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Abstract—As complex autonomous systems become increasingly
ubiquitous, their deployment and integration into our daily lives
will become a significant endeavor. Human–machine trust relation-
ship is now acknowledged as one of the primary aspects that char-
acterize a successful integration. In the context of human–machine
interaction (HMI), proper use of machines and autonomous sys-
tems depends both on the human and machine counterparts. On
one hand, it depends on how well the human relies on the machine
regarding the situation or task at hand based on willingness and
experience. On the other hand, it depends on how well the machine
carries out the task and how well it conveys important informa-
tion on how the job is done. Furthermore, proper calibration of
trust for effective HMI requires the factors affecting trust to be
properly accounted for and their relative importance to be rightly
quantified. In this article, the functional understanding of human–
machine trust is viewed from two perspectives—human-centric
and machine- centric. The human aspect of the discussion outlines
factors, scales, and approaches, which are available to measure and
calibrate human trust. The discussion on the machine aspect spans
trustworthy artificial intelligence, built-in machine assurances, and
ethical frameworks of trustworthy machines.

Index Terms—Human-machine trust, trust measurement, trust
calibration, machine trustworthiness.

I. INTRODUCTION

A S AUTONOMOUS systems become increasingly com-
plex, the interaction between these systems and human

users/operators relies heavily on how much and how well the
users/operators trust them. Overtrust and lack of trust on the
users’ behalf lead to disuse and misuse of autonomous systems,
respectively [1]. The following incidents demonstrate exam-
ples of the above-mentioned situations. In 2018, an Uber car
operating in self-driving mode fatally struck a pedestrian on
a bicycle in Arizona, USA [2]. The investigation by National
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Transportation Safety Board (NTSB) found that the vehicle’s
automatic system failed to identify the pedestrian and her bicycle
as an imminent collision danger, as they were supposed to.
NTSB has also found that during the accident, the human driver
in the car had been streaming a television episode leaving the
self-driving mode unattended. This suggests an overreliance on
the system leading to misuse of autonomy. Another example is an
incident with Southwest Airlines Flight 1455 that traveled from
Las Vegas to Burbank, California, in March 2000 [3]. During the
landing approach, cockpit warning signals alerted the captain
and first officer that the flight speed and angle of descent were
well outside the glide path. These warnings were ignored. As
a result, the plane overran the runway, and crashed through a
fence and wall. This incident fortunately had no fatalities, but
illustrates how lack of trust may lead to disuse of autonomous
systems. These examples also imply the need for appropriate
and calibrated reliance on such systems. The seminal works [4]
and [5] laid the motivational foundation by not only identifying
trust as a major factor for the interaction between humans and
autonomous systems involving uncertain situations, but also the
necessity to calibrate trust correctly.

Trust has also been recognized to be one of the important
factors for effective interaction and use of autonomous systems.
According to [5] and [6], the critical outcome of trust is described
to be reliance. While using these increasingly complex systems,
we may not be concerned about trust itself, but the ultimate
behaviors that trust is likely to produce—reliance or absence of
it, i.e., nonreliance. Thus, the importance of trust in facilitating
HMI and integration of autonomous systems into everyday use
is noteworthy and necessary.

Trust in automated and autonomous systems has been ex-
plored in earlier research along with the notions of use, misuse,
and disuse of automation [1]; the theoretical foundations of
modeling human trust that can be used for empirical studies of
human intervention in automated systems [4]; and trust consider-
ation in automation design for appropriate reliance in [5]. Other
topics ranging from trust dynamics in autonomous vehicles to
trust etiquette and trust-distrust definitions were discussed in
[7]–[12]. Furthermore, several survey papers have discussed
human–machine trust with regard to multidisciplinary defini-
tions of trust, trust frameworks, and factors affecting trust [13].
Other survey papers include studies of algorithmic assurances
in human–autonomy trust relationships [14] and computational
trust and reputation models [15] that focused on models ap-
plied to nonengineering fields. Notably, the review presented
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discussed how to conceptualize trust variability among vari-
ous other research outputs on trust in automation.The model
revealed three layers of human–automation trust variability. This
layered and structured approach comprises dispositional, situa-
tional, and learned trust. Another review [17] summarized the
research concerning autonomous systems by considering four
categories of such systems, namely decision support systems,
robots, self-driving cars, and autopilot systems. This article
provided a quantitative definition of trust that appeared in the
authors’ prior work [18]. However, the quantitative definition
provided has not been utilized as a criterion for evaluating any
of the subsequent discussions presented there. Most recently,
Kok and Soh [19] addressed how trust in robots can be gained,
maintained, and calibrated. This article also outlined the chal-
lenges in terms of measurement of trust, and trust models in
real-world scenarios.

