GLP throughout the process. Here,
g/2 signifies that the iteration before reaching the intended
event.

H. PATIENT RECRUITMENT AND DATASETS
Two datasets were obtained from two diverse medical insti-
tutes. The pretext dataset was obtained from the Chang Gung
Research Database [62], a multi-institutional electronic med-
ical records database comprising original medical records of
seven medical institutes in Taiwan. We included patients who
were diagnosed with HTN prior to DM. Patients diagnosed
with hypertension before the age of 40, those with any oncol-
ogy visits, or individuals with observations spanning less than
a year were excluded. The date of diagnosis was determined
based on the International Classification of Diseases (ICD)
encoding or the date of medication prescription. The ICD
codes and medications used for the indications can be found
in Appendix A. When a patient had been coded as having
HTN or DM twice or more during a year, the onset date of
the disease was defined as the first coded date. If the date
of the first medication prescription preceded the ICD coded
date, then the earlier date was designated as the onset date
of the disease. The time interval between the HTN and DM
diagnoses was set to be ≥ 3 months.

We gathered data on patients between the onset of HTN
and DM; that is, the patient was diagnosed with HTN, but
yet to be determined as DM. Demographic information and
laboratory data of the enrolled patients were collected, includ-
ing age, sex, Chol/HDL-c, LDL-c, LDL-c/HDL-c, glucose
AC, WBC, and UA. Erroneous values such as ‘‘NA’’ or’’.
‘‘were excluded. A total of 9,720 patients were included, and
laboratory data were collected between January 2001 and
December 2019.

The downstream dataset was acquired from the Taipei Vet-
erans General Hospital, a tertiary hospital situated in northern
Taiwan. We recruited 891 patients with noninvasive evidence
of myocardial ischemia who underwent PCI between January
2005 and January 2022. Patients with ACS, acute decom-
pensated congestive heart failure, acute or chronic infections,
autoimmune diseases, malignancies with a prognosis of less
than one year, unstable hemodynamic status, or those unable
to receive dual antiplatelet therapy were excluded. Angio-
graphically successful coronary intervention was defined as
residual stenosis of less than 30%, and coronary thrombolysis
in myocardial infarction grade 3 flow was achieved at the
conclusion of the procedure without any significant compli-
cations. All patients were followed up and to monitor the
occurrence of TVR.

Patients necessitating TVR were labeled as positive, and
the corresponding dates were recorded. Patients without TVR
until the end of January 2022 were classified as negative, with
the date of January 31, 2022 recorded as the endpoint. Within
this dataset, the available information encompassed age, sex,
PCI date, TVR date, and the aforementioned six laboratory
values (collected during the PCI procedure). The time inter-
vals between the PCI and TVR dates were calculated. Patients
with incomplete data were excluded from the analysis to
avoid deviations into this study, as the imputation of missing
values could potentially have that effect. Consequently, a total
of 483 patients were included in the subsequent analysis,
comprising 42 TVR and 441 non-TVR cases.

The pretext dataset are longitudinal observations that con-
sists of multiple events, whereas the downstream dataset
are episodic records that consists of one observation event
for each patient. All patient data were de-identified prior
to analysis. This study was approved by the Institutional
Review Board of the Chang Gung Medical Foundation (No.
202000376B0) and Taipei Veterans General Hospital (No.
2019-12-012CC).

III. RESULTS
Table 1 illustrates the demographic information of the
patients enlisted from the two datasets. It is noteworthy that
patients in the pretext dataset (HTN to DM patients) exhibit a
relatively younger age compared to those in the downstream
dataset (PCI patients). It is observed that TVR typically
occurs within a period of 2.32 ± 2.64 years. Fig. 5 depicted
the overall performance of GLP, assessed by averaging the
R2 results across certain ranging from 0 to 5. Fig. 5(a) pro-
vides an overview of the general disparities among different
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TABLE 1. Demographic information of the recruit patients.

training approaches, incorporating all interpolation methods.
It reveals that SSL and two-stage training exhibit similar
performances, both achieving a mean R2 value of 0.46 when
rounded to the second decimal place. On the other hand,
supervised training (Stage 1 training) and hybrid training
achieved lower means with larger variations.

