
High-Level Synthesis: Status, Trends, and
Future Directions
Andres Takach
Mentor Graphics

h THE AVAILABILITY OF increasing computational

power in system-on-chips (SoCs) continues to drive

the development of new and ever more complex

applications. Hardware implementations of digital

signal processing algorithms enable faster, lower

power and less costly wireless, wired, or optical

fiber communication. They also enable the higher

data compression, processing, and analysis of

image and video. The Internet of Things (IoT) is

expected to further drive the development of sen-

sors, data processing on those sensors, and their

interconnectivity within themselves and with data

processing centers.

The need to deliver performance within a

given power budget drives the industry to design

application-specific hardware. Power considerations

are not only important for mobile applications, but

also in applications where power density becomes a

limiting factor. The challenges and the cost of

supplying the power and the cooling for

data centers are well known. The use

of application-specific hardware accel-

erators are one of the most promising

ways to keep power consumption in

check while delivering increasing

levels of functionality and performance.

The design and verification com-

plexity and the associated cost are ever

increasing. While traditional register-transfer level

(RTL) design and verification has evolved over time,

design and verification costs continue to increase at

a fast pace. Design reuse has been a way to reduce

cost by enabling reuse in what is known as intellec-

tual property (IP). However, IP blocks written in RTL

need to be manually optimized if an implementa-

tion for a new technology node is required, or man-

ually modified if specifications and standards

evolve. The key limiting factor of RTL is that it em-

beds significant detail required to implement the

functionality for a specific target technology node

and performance goals.

The key to enable more efficient productivity

for both design and verification is to raise the level

of abstraction. Even within RTL there can be differ-

ences in the level of abstraction in which function-

ality is specified. Going from structurally

instantiated multipliers and adders to an expres-

sion such as a�bþ d�e in a hardware description

language (HDL) is to a small degree raising the

level of abstraction. The expression is not only

more compact and easier to read, but it is also

more amenable for data path optimizations that

could, for instance, create a carry-save-adder

(CSA) Wallace compression tree that optimizes the

Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/MDAT.2016.2544850

Date of publication: 01 April 2016; date of current version:

28 April 2016.

Editor’s notes:
The author provides a status of the significant current industrial relevance
of high-level synthesis and how it is advantageous, in particular, in a com-
plex design matrix where verification, power, performance, area optimiza-
tion as well as design reuse play a key role.

—Jörg Henkel, Karlsruhe Institute of Technology

2168-2356/16 B 2016 IEEE IEEE Designc & TestCopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC116

Perspectives

expression as a whole to speed up the computa-

tion. An additional optimization is the retiming of

registers to effectively pipeline the computation of

the expression. The equivalent structural imple-

mentation of that pipeline is far more verbose, and

less flexible for design reuse.

The example above could be considered “be-

havioral” synthesis of RTL (as behavioral versus

structural). The data path and retiming capabilities

have in fact been incorporated in RTL synthesis as

it matured over time. Academic research in high-

level synthesis (HLS) has used the term “behavioral

synthesis” and “high-level synthesis” interchange-

ably. From the onset, the specification of the

behavior to be synthesized was a program-like

specification of behavior which was not “timed”

(no clock or reset appeared in the specification).

Early in HLS, the central research topic was the

scheduling of the operations into control steps,

and the mapping of operations into hardware re-

sources and variables into registers. The hardware

that is then built consist of a data path and a con-

troller which cycles through the control steps to or-

chestrate the movement of data from/to registers,

functional units using multiplexers, or busses.

It should be evident that by leaving out clock

information in the specification, HLS is able to op-

timize far more than RTL synthesis can, even with

retiming of registers. The absence of cycle timing

details in the specification enables a higher level

of abstraction in a number of fronts.

1) Mapping of local and interface variables or

array of variables to memories, registers or in-

terface components is determined during syn-

thesis rather than specified at the source.

2) Execution of operations inside loops. The user

can direct synthesis to exploit the parallelism

between loop iterations that is required to

meet the performance for a given application.

3) Mapping of operations to functional resources.

Selection between combinational and pipe-

lined units is done during synthesis.

Loop transformations are very important in HLS.