Despite the fact that previous studies covered important
themes in relation to trust in automation, there still remains
much ongoing discussion regarding trust measurement and cal
ibration. This includes standardized measurement techniques,
standardized scales, and exploring trust calibration efforts that
consider both the human and machine aspects of trust. In this
article, a review of research outputs pertaining to human trust
measurement approaches and trustworthiness of machines is
provided. This article intends to provide a broader review of
the topic focusing particularly on the following:

1) Human and Machine Aspects of Trust: This brings at-
tention to a dual perspective of trust in human–machine
teams. In the HMI context, an improved and effective use
of machines/autonomous systems depends on both the
human and machine counterparts. Proper calibration of
the interaction requires a functional understanding of both
aspects, and hence the relevance of this contribution.

2) Human Trust Models, Measurements, and Calibration:
This includes a review of models used for studying trust
evaluation with respect to autonomous systems, summary
of various trust measurement, and experimental and em-
pirical ways of trust calibration.

3) Machine Trustworthiness: It aims to cultivate machine
trustworthiness and acceptance in society and a review of
ethical frameworks, which lays the foundations of design,
development, and deployment of trustworthy autonomous
systems (TASs) to cultivate machine trustworthiness and
acceptance in society. Also, a discussion on properties
of trustworthy autonomy, verification of trustworthiness,
and methods of trust calibration and assurance are also
presented.

The remaining sections of this article are organized as follows.
Section II starts with a definition of trust that subsumes the
context of its use in the reviewed materials. Section III primarily
focuses on the discussion of the human trust measurements
and calibration along with validity and reliability testing re-
quirements. In Section IV, a review of machine aspects of trust
and trust influence based on the trustworthiness of autonomous
systems are discussed. In Section V, the challenges of measuring
and calibrating trust in light of the reviewed material are also
discussed. Finally, Section VI presents the conclusions and the
road map ahead for more studies.

II. BACKGROUND AND DEFINITIONS

With the increased complexity of autonomous systems, under-
standing all the underlying operations of those systems becomes
difficult. Yet, users will continue to delegate tasks, trusting
their machine partners to various degrees in different settings.
Therefore, it is important to discuss a definition of trust and
autonomy that relates to the majority of the works reviewed in
this article. We start by providing the definition of autonomy and
follow up with a definition of trust.

Although it is quite difficult to provide a governing definition
of autonomy without the situational context of the application,
Fisher et al. [20] defined autonomous systems as those systems
that decide for themselves what to do and when to do it. In
explaining this idea, Bradshaw et al. [21] emphasized that au-
tonomy entails at least two dimensions: 1) self-directedness,
which describes independence of an agent from its physical
environment and social context; and 2) self-sufficiency, which
describes self-generation of goals by the agent.

Trust has been studied in a broad range of fields of interest,
including psychology, sociology, cognitive sciences, economics,
computer science, human factors, and engineering. As a result,
a unifying definition for trust is lacking. In particular, within
the framework of HMI, the definitions span from the human-
inspired notion of trust [22] to a computational model of trust
accounting for cyber and network security [23], [24]. However,
there exists a commonality across usage, which includes three
components. These common components are: a trustor, a trustee,
and a risk or uncertainty [16]. The definitions describe the
relationship between the trustor (a user/operator) and the trustee
(a machine) depending on the nature of the task, consequences,
and conditions.

Trust is described in [5] as “the attitude that an agent will
help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability.” This definition of trust is
by far the most widely used in subsequent studies of trust in
automation [25]. In [19], this definition is elaborated to include
the following:

1) consideration of trust arising in situations that entail risk;
2) the multidimensional and latent nature of trust;
3) trust will also account for the relationship between past ex-

periences with the trustee and subsequent acts of reliance.
Combining these, [19] provided a definition of trust as “a

multidimensional latent variable that mediates the relationship
between events in the past and the trustor’s subsequent choice
of relying on the trustee in an uncertain environment.”

A literature review of research covering trust in autonomous
systems, mostly on materials published in the last decade, was
conducted to build on the previous studies carried out in [16]
and [17] using combinations of key terms, such as trust, trust in
autonomous systems, trust measurement, trust scales, trustwor-
thiness, and trust calibration.

In this article, the functional understanding of human–
machine trust is viewed from two perspectives—the human
aspect and the machine aspect. The human aspect of the dis-
cussion outlines trust models that have been developed and
adopted through the years to characterize trust and facilitate
trust measurement toward trust calibration. The discussions
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TABLE I
RUST MODELS

on the machine aspect span trustworthy artificial intelligence
(AI), built-in machine assurances, and ethical frameworks of
trustworthy machines.