Fig. 5(b) to Fig. 5(d) delves into the exploration of two-
stage training, supervised training, hybrid training, respec-
tively. All figures inspect into the effect of different inter-
polation methods. Observing from the figures, the two-stage
training approach (Fig. 5(b)) is the only approach that sur-
passes SSL (baseline). Using linear (R2 = 0.49, p = 0.508)
and PCHIP (R2 = 0.48, p = 0.603) both yield better results
than SSL, although the differences did not reach statistical
significance. However, when compared to barycentric inter-
polation, both linear (p= 0.031) and PCHIP (p= 0.046) show
significantly higher performance. Other training approaches,
including supervised training depicted in Fig. 5(c) and hybrid
training in Fig. 5(d), demonstrate weaker performance com-
pared to the horizontal mean line (R2 < 0), with larger
variations.

Table 2 provides a summary of the optimal certain settings
for each GLP, which were found to be inconsistent across
different parameters. It is noteworthy that, in most parame-
ters, the two-stage training process consistently outperformed
SSL, although the degree of improvement remained marginal
(p > 0.05). While specifying the certain value resulted in
enhancing GLP performance (evidenced by an increase from
0.49 to 0.57 for linear interpolation), the correlation between
R2 and certain was determined to be weak based on Pear-
son correlation analysis (linear: -0.002, PCHIP: 0.026, and
barycentric: -0.040). This result indicated that R2 and certain

FIGURE 5. R2 values for different training approaches. SSL (baseline) is
compared with (a) averaged R2 across different training approaches; (b)
two-stage training employing different interpolation methods; (c)
supervised training employing different interpolation methods; and (d)
hybrid training employing different interpolation methods. The mean
value is represented by the green triangle and its corresponding
numerical figure is provided in the text below. The presented outcomes
are an average of five repetitions of training and prediction, determined
by aggregating the R2 outcomes across certain values ranging
from 0 to 5. SSL: self-supervised learning.

TABLE 2. R2 of GLP based on optimized certainty mask configurations.

are not linear correlated. The detailed performances of certain
for each analysis can be found in Appendix C. Based the
best-performing linear interpolation approach, we trained the
GLP pretrain models by optimizing certain value for each
parameters individually.

Table 3 presents the result of the downstream task. After
the processing by GLP, Progressout exhibited a significant
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TABLE 3. Downstream task predictions.

FIGURE 6. Alterations in distribution prior to and subsequent to GLP
processing. The values were inverse from normalization. g: time gap
between the input frame and prediction target.

enhancement in classification performance. On average, the
measures attained an AUROC of 0.91, accuracy of 0.90,
sensitivity of 0.80, specificity of 0.98, and F1 score of 0.86.
Progressout displayed a substantial superiority over the per-
formance of the original data (p < 0.01) and Progressemb
(p < 0.01). The key distinction between Progressemb and
Progressout lies in the fact that Progressout represents a con-
densed version that solely indicates the laboratory values
for the subsequent month, whereas Progressemb still retains

information on age, gender, certain, discrete value range
encoding, and laboratory values. This condensed version has
a distillation effect, where the regressor was trained to pro-
vide a more valuable indication of future trends based on
these information.

Notably, LGBM emerged as the best-performing algorithm
for both Progressemb and Progressout , while SVM demon-
strated the highest performance when utilizing the original
data. The Kappa score demonstrates that the agreement
among classifiers increased from 0.37 to 0.94, indicating that
GLP alters the distribution of the original data and simplifies
the classification task, irrespective of the algorithm mecha-
nism employed.

Fig.6 visually illustrates the changes in data distribution,
using glucoseAC and LDL-c as exemplars. The figure depicts
that prior to GLP processing (Fig. 6a), distinguishing between
TVR and non-TVR cases was challenging. However, after
GLP processing, the non-TVR cases gradually converged
towards a singular point, while the TVR cases displayed a
more scattered distribution (as depicted in Fig. 6b to c).