Consecutive loops may be merged to overlap the

execution of their loop bodies. Loops may be par-

tially or fully unrolled to create longer sequences

of code from which parallelism can be analyzed

and exploited to reduce the cycle latency of its

execution. A loop may be pipelined, by overlap-

ping the execution of iterations of the loop. Figure 1

shows the effect of loop pipelining in shortening

the latency. If the multiplier is combinational, then

two of them are required. If it is pipelined, then

one multiplier is sufficient.

The specification language
Leading commercial HLS tools support C++/

SystemC. HLS users and tool providers worked

together within the Accellera Systems Initiative

and have developed a synthesis standard around

C++/SystemC that has been recently approved

[1]. The Accellera synthesis standard defines all

the C++ and SystemC constructs that are ex-

pected to be supported by HLS tools and serves

as a basis for synthesis of C++ and SystemC,

while still enabling tool providers to further inno-

vate by adding support for items outside that

subset. Pointers are a very important feature in

C++. The standard defines support for pointers,

and functionality around them, such as arrays

and virtual functions that is pragmatic for hard-

ware design. The key requirement is that the

Figure 1. Execution profile of the body of the loop with
and without pipelining assuming the array access is
mapped to a memory read (MR).

May/June 2016 117

object pointed to needs to be statically determin-

able during the synthesis process.

SystemC provides C++ classes that add hardware

modeling constructs such as modules and ports

for specifying structure and threads (processes),

signals, and events for specifying concurrency.

The main advantage of C++ is that it is a general

language that is already in wide use for modeling

algorithms/behavior at the high level for both hard-

ware and software. SystemC is being used for

modeling and virtual prototyping of the hardware

to enable performance analysis and early software

development.

SystemC also provides bit-accurate integer and

fixed-point and bit/logic vector datatypes. They are

orthogonal to the core hardware constructs listed

above in the same way as both std_logic_arith and

numeric_std are orthogonal to the core modeling

features of VHDL. In fact, faster and more consistent

datatypes for bit-accurate integer and fixed-point

datatypes are provided by the publicly available

algorithmic C datatypes [2]. The package also

provides datatypes that are not available in Sys-

temC; specifically datatypes for bit-width parame-

terized floating-point and complex numbers. Any

of these datatypes can be used with SystemC.

Using the core hardware modeling features of

SystemC allows users to refine the design by add-

ing more implementation detail. However, the

more detail that is in the specification, the less ab-

stract it is and the less room to refine/optimize the

design using HLS.

The design specification can be as simple as a

function in C++ that computes outputs based on

inputs. Figure 2 shows a simple example of an al-

gorithm that multiples four pairs of numbers and

adds them. HLS creates RTL based on choices the

designer provides on how the function arguments

map to hardware interfaces and other architectural

constraints. One of the implementations streams

the input arrays and it takes a latency of four cy-

cles to process the algorithm. The other two imple-

mentations read all inputs every cycle, but are

pipelined differently.

Hardware hierarchy can be inferred from the

C++ call structure of functions. Hierarchy and the

streaming of data can also be modeled using Kahn

process networks (KPNs). In C++, the KPN is mod-

eled by adding a thin layer over the function calls

using channels (FIFOs) to communicate between

the functions. KPN models communicating pro-

cesses with writes that are nonblocking since the

FIFOs are assumed to be unbounded, while reads

block until there is data available in the input

FIFOs. Many subsystems are implemented in HLS

today with this modeling style. One of the advan-

tages of the KPN model is that the generated RTL

is equivalent to the C++ independently of the laten-

cies for the various processes. The latencies, deter-

mined by scheduling in HLS, only have an impact

on the minimum first-in–first-out (FIFO) sized in

the generated RTL that are required to avoid dead-

locks. This is because reads will block and wait un-

til data become available. Modeling styles that do

not block on reads require either more careful syn-

chronization or constrains on the length of the

schedule.

At the next level of refinement, modules, con-

currency, and interfaces are explicitly defined using

SystemC. Cycle-accurate and pin-accurate details of

the protocols are encapsulated so that a read or a

write to an interface appears as a function call in

the process thread that is otherwise untimed. En-

capsulating protocols helps maintain the abstrac-

tion level of the design by isolating the lower

abstraction behavior into a set of library interfaces.