III. HUMAN TRUST MEASUREMENTS

The U.S. Department of Defense’s unmanned systems inte-
grated roadmap [26] and the Institute of Defense Analysis’s
roadmap to trustworthy autonomy [6] emphasized the role of
trust as an important determinant of reliance on autonomous
systems. Establishing the appropriate levels of trust and trust
calibration capabilities are part of the challenge areas identified
in those roadmaps. Recalling whether someone trusts a system
depends on the nature of the task, the consequences, and con-
ditions [5]. Measurements of trust at those levels of task and
conditions will be required to assess the situational calibration
of operator trust. To facilitate our discussion of human trust mea-
surement and calibration attempts, we subsequently outline trust
models, validity considerations of trust measurement scales, and
different types of measurement approaches.

A. Trust Models

Researchers modeled human trust based on social interper-
sonal interactions [27], [28] to represent the psychological state
or attitude toward delegation of tasks under implied risk. Various
models for trust evaluation and explanation providing repro-
ducible and methodical treatment of trust in HMI have been put
forth by several research outputs. Table I summarizes some of
these models that have been widely adopted. The early models
of trust include those developed in [4] and [5]. These models
adopted and modified the notion of interpersonal trust for use in
automated systems. In [4], a qualitative model used to explain
human–automation interaction to make behavioral predictions
about a human operator toward automation and calibration of
trust was provided. Furthermore, in [5], Lee and See devised a
model that captures 1) the dynamic interaction among contextual
awareness of individuals and the environment and 2) the design
aspects of the interface between the automation and the operator.

Other widely used models of trust include those introduced in
[9], [16], [30], and [31]. These models describe an increasingly
detailed representation of trust and autonomy, factors affecting

the relationship and trust formation under these interactions, and
accounts of the multidimensionality of trust as a latent behavior.

B. Trust Measurement—Scales and Approaches

Due to its latent and multifaceted nature, trust cannot be
directly measured. As a result, measuring trust depends on
capturing other factors or underlying constructs. As different
types of trust are investigated: trust propensity [32], dispositional
trust [16], history-based trust [33], and affective and cognitive
trust [5], what is measured continues to vary widely within
the existing literature. Trust measurements are mainly done
via self-reports by the human subjects under study [34]–[38].
Another approach that has grown in recent years is the use of
psycho-physiological sensors to measure neural and physical
correlates of trust [10], [39]–[43].

In [44], Wei et al. pointed out that, despite the availability of
a large number of research in trust measurement, it is not clear
what psychometric level of measurement is most appropriate
for trust in automation. They discussed the various levels of
psychometric scales (nominal, ordinal, interval, and ratio) and
investigated what could be a step toward having a standardized
level of measurement for trust. They did so by carrying out
a trust measurement using an experimental setup and mea-
surement approach, which allows a permissible transformation
between two levels of measurement. They found out that the
interval level psychometric scale, adopted by the majority of
trust measurement studies, might be a probable candidate for
determining the most appropriate level of trust measurement.
Also, Brzowski and Nathan-Roberts [45] iterated the need to
validate trust scales. They indicated that most measurements
are created with the exact application in mind and are validated
in ways that are specifically relevant to the application (e.g.,
simulation of a decision aid) used for measurement purposes.
Validity refers to the degree to which a construct is correctly
measured in a quantitative study [46]. Another issue related
with trust measurements is the reliability of those measurements.
Reliability refers to the consistency of measurement [47]. It is the
way in which a trust scale consistently produces the same results
when used repeatedly in the same scenario. According to [19],
validity, reliability, and related measurement variances need
to be given the necessary attention to have reproducible trust
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measurement practices. Next, we discuss various subjective self-
report measures and psychophysiological trust measurements.

Self-Report Measurements: These approaches measure trust
by collecting responses in the form of surveys and questionnaires
from participants. There is currently no standard for assessing
human–machine trust [44], [48]. At present, it is measured by
researchers using custom scales or validated measurements. This
makes cross-study comparisons difficult to determine whether
automation facilitates appropriate trust levels. Researchers have
used a wide variety of approaches in measuring trust with self-
reported accounts from human subjects under study [34]–[38].
In the following, the widely used self-report based scales are
discussed.

In [37], Jian et al. developed one of the most frequently used
scales, i.e., the Scale of Trust in Automated Systems, where
they devised a 12-item scale to measure trust. They developed an
experiment using a word elicitation study, a questionnaire study,
and a paired comparison study. The 12 factors characterizing
trust between people and machines were identified based on
a cluster analysis carried out on the experimental data. In their
conclusion, they particularly noted that the trust scale developed
should be validated in experiments designed for a specific study
of trust in automation.