IV. DISCUSSION
We have successfully engage in translational engineering
by transferring the progression of cardiovascular laboratory
parameters from one patient group to another, without con-
fining to episodic observations. To the best of our knowledge,
this is the first study to apply the transfer of laboratory
progression between patient groups, demonstrating that dis-
ease progression can be effectively transferred through deep
neural network processing. The generality of our findings is
assured. The datasets were sourced from two distinct medical
institutions, signifying divergent patient populations, per-
sonnel, operational protocols, and measurement equipment.
This finding opens up opportunities to leverage the trends
observed in general cases for developing data-driven appli-
cations targeting patient groups with limited data availability.

Pretrained models capture the temporal dynamics and
generate latent representations that enhance predictive capa-
bilities for other tasks. With the widespread adoption of
EHRs in modern hospitals, a large amount of data has been
collected from prevalent cases, such as patients with HTN
and DM. Conversely, specific cases, such as TVR occurance
after PCI, remain limited in number. Given that HTN and
DM are known risk factors for TVR [32], we successfully
transferred the trend of laboratory progress observed in HTN
patients (who had yet to be diagnosed as diabetic) to predict
the progression of PCI patients.

Prior investigations [63] have highlighted that training
deep neural networkmodels directly through gradient descent
can yield randomly initialized models that are less optimized.
In contrast, commencing the training process with a pre-
trained model enables the preservation and utilization of pre-
viously acquired knowledge, thereby transforming our ran-
domly initialized models into exceptional pretrained feature
extractors [13]. The practice of acquiring knowledge from
a more generalized domain and subsequently fine-tuning
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it to a specific domain during pretraining has previously
exhibited efficacy [30]. It has been observed that represen-
tations acquired from supervised objectives tend to be more
domain-specific and possess limited transferability to out-of-
distribution domains [11], [13], [19]. Thus, modifying the
model based on SSL confers enhanced flexibility and facil-
itates the extrapolation of knowledge across domains. This
transformation enhanced our ability to infer patient progress.
Despite the heterogeneous characteristics exhibited by the
two patient cohorts, there existed intercorrelations among
cardiometabolic diseases.

SSL proves viable in bridging the gap caused by irreg-
ularity, absenteeism, and sparsity in prolonged monitoring,
enabling adequate prediction. Learning from interpolated
data in advance exhibits the capacity to enhance prediction
performance, however, the effects vary across interpolation
methods. Linear and PCHIP methodologies are designed to
acquire a continuous function, while barycentric interpolation
is tailored to leverage the center of mass for interpolation. The
distribution pattern of laboratory progress resembles more
closely a continuous curve that extends over time, rather
than being clustered in discrete bundles. Our findings reveal
that linear and PCHIP interpolation yield more informa-
tive estimations, enhancing the performance of SSL. In the
case of LDL-c and LDL-c/HDL-c examinations, interpola-
tion expands the tolerance for periods of absence. Thus, our
work implies that with sustainable estimation, patient risks
can be monitored with less frequent returns and examinations
(beyond the conventional 3-month interval), alleviating the
burdens of travel and medical expenses for patients.

The results indicate that without the support of GLP, the
original data lacked sufficient distinctiveness to enable sub-
stantial TVR predictions. Upon processing the data with GLP,
the classifier successfully achieved a satisfactory separation.
Non-TVR cases gradually converged towards a single point,
while TVR cases exhibited a more scattered pattern. These
findings align with clinical observations, which suggest that
stable patients exhibit less variation, whereas those with scat-
tered observations face increased risks. The distinctiveness
is not constrained by algorithmic mechanisms. However,
it can be observed that the data were transformed from a
hyperplane cluster distribution (where SVM demonstrated
highest performance in the original distribution) to a more
variable-specific representation (where LGBM outperformed
other methods) and facilitating the creation of tree-based
rules. Due to the limited size of the dataset, non-neural net-
work algorithms were employed for TVR prediction, as deep
neural networks did not perform well in this scenario.