Given that SystemC is built on C++, the choice

is not about languages, but rather about abstrac-

tion, i.e., whether some modeling SystemC features

are used and the extent in which they are used.

Complex subsystems are being built with plain

C++ or C++ using KPN. SystemC provides the

Figure 2. Different hardware implementations generated
from the same C++ source.

IEEE Designc & Test118

Perspectives

hardware modeling constructs that are useful to

model the integration of such subsystems and to

model explicit complex cycle-accurate protocols.

As HLS evolves in capabilities to address more

complex architectural refinement, less explicit re-

finement will be necessary in the input code/speci-

fication that HLS consumes.

Coding for synthesis
Just like in RTL specifications, the way the

source specification is written has an impact on

the quality of the hardware generated by synthesis.

For example, an image filtering algorithm may aver-

age the value of neighboring pixels around a cen-

ter pixel. The operation is repeated by selecting

the neighbor pixel as the center pixel. A subset of

the array accesses are common and can be buff-

ered using a shift register to minimize memory ac-

cesses in the hardware that is synthesized as

shown in Figure 3. In this example, the feedback

multiplexers are used to duplicate the pixel value

when the window reaches the edge of the image

row. Both performance and power are improved

with such a rewrite.

Many algorithms are initially implemented

using floating-point numbers because they have a

wide dynamic range and require less concern

about numerical overflow and underflow. For syn-

thesis, floating-point numbers should be replaced

by a fixed point, an integer, or a floating point with

bit widths that have been reduced to get efficient

hardware while still meeting the numerical require-

ments of the algorithm. Using bit-accurate data-

types enables the verification of the selected

bitwidths using C++ which is much faster than veri-

fying that numerical refinement in a manually cre-

ated RTL specification. HLS may still find

opportunities to further reduce bitwidths based on

range properties of the operations in the algorithm.

Understanding the implications of conditional

behavior to the complexity of hardware is very use-

ful to write C++ specifications that produce the

best results. Conditional behavior could imply a

chaining of conditions and result in inefficient

hardware.

A good reference for how to write C++ code for

synthesis is the HLS Blue Book [3]. It is likely that

additional capabilities and tools will emerge over

time to help perform numerical refinement and to

better optimize generically written code.

Verification
It is estimated that the number of verification

engineers has increased at 3.5 � faster rate than

the number of designers in the 2007–2014 period

[4]. Verification of an SoC has many facets. Virtual

prototyping is often used to have an early model of

the hardware so that performance analysis and

software development can be started. As the hard-

ware is developed, many functional verification cy-

cles take place while the design is debugged.

Verification of the hardware relies on the use of a

combination of simulation, formal, FPGA prototyp-

ing, and emulation techniques. Beyond the base

functionality, other aspects such as performance,

clock, and power domains and power manage-

ment need to be verified. Recently, security/safety

have also become a part of the verification of the

SoC [4].

One of the main drivers to move hardware de-

sign to a higher level of abstraction is to greatly im-

prove verification productivity. A higher level of

abstraction of the design specification makes it

possible to simulate it at speeds that are orders of

magnitude faster than the simulation of the imple-

mentation in RTL. Simulation of the C++/SystemC

specification does not currently eliminate the need

to verify the RTL, but it cuts down the verification-

debug cycles that are prevalent in manually gener-

ated RTL. HLS users have reported improvements

in verification time of 2� or more with fewer com-

puter resources to achieve it.

Additional improvements in verification are be-

ing deployed with more in the horizon as the size

of the HLS market increases.

Figure 3. Seven tap sliding window and the shifter
implementation that buffers previous array reads. One
element is read instead of five elements every cycle.

May/June 2016 119

They can be classified into two categories:

• functional verification of the source HLS

specification;

• verification of the generated RTL.

Verifying the C++ specification

Adapting existing methodologies. Verification
methodologies and flows that are currently tar-

geted to RTL can also be applied to the C++/

SystemC specification. For example, formal prop-

erty checking of the C++ specification is available

and being now deployed by HLS users.