In [49] and [50], a validated scale for assessing changes
in a person’s trust in a robot was developed. The 40-item
trust instrument, developed over the course of six experiments,
was designed to measure trust perceptions in the context of
human–robot interaction. For this item pool, two experiments
identified the robot and perceived functional features. The scale
was reduced to those items from an original pool of 172 items,
using item pool reduction techniques and content validation by
subject matter experts. The scale was then validated through two
final experiments.

The multidimensional nature of trust was employed in [51]
to incorporate capacity trust (reliable, capable) and moral trust
(sincere, ethical) aspects as factors. They developed a Multi-
Dimensional Measure of Trust (MDMT) instrument, which
captures the two trust factors. Repeated cycles of principal
components analysis and item analysis resulted in study items
distributed across four factors: reliable, capable, sincere, and
ethical. The MDMT provided a tool that brings the interpersonal
trust construct (moral) and a human–machine construct (capac-
ity) into an amalgamated scale. This instrument, however, is yet
to be validated.

The Trust of Automated Systems Test (TOAST) measuring
trust based on the theory of trust formation was proposed in [48].
Scale structure reliability and criteria validity were evaluated
with civilian and military-affiliated samples. There, TOAST
demonstrated a reliable, two-factor model representing system
performance and understanding. The scores obtained through
confirmatory factor analysis on the two factors demonstrated
strong positive correlations within those factors.

Other trust scales include the perfect automation schema scale
in [52], the psychometric instrument designed to measure cogni-
tive and affective components of human–computer trust in [53],
and the early scales include operators’ trust and prediction of
trust scale in [4] and the trust evolution and reliance scale in [5].

Psychophysiological Measurements: Although self- report
trust measurements provide valuable insight into understand-
ing users’ trust in automation, they are unable to objectively
evaluate user trust or trust correlates and are, therefore, not
appropriate for real-time trust assessment [54]. Progress with
sensing technology has resulted in the development of inex-
pensive and efficient psychophysiological sensors and a shift
away from self-reporting scales toward more objective methods
for assessing trust correlates using psychophysiological signals.
Measurements using physiological traits, such as employing
heart-rate variability (HRV) measurement [55], evaluation of
brain activity using fMRI [56], [57], and fNIRS [58], and elec-
troencephalogram (EEG) [59]–[63], have been used to study and
evaluate trust via its psychophysiological correlates.

In [64], Gupta et al. investigated participants trust toward
an auditory assistance system for a search task in a virtual
reality (VR) environment. They found that the trust inferred this
way is subject to different cognitive loads and agent accuracy
levels. Participants data were gathered using a variety of sen-
sors, including EEG, HRV, and Galvanic skin response (GSR)
devices. The study identified that physiological and behavioral
measurements can be used to assess human trust in virtual
agents. It also showed that researchers can use a VR environment
to simulate realistic environmental scenarios. Furthermore, they
studied the effect of cognitive load on trust. Human-like cues
were also demonstrated to play an important part in the neural
response to an agent’s technical capability [65]. Subjects played
matrix games with a computerized agent while event-related
potentials from EEG were averaged for each subject and trial.
By analyzing brain signals, this study creates an environment
that capability-based trust levels can be computed from those
measurements.

In [59], an empirical trust sensor model was proposed using
data from GSR and EEG and showed that psychophysiological
signals could be used for real-time human trust measurement
inferences in agents. In particular, Akash et al. [59] developed
a binary classification model for trust and distrust based on the
data they collected in this manner. They further expanded their
experiments [66] to dynamically vary and calibrate automation
transparency to optimize HMIs.

The application of psychophysiological signals to assess trust
via its correlates is complex [67]. It is usually impossible to draw
a one-to-one correspondence between the signals from these
sensors and trust states [54]. Subsequently, the interpretation of
the relevant signals to draw a causal relationship with trust is
still an elusive task [68], [69]. In [54], it was suggested that
researchers adjust the trust measurement scale, the number and
types of physiological signals, trust relationship type, and the
analysis technique used to analyze the data to infer the trust
state when assessing trust using these approaches.

IV. MACHINE TRUSTWORTHINESS

A. TASs and Trust

Trustworthiness is a property of trusted agents or organiza-
tions which engenders trust in other agents or organizations [70].
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Any AI-driven autonomous system that embodies such proper-
ties is categorized under the term “Trustworthy Autonomous
System (TAS).” TAS cements human trust in AI-based systems
so that societies can assuredly design, develop, and reap the
benefits of these technologies [71].