The user scenario of GLP is depicted in Fig. 7. Following
PCI treatment, patients are required to undergo follow-up
visits at the outpatient setting on a 3-month basis. Clini-
cians assess patient risk to prevent TVR occurrence. GLP
identify patients at a higher risk, prompting the initiation of
more advanced examinations, such as treadmill tests, thallium
scans, or coronary computerized tomography (CT). Con-
versely, patients with a relatively lower restenosis risk can

FIGURE 7. The user scenario of GLP adoption. Advanced examinations
indicates treadmill test, thallium scan, or coronary computerized
tomography.

also be separated, serving as a screening tool for more precise
event detection and examination resource allocation. In gen-
eral, GLP optimizes treatment strategies and improves patient
prognosis while maintaining simplicity and user-friendliness
without relying on accumulating comprehensive TVR predic-
tors.

To broader the applications to other disease, an effec-
tive approach for identifying the appropriate pretext and
downstream tasks becomes indispensable. Our findings sug-
gested that through leveraging the intercorrelations among
diseases, such as comorbidity or shared risk factors, repre-
sents a more proficient approach for selecting pretext and
downstream tasks. The intercorrelations imply underlying
similarities and suggest the possibility of translating disease
progression between different patient groups. This approach
offers a more precise alternative to empirical trial-and-error
methods.

This study is subjected to certain limitations: While other
approaches, such asGAN, have demonstrated effectiveness in
recovering the distribution of absent observations, we opted
for interpolation as it is considered a simpler and less
computationally expensive method that still achieves excel-
lent transfer performances. However, further exploration is
required to determine the necessity or indispensable advan-
tages of integrating a more advanced distribution generator;
Our work is constrained by the unavailability of genuine
patient observations at the target event, which prevented
us from precisely reversing the exact output. Additionally,
it is important to acknowledge that, at present, the out-
put of GLP corresponds to a representation that cannot be
straightforwardly reconstructed as real-world values through
simple inverse-normalization. To achieve accurate inverse
mapping, training an additional network or a decoder might
be necessary to effectively map the latent output to real-
world values; Furthermore, it is worth noting that this study
exclusively focused on the analysis of numeric laboratory
results and its applicability is limited to other numeric
examinations. To make GLP a more comprehensive labo-
ratory information extractor, it is necessary to incorporate
different types of laboratory analyses, including categorical
variables.
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SSL also inherits certain limitations, such as the need
for a larger amount of training data, more training itera-
tions, and computational expenses compared to supervised
training [15]. Additionally, deep neural networks employ a
substantial number of trainable parameters and layers, mak-
ing the model challenging to interpret [19], [64]. Thereby,
SSL sacrificed interpretability for accuracy. This considera-
tion should be taken seriously when utilizing the technology,
as previous research has indicated that the level of trust in AI
systems impacts the outcome of system utilization [65], [66].
Apart from interpretability, adopting AI system in to clinical
workflow involved in multidisciplinary integration, encom-
passing areas such as the user interface design (research of
Human-Computer Interactions) [65], [67], and factors that
influence the acceptance of technology [66]. Ensuring sys-
tem usability and reliability while resolving the disparities
between proof-of-concepts and real-life environments is cru-
cial for the successful adoption of AI systems into daily
practice. This endeavor necessitates further collaboration to
facilitate the reform of healthcare.

V. CONCLUSION
Our research successfully translate the progression trends of
cardiovascular laboratory parameters between patient groups
by capitalizing on the advantages of SSL and pretrained
models. This discovery paves the road for wider data-driven
applications in healthcare, and also functions as a screening
tool for more precise event detection and judicious allocation
of examination resources. Additionally, our study suggests
that patients can benefits from diminished frequency of vis-
its and onerous examinations by implementing sustainable
estimation. To accomplish healthcare reform through the
utilization of AI systems, the key to success and optimal
system utilization lies in the multifaceted aspects involved
multidisciplinary collaborations.

APPENDIX A
ONSET DEFINITION FOR PATIENTS WITH HYPERTENSION
AND DIABETES MELLITUS

APPENDIX B
DISCRETE VALUE THRESHOLDS OF LABORATORY
PARAMETERS

APPENDIX C
R2 VALUES OF EACH LABORATORY PARAMETERS BASED
ON LINEAR AND PCHIP INTERPOLATION IN TWO-STAGE
TRAINING
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