In RTL verification, there is a methodology to

develop and measure test vectors effectiveness

using coverage tools. Designers would like to use

the same rigor to develop test vectors for the C++/

SystemC specification. The same stimulus could

also be used for the RTL design, although addi-

tional vectors may be required to provide the

same level of coverage [5].

FPGA prototyping. An HLS specification can be

effectively targeted to different technologies. This

enables the acceleration of the input specification

using an FPGA technology as compared to C++.

For some applications, it may be possible to accel-

erate the algorithm to run at the intended target

speed. Such capabilities are particularly useful for

developing and validating complex design deci-

sions for evolving standards such as the 5G wire-

less communication standard.

Verification of the generated RTL
The HLS generated RTL is currently verified

using standard verification techniques primarily

using simulation, emulation, and FPGA prototyp-

ing. The verification infrastructure is typically cre-

ated for the whole SoC. The stimulus may be

created from a subset of vectors used in virtual

prototyping or other high level models, but also in-

clude vectors derived from directed tests and con-

strained random stimulus generation techniques.

In this section, the discussion is focused on the

areas that have had the greatest interaction with

how HLS works.

RTL coverage. The RTL that is generated by HLS

needs to go through the same verification flows as

RTL that is manually generated. RTL coverage is

used as one of the metrics to gauge the quality of

the stimulus used for functional verification. RTL

code coverage adds to the line/branch coverage

that is used in programming languages with addi-

tional requirements to exercise logical expressions.

Each term in the expression is set in turn to both

true and false while the remaining terms are set to

let that term make a difference to the output of the

expression.

Logic redundancy introduces points that can-

not be covered with any test vector and thus arti-

ficially lower RTL coverage. Verification engineers

often spend a fair amount of effort to understand

points that are not covered and either rewrite the

RTL or waive such redundancies as part of their

flow. It is a more tedious process in machine gen-

erated RTL. Redundancies may be present in the

source specification. Having better coverage tools

for C++ and SystemC would be useful to identify

them. Redundancies could also be the result of

range properties of inputs that either HLS is not

aware of or it has not leveraged during optimiza-

tions. Redundancies may also be inadvertently in-

troduced during the synthesis process. Low

coverage in HLS generated RTL due to redundan-

cies can be addressed by enhancements in HLS

and also by using formal tools that can identify

redundancies so that they can be waived during

coverage measurement.

RTL coverage is targeted to cover lines/

branches and to exercise condition expressions. It

is not intended to target arithmetic. For example,

for the expression x G¼ 0 , it is sufficient to have

two values of x to get true/false values for the ex-

pression. Synthesis optimization may rewrite the

expression in terms of finer logic in ways that re-

quire many more vectors to achieve full coverage.

HLS optimizations need to therefore take into ac-

count such effects in order not to artificially lower

coverage.

Emulation. For manually generated RTL designs,

simulation-based verification is commonly used be-

fore emulation since it provides faster turnaround

for exposing and fixing bugs that only require short

simulation traces. The use of HLS enables a faster

transition from simulation to emulation since the

C++ source specification is far more extensively

tested than manually generated RTL. Simulation

IEEE Designc & Test120

Perspectives

can then be focused on some areas of concern

such as integration verification.

Generated RTL against C++. The base func-

tional verification of the RTL for the subsystems

that are generated using HLS can be verified in

their own context to add confidence that when the

system is assembled only integration issues would

be found. This section covers two avenues for veri-

fication that are of particular interest in HLS design

flows: simulation and formal verification.

Simulation. Using an HLS design methodology it is

possible to create the SystemC verification infra-

structure to test the generated RTL against the C++

using the stimulus generated by the C++ testbench.

The test can be configured to inject stalls to exer-

cise features that may not be present in the C++/

SystemC model. This infrastructure can be auto-

matically generated and can aid in performance

analysis and extraction of switching activity for

power analysis provided the stimulus is representa-

tive of actual use scenarios. Power analysis is key

for understanding the power/performance/area tra-

deoffs of the design.

Formal verification. Formal equivalence checking

relies on comparison of two specifications to see

if they can be proved that they are equal. It is

extensively used to verify the gate level netlist gen-

erated by RTL synthesis against the RTL design.