The integration of AI and machine learning is pervasive in
many fields and affects various aspects of our daily lives. The
lack of trust in AI systems is often a typical yet justifiable
hindrance in achieving the next level of autonomous system
ubiquity. Trust in intelligent systems is often compromised due
to consistent failure in a broad range of systems and the black
box behavior inherent in some data-driven models that obscure
internal decision-making processes.

Although intelligent system benefits are far-reaching and
undeniable, there are many safety-critical scenarios where the
failure of AI systems could have detrimental consequences.
The general category of reasons that lead to failure includes
maliciously compromising system functionalities executed by
unethical people (“intentionally”), engineering shortcomings,
and even environmental factors [72]. Autonomous road vehicles
are, for instance, exposed to adversarial attacks, which involve
adding visual perturbations to stop signs to mislead the inter-
pretations of their trained classifiers and ultimately compromise
the vehicles’ safety [73].

A timeline consisting of first occurrence of intelligent systems
failure, excluding deliberate attacks, is presented in [72]. It is
critical to deliver on the advantages of intelligent systems and
remit the drawbacks by building trustworthy systems. Addition-
ally, system trustworthiness should be ensured throughout each
stage of a product’s life cycle, including the technical design,
development, implementation, testing, and deployment stages.

B. Ethical Frameworks for TASs

Amidst the ever-evolving dynamics of HMI, it is essential to
continuously monitor and ensure the development of intelligent
technology aimed at benefiting both individuals and society at
large. This has inspired the development of several frameworks
and guidelines that inform key principles underlining the ethical
operation of AI-based systems.

These frameworks are also relevant to trust, accentuated by
references to trustworthy AI design and development principles
for entailing customers’ trust [74]. Ethical frameworks and
guidelines for building trustworthy intelligence list a set of
qualities that should be adopted by AI-based systems to be
deemed trustworthy.

Stakeholders of these technologies, including industries, gov-
ernmental agencies, and academia, have released guidelines and
frameworks around ethical AI. Some international organizations
are instituting AI expert committees to draft guidelines. For
instance, the High-Level Expert Group on Artificial Intelli-
gence (AI HLEG) mandated by the European Commission [75]
defined seven requirements that systems must meet to realize
trustworthiness under its proposed trustworthy AI framework.
These include technical robustness and safety, transparency,
accountability, privacy and data governance, human agency and
oversight, diversity, nondiscrimination, and fairness, as well as

societal and environmental well-being. The guideline presented
by AI HLEG also provides technical and nontechnical meth-
ods to meet these requirements. Industries too are establishing
guiding principles and frameworks on ethical AI. Deloitte’s
Trustworthy AI Framework [76] is an effort that proposes six
pillars (transparent/explainable, robust/reliable, fair/impartial,
privacy, secure/safe, and accountable/responsible) to consider
when designing, developing, and deploying AI-based systems.
The similarity in the essence of these principles suggested in
both guidelines is reasonably vivid.

It is relevant to capture the global convergence among diverse
principles and reconcile their existing differences to reach a
consensus on trustworthy innovations. A comprehensive survey
of guidelines is provided in [77] by investigating the overlap and
divergence of principles and interpretations. This study identi-
fied 47 principles across frameworks and later grouped those
related principles culminating in the following eight overarching
themes:

1) safety and security;
2) transparency and explainability;
3) human control of technology;
4) professional responsibility;
5) promotion of human values;
6) fairness and nondiscrimination;
7) privacy;
8) accountability.

C. Elements of Autonomous Systems Affecting Trust

Autonomous systems garner human trust in their capabilities
in more than one way. Several of these methods are discussed
in the following section.

1) Trustworthiness Properties: Robustness and Safety. Tech-
nical robustness in autonomous systems refers to the ability to
counteract adverse conditions. Some autonomous systems are
built to make sophisticated decisions in safety-critical scenarios.
These systems must ensure their users’ safety and exhibit accept-
able performance, especially in dynamic environments. There
are various angles for addressing robustness in autonomous sys-
tems, such as security, reliability, safety, and resilience. Security
is a sensitive issue in autonomous systems, given that the systems
are more susceptible to attacks.