After the gate and RTL state (registers) are

mapped, formal equivalence checking proves that

the next state that the gate and RTL logic com-

pute are equivalent. Typically, the synthesis tool

needs to convey information on how it arrived

at the gate implementation. For example, if a

Wallace tree is used to implement the expression

a�bþ c�d , that needs to be conveyed to a formal

tool so that it can build a structurally similar rep-

resentation for that expression and prove the

equivalence in an efficient manner. This example

illustrates that the more refinement takes place in

synthesis, the wider the abstraction gap and the

more synthesis information needs to be conveyed

to the formal tool.

Formal techniques for HLS [6] operate on simi-

lar principles of matching up the state and proving

that the next state for both the generated RTL and

the C++/SystemC is equivalent. Formal verification

of the generated RTL against the C++ source is an

area of active development and promises to add a

very important tool to current verification method-

ologies to effectively tackle the ever increasing ver-

ification challenges. Formal verification of blocks

and subsystems could be complemented with sim-

ulation to verify their integration and with emula-

tion to do comprehensive verification.

Verification methodologies around HLS will

evolve over time on ways to partition the verifica-

tion problem to get the most confidence on

functional correctness with a combination of tech-

niques and tools.

Power analysis and optimization
Most power reduction occurs by the decisions

made at higher levels of the design. HLS is

uniquely positioned to enable designers to reduce

power consumption. Because of design complexity,

it is not always intuitive which architecture will be

the best in terms of power. Having power analysis

accessible within HLS enables the comparison of

power consumption for different architectures

choices. For example, Catapult, a commercial HLS

tool, has such a capability [7].

Clock gating is used extensively in RTL design

to reduce power consumed by registers and by

clock trees. In essence, an analysis is performed to

capture the conditions under which each register

is loaded and the logic circuit rewritten to use that

as an enable input to the register. The new enable

condition should be more narrow (exercised less

often) than the original enable condition (if it had

one). This step is called enable extraction/

strengthening. RTL synthesis tools can then imple-

ment the register enable by gating the clock (the

enable input is ANDed with the clock). When many

register bits share the same condition, the clock

subtree that feeds them can be gated further reduc-

ing switching activity.

There are sequential properties of the logical

circuit that may be used to further strengthen regis-

ter enable conditions. If all registers in the input

cone of logic that feeds the data input of a register

are disabled, then the data input will be stable and

the register could be safely disabled under those

conditions. This is called stability-based enable

strengthening.

Another sequential property used to strengthen

enable conditions is whether the output of a

May/June 2016 121

register is used (observed) under some conditions.

This is observability-based enable strengthening.

The additional benefit is that unnecessary switch-

ing at the output register can be reduced which

can also reduce the power consumption of opera-

tions in the fan-out of the register.

All forms of enabling strengthening can be per-

formed in an HLS design flow. Power savings in the

range of 7%–51% were reported using Catapult [7]
in a set of real designs with clock gating using the

combination of techniques for enable extraction

and strengthening described before. There are tra-

deoffs involved in some forms of strengthening.

Using switching activity provides the information

required for power optimization to get the best re-

sults. One of the ways such switching activity can

be collected is the verification infrastructure that is

generated by HLS to feed the same input stimulus

from the C++ testbench to the generated RTL.

Early switching activity analysis or back annota-

tion of such activity from the RTL, or any other in-

termediary model generated by HLS, could be

used to estimate the effect of optimization deci-

sions made during synthesis. As the design scope

of HLS increases to larger subsets of the SoC, addi-

tional capabilities will likely be added to HLS to

help designers incorporate power management

techniques.

Design reuse
The higher the level of abstraction, the easier it

is to reuse a specification. A design can be reused

to target a different performance and/or technol-

ogy (ASIC technology node or FPGA device). In

many cases, the C++ specification can remain un-

changed. In some cases, the source may need

modifications if a different memory architecture is

required to meet the performance goals for the

technology.

Another common way to reuse a C++ design

is to modify the source to include additional

functionality. For example, in video encoding/

decoding, there are many profiles and it is com-

mon to support a subset of those profiles and

to progressively add profiles in later revisions of

the SoC.

The C++ language is ideal for creating IP that is

parameterized using C++ template parameters.