A survey of security in autonomous systems in [78] highlights
major security threats in autonomous systems and provides
insights on available cyber-security solutions along with their
constraints. Maintaining the security of autonomous vehicles
by verifying the integrity of sensor data is proposed in terms of
LIDAR [79] and Radar [80] sensors, which use the quantization
index modulation based data hiding technique. The research
in [81] ensures the safety of autonomous vehicles in unstruc-
tured environments and robustness against adversarial attacks by
developing controller-focused anomaly detection and system-
focused anomaly detection techniques to enhance anomaly mon-
itoring in sensor data and the overall system. Seemingly, minor
adversarial perturbations to an AI model’s inputs can severely
undermine the model’s reliability when used in safety-critical
domains. To this effect, robust visual adversarial perturbations
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under changing environmental conditions are applied to road
sign images causing intentional misclassification in autonomous
driving deep neural networks [73], demonstrating how vulnera-
ble these systems can be.

2) Explainability, Transparency, and Interpretability: These
concepts relate to the degree to which the operation and decision-
making processes of AI-based systems are relayed in ways
comprehensible to a human user. Humans are reluctant to es-
pouse techniques that are not interpretable and trustworthy [82].
Any explanation of the decisions made by an AI-based system
to engender trust in the system is enrolled in the concept of
explainable AI (XAI). The nature of interpretability, whether
inherent or aided, establishes the two facets of XAI. AI models
with inherent interpretability are classified under transparent
models, and those with aided interpretability are known to
exhibit post-hoc explainability [83]. Transparent models have a
level of intrinsic interpretability, whereas post-hoc explainability
is due to deliberate incorporation of qualitative or quantitative
explainable solutions. Visual [84] and natural language [85] ex-
planations can be used to rationalize and elaborate the decisions
of a system to external users who are unfamiliar with the system’s
inner workings. Black-box models in a data-driven domain such
as neural networks adopt model- simplification techniques, like
the DeepRED algorithm [86] and block-chain solutions [87], to
ascribe transparency to the model. A computational explanation
approach is used in [88] where feature coefficients are evaluated
to understand their effect on the explainability of interpretable
models using decision lists or decision trees. Researchers are
often faced with tradeoff scenarios between the increasing com-
plexity of algorithms to accommodate improved performance
and the system’s interpretability quotient [89].

3) Verification of Trustworthy Autonomy: Technological
characteristics of trustworthy autonomy, such as reliability and
performance efficiency, do not necessarily implicate positive
trust responses nor ensure proper trust calibration. People’s
perceptions of trustworthiness can be affected by the envi-
ronment, inclination toward technology, complexity of system
(uncorroborated with explanations) and different interactions
[70]. Trustworthy systems alone do not necessarily impose trust
unless provided with the means to verify their capabilities.
The importance of providing verifiable claims regarding the
robustness, safety, fairness, and privacy protection of AI systems
is emphasized as a prerequisite to building trust for those systems
[90]. Thus, we draw attention to the notion of “Verified AI,”
whose objective is to provide evidential assurances for satisfying
correctness levels in an AI-based system as a more substantial
attempt to warranty trust.

An appeal to represent correctness justifications using mathe-
matical specifications has led to a growing interest in extending
formal verification to AI systems. However, traditional formal
verification techniques are not always equipped to handle and
generalize effectively in advanced intelligent systems. There
are five key challenge areas derived from traditionally adopting
formal verification methods in autonomous systems [91]. The
first challenge is the presence of unknown and stochastic vari-
ables in modeling an environment addressed using probabilistic
[92] and data-driven [93], [94] approaches to formally model

uncertainties in human behavior and physical environments.
High-dimensional input and state spaces in machine learning
components are another challenge whose modeling has been
facilitated using abstractions [95]. Third, formal specification
concerns in learning systems are addressed by accommodating
a wider mode of task specifications. Quantitative formulations
are designed to specify quantitative properties [91]. Algorithmic
improvisations [96] and counter example-guided training data
generation [95] are some formal method-based research efforts
used to optimize data specifications. The fourth challenge, which
is designing scalable and efficient computational engines, was
maneuvered using modular reasoning [97]. Finally, the theory of
formal inductive synthesis [98] is an emerging solution used to
address the challenge of synthesizing “correct-by-construction”
design of models for a learning system.

A machine learning-based empirical verification of other
intelligent systems is suggested as an alternative method to
justify claims. Although not fully guaranteed, machine learning
is better equipped to evaluate other machine learning- based
systems’ probabilistic nature. An interesting review of the use
of a machine learning approach to verify another machine
learning model’s capability is provided in [99]. In this article,
adaptive stress testing is deployed to validate the performance
of the Next Generation Aircraft Collision Avoidance Software
(ACAS X). Reinforcement learning is used to estimate and
simulate the likeliest near mid-air collision events with aircraft,
which opens doors to validate whether the software responds as
expected.

An open challenge presented with verification of intelligent
systems is the basic difficulty for specification of some abstract
trustworthy AI properties, such as transparency. Conversely,
trustworthy properties that are routinely verified in autonomous
vehicles include safety, robustness, fairness, and privacy. Safety
of autonomous vehicles is formally verified online [100]–[102]
by continually monitoring vehicle maneuvers using reachability
analysis of all possible behaviors given some knowledge of
initial states and bounded uncertainty model. A safety anal-
ysis of whether a neural network-based controller prevents
an unmanned underwater vehicle from colliding with a static
object is provided in [103] using an efficient overapproximate
reachability scheme. The fairness of a machine learning systems
is probabilistically verified using a scalable algorithm and tool
(FairSquare) in [104] and [105], respectively. The robustness of
machine learning models is formally specified in [106], which
can be used as the basis for verification. An analyzer, i.e.,
AI2, was developed in [105] to certify large neural networks’
robustness. Furthermore, the work in [107] formulated ethical
policies in unmanned aircraft and executed formal verification
of whether an autonomous agent does make ethical decisions.

Formal verification techniques have also been applied to eval-
uate human–machine interactive systems [108], [109]. They can
exhaustively evaluate various categories of usability properties
(e.g., reachability, visibility, reliability, and task-related) and
mode-confusion related specifications (e.g., unintended side
effects, operator authority limits, and inconsistent behavior)
associated with formally modeled human–machine interfaces
[108]. Therefore, formal verification helps find failure points
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overlooked by other traditional analysis techniques (e.g., simula-
tions and human subject trials). The analysis of safety operations
leads to design patterns that promote successful HMI character-
ized by calibrated trust. The limitations of formal verification
discussed earlier still hold for HMIs involving autonomous sys-
tems. State-space explosion, expressiveness power of modeling
formalisms, and model validity all determine the effectiveness
of a formal verification method [108]. A new element of limi-
tation is introduced in [110], which alludes to the difficulty of
formalizing a model that evolves and adapts to change in human
behavior. The Symbolic Analysis Laboratory model checker
is used in [111] to formally verify the interaction between a
human operator and a single unmanned aerial vehicle (UAV).
The extended operator function model [109] was also used to
model human operator behavior.

4) Methods of Trust Calibration and Assurance: User’s trust
must be consistent with an autonomous system’s capabilities to
ensure that the system is used within the bounds of its intended
purpose. Concepts of calibration, resolution, and specificity are
provided in [5] to describe the mismatch between user trust
level and automation capabilities. Calibration is defined as “the
correspondence between a person’s trust in automation and the
automation’s capabilities” [112], [113]. Resolution refers to
how well the range of capabilities in automation maps to the
range of trust levels [114]. Moreover, specificity describes the
interdependence level between trust and an element of a trustee.
Following these definitions, the perspective in [5] emphasizes
the importance of sound calibration, high specificity, and high
resolution of trust in mitigating mismatch and guiding the design
and evaluation of HMI.

The gradual process by which users build their faith in a par-
ticular system and become conditioned to its behavior suggests
a characterization of low temporal specificity of trust with the
system. Users have difficulty instantly building a mental model
of a complicated system, thus requiring several interactions
with the system. A faster approach in informing users was
proposed for a human–machine setting that exposes users to
the critical states of the system’s policy, yielding an improved
understanding of the system’s performance and, as a result, ef-
ficiently calibrating users’ trust. [115]. Israelsen [116] proposes
an algorithmic approach, known as algorithmic assurances, to
influence calibrated human trust in autonomous systems. An
example of such an approach is when an unmanned ground
vehicle communicates its competency boundaries, pertaining to
a given task, to a human counterpart through the self-confidence
score generated from the Factorized Machine Self-Confidence
(FaMSeC) [117].

A few other studies on trust calibration include the follow-
ing. In [118], Robinette et al. indicated how the provision of
a robot’s operational information and an indication of better
performance on upcoming tasks on the robot’s part is used as a
trust repair mechanism. In [119], the investigation was carried
out on how user interfaces that communicate both internal and
external system awareness may increase the driver’s perceived
and measured awareness, as well as their trust in the system.
Also in [60], Shahrdar et al. combined the use of immersive
virtual reality experimentation with self-reporting software to

gauge and measure the subjects’ trust level in a self-driving
autonomous vehicle. In their findings, they illustrated how trust
could be reduced, escalated, mutated, and rebuilt by adjusting
system performance, like the success rate of carrying out a
task. Notably, [66] managed to dynamically vary and calibrate
automation transparency, and the amount and utility information
provided to the human, to optimize HMIs using feedback control
policies.

V. DISCUSSION

In the following, we discuss the challenges concerning hu-
man trust measurement and calibration efforts. These ideas
reflect both the human-centric aspect of measuring trust and
the machine-centric aspect of trustworthiness and its effect on
measurement and calibration.