Such parameters can be used to select the algo-

rithm, the memory architecture, etc. For example,

parameters could be used to select the radix of an

FFT algorithm, how intermediate results are stored,

etc. Parameterization does increase the effort to

validate results for all parameter combinations.

However, such IP has a lot of value because it can

be used to generate RTL using HLS for a wide

range of needs. Currently, most HLS IP is produced

by users for their internal company use with some

provided as part of the HLS tool as reference de-

signs to facilitate its adoption. Commercialization

of IP for HLS would likely require encryption of

the source to protect the investment to develop it

and yet provide sufficient visibility so that the user

can change constraints on synthesis to get the

desired results.

Status, trends, and future
Over the past decade, HLS has been used for

thousands of ASIC tapeouts and FPGA designs. It

has been used primarily to design differentiating

IP in many cases for algorithms that are part of

evolving standards. For example, for wireless

communication it was used for 3G and 4G and

now it is actively being used for 5G. It has been

heavily used for implementing hardware for video

decoding standards. A publicly available use of

HLS is for the design of the VP9 video standard

[8]. Video decoders for the H.264 standard and

its successor the HEVC standard [9] have also

been designed using HLS. The ability to add func-

tionality to an existing design has enabled more

aggressive schedules for incorporating additional

capabilities, for example, adding a 10-b profile

for video decoding to a design that handles

8-b profiles.

The ability to deliver complex functionality

within tight market windows has made HLS an im-

portant tool for many companies to be competi-

tive. As companies have gained experience in

wider deployment of HLS-based design methodolo-

gies, they see the value of rewriting existing RTL IP

into C++ IP that is more abstract so they improve

the power, performance, and area for future de-

signs that use that IP. In addition, having more of

the system represented in C++ provides additional

productivity gains in terms of being able to verify

more of the system at a high level.

As HLS is more widely adopted, verification will

be tailored to get the most confidence with a mix-

ture of techniques as outlined before. The biggest

IEEE Designc & Test122

Perspectives

changes that are taking place or are likely to take

place are as follows:

• a shortening of the simulation-based verification

and an earlier transition to emulation;

• the use of formal for property checking at the

C++ specification;

• the use of formal equivalence checking for

verifying the generated RTL against the C++

specification;

• adapting of other verification methodologies to

the C++ specification.

HLS flows could also generate additional models

that are more abstract than the RTL, but incorporate

the required refinements to aid in functional and

performance verification, power analysis, and verifi-

cation of power domains and power management.

In addition to formal property checking, more

lightweight checking for likely source of errors is

to evolve. Source linting is a lightweight checker.

Compilers for C++ do provide warnings for soft-

ware development, but additional checks that are

relevant for hardware could be added and

proven valuable. The challenge with linting is

that it tends to be very syntax driven and in fact

can get in the way of the most natural and clean

way to express behavior. The other challenge

with linting, as seen in RTL linting, is that rules

that check how to best code for synthesis remain,

even after synthesis tools have evolved to better

handle such cases.

Formal could also be used to prove properties

of the design that would enable synthesis to better

optimize a design; i.e., prove that the FIFO sizes

are sufficient to avoid deadlocks or prove certain

numerical properties of the design.

Currently RTL generated by HLS goes through

the same flows as manually generated RTL. One

area where a distinction should be made is in RTL

linting. Most of the linting rules are intended as a

safeguard for catching potential errors in manually

generated code so that specification errors and ver-

ification/debug cycles can be reduced. Because

the specification is created and verified in C++ and

the RTL is machine generated, the value of linting

is significantly reduced. In some cases, it has been

proved to be a hindrance, as different HLS user

companies have contradictory linting rules.

HLS tools that target ASIC design have the capa-

bility to do incremental synthesis in order to

facilitate ECO flows. While ECOs are commonplace

in manually created RTL, they remain fairly rare in

RTL generated by HLS. The main reason for ECOs

is that RTL synthesis and physical place and route

are being worked on even before verification of

the RTL has completed. In order to reduce the im-

pact on work that has been completed, incremen-

tal patches are applied (ECO) with a methodology

that minimizes the disturbance to the design. Be-

cause the C++ specification is verified with many

vectors, specification bugs are found and fixed

early on. This greatly reduces the need for an ECO

in HLS flows.

Given how uncommon ECOs are in HLS-based

flows, it is still too early to know how ECO tools

and flows may evolve over time. Making the design

modular is currently the best way to reduce the

scope of the change and therefore minimize the ef-

fort involved in the event an ECO is required.

Teaching and research
As HLS becomes adopted more broadly, there

will be a point where RTL will become like assem-

bly language in software development: still re-

quired, but done by a very small percentage of

developers. Some universities have already started

to offer courses in hardware design using HLS.

Such courses enable students to tackle more inter-

esting design challenges. For example, accelerating

algorithms can be done not only for traditional

electrical engineering and computer science fields

like communication, image, and video processing/

analysis, but also with other scientific interdisci-

plinary fields where computation is key for analy-

sis and modeling.

While research in hardware/software codesign

began more than 20 years ago, it is only now that

there is a solid HLS foundation to build on to eval-

uate partition and mapping algorithms for complex

designs. The use of HLS to build hardware acceler-

ators for embedded applications and for building

more energy-efficient implementations are areas of

active research [10], [11].

THE TRANSITION TO synthesis from higher levels

of abstraction is taking place in industry. Design-

ing at abstraction levels higher than RTL offers

significant advantages in verification, power/

performance/area optimization, and design reuse.

This article provides perspectives on the ways in

May/June 2016 123

which HLS is helping and shaping verification,

power optimization, and design reuse. This transi-

tion is also changing the way hardware design is

taught and the research projects that are enabled

by the availability of mature HLS tools. h

h References
[1] Accellera Systems Initiative, [Online]. Available:

www.accellera.org

[2] Algorithmic C (AC) Datatypes. [Online]. Available:

https://www.mentor.com/hlslp/downloads/acdatatypes

[3] M. Fingeroff, High-Level Synthesis Blue Book.

Bloomington, IN, USA: Xlibris Corp., 2010.

[4] W. Rhines, “Design verification challenges: Past,

present, and future,” presented at the Design Verif.

Conf. Exhibit., San Jose, CA, USA, Feb. 29–Mar. 3,

2016, keynote.

[5] A. Takach, “Design and verification using high-level

synthesis,” presented at the Asia South Pacific

Design Autom. Conf., Macau, Jan. 25–28, 2016.

[6] A. Mathur, M. Fujita, E. Clarke, and P. Urard,

“Functional equivalence verification tools in high-level

synthesis flows,” IEEE Design Test Comput., vol. 26,

no. 4, pp. 88–95, Jul./Aug. 2009.

[7] Mentor Graphics Corporation, “Catapult synthesis.”

[Online]. Available: http://www.mentor.com/esl/

catapult/

[8] WebM, “VP9 video hardware RTLs.” [Online].

Available: http://www.webmproject.org/hardware/vp9/

[9] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,

“Overview of the high efficiency video coding (HEVC)

standard,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[10] J. Cong, “Compilation for customized computing—

From single-chips to data centers,” in Asia South

Pacific Design Autom. Conf. Macau, Jan. 25–28,

2016, keynote.

[11] L. Carloni, “High-level synthesis of accelerators in

embedded scalable platforms,” in Asia South Pacific

Design Autom. Conf. Macau, Jan. 25–28, 2016.

Andres Takach is a Senior Architect and R&D
manager at Mentor Graphics working on high-level
synthesis and power optimization and integration of
HLS with Formal Verification. He chairs Accellera’s
SystemC Synthesis Working Group. He rejoined
Mentor in 2015 after his HLS group was spun out
into Calypto in 2011. Prior to Calypto, he was a
Chief Scientist at Mentor where he worked on HLS
since 1997. From 1993 to 1997, he was Professor
at Illinois Institute of Technology where he con-
ducted research on HLS and Hardware/Software
Codesign. Takach has a PhD from Princeton
University and an MSEE and a BSEE from the
University of Wisconsin-Madison.

h Direct questions and comments about this article
to Andres Takach, Mentor Graphics, Wilsonville,
Oregon 97070-7777, USA; andres_takach@mentor.
com.

IEEE Designc & Test124

Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