A. Trust Measurement

Due to the latent nature of trust, it has been challenging
to provide a definitive solution toward trust measurement and
calibration. As discussed earlier, there have been notable de-
velopments that provide both subjective measurements of trust
in terms of self-reporting and objective measurements of trust
correlates.

The scales based on self-report measurements in [37], [48],
[49], and [51]–[53] provided the most widely used scales in
trust measurement. The need to validate these scales for their
suitability of use under different application settings other than
those they were developed under still largely remains. Also, most
of the measurements reported on these scales lack confirmatory
factor analysis to justify the relationship among the identified
trust factors and the latent behavior, trust. The Structural Equa-
tion Model method [120] provides one such rigorous factor
analysis method in accounting for how a latent behavior like
trust is affected by the identified predictors. This approach used
multiple regression and factor analysis to identify relationships
between latent variables measured by multiple items. However,
this method extracts only linear relationships among the factors.

The shift away from self-reporting reliance for trust mea-
surement has paved a way toward using objective measurement
approaches of trust correlates based on psycho- physiological
sensors such as EEG, fMRI, and GSR. These measurement ap-
proaches enable real-time sensing of trust variation in response
to the interaction with the machine in use. These methods help
us study what the underlying psycho-physiological measured
this way reveal about the human’s trust state while interacting
the machine. These signals provide a rich set of frequency, time,
and spatial domain features that can be used to classify trust and
distrust responses. However, like the case with self-reporting
measurements there is a lack of confirmatory factor analy-
sis and validity studies to cement these methods as definitive
measurement approaches of trust and subsequent calibration.
Additionally, there is difficulty in establishing a one-to-one
relationship between such psycho-physiological correlates and
trust states [67]–[69], [121]. Furthermore, the signals from these
sensors are typically non-stationary [122]. And the majority
of machine learning classification algorithms are based on the
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assumption of stationarity, and independent data samples [123].
These algorithms do not perform as high as expected for data
collected in this a manner [122]. Hence, on top of addressing
the issues of validity, reliability, and measurement invariance,
it is also worth investigating the signal processing aspects of
psycho-physiological sensors as these sensors provide us with
a way to look into trust formation, trust measurement and
calibration from a different angle by sensing directly observable
correlates to trust.

B. Trustworthiness and Trust Calibration

Lack of standardized trust measurements has hindered re-
search progress in developing effective trust calibration tech-
niques. We have yet to completely characterize the extent and
magnitude of how the trustworthiness properties of machines
influence trust. To our knowledge, users’ trust should be ap-
propriately calibrated to match the system’s capabilities in a
given situation to ensure a safe and effective HMI. The effects of
technical robustness, transparency, fairness, and other properties
of a TAS are intuitively linked with trust realization and cali-
bration. Empirical-based research has surfaced in recent years
demonstrating that this cause-and-effect relationship between
the notions of trustworthiness and trust is more intricate and less
crisp than anticipated. For instance, studies [4], [124] uphold the
significance of system transparency in instigating regulated trust
levels. Users may fall into an overtrust or undertrust category
with respect to a system. Okamura and Yamada [125] assert
that transparency of these systems alone is not enough to re-
cover from such states of trust. Alternatively, they developed an
adaptive trust calibration technique aided with cognitive cues to
signal users when improper trust calibration is detected, thus
prompting users to adjust their level of trust. Seppelt [126]
demonstrated that continuous system feedback promotes trust
calibration in automation. In contrast, after investigating various
feedback levels, Mackay et al. [127] contest that more informa-
tion does not always positively correlate to trust, allowing for the
possibility of negative cognitive load effects. The way a system
communicates its decisions to its users should also be tailored
to user variability for a competent effect [31]. The composition
of feedback relayed to users is investigated and automatically
generated using XAI principles to influence desired trust effects
in automated vehicles [128].

Although Israelsen et al. [117] devised a quantitative approach
for trust calibration where an autonomous vehicle reports its
self-confidence level depending on its capabilities, the applica-
tion is highly domain-specific, and the competency boundary of
the system is probabilistic. There is a persistent gap in terms
of understanding how a machine’s trustworthiness maps to the
human–trust variable. Quantitatively outlining the association
in a generalized manner is a long stride but shows the greatest
promise toward effectively designing and implementing au-
tonomous systems that are truly trustable.

Another challenge we may draw from the discussions in
previous sections is that although there are hundreds of guide-
lines from different stakeholders outlining ethical principles that

AI-based systems should adopt, less effort has been put in trans-
lating those principles into practice. A call for a “Practical-AI
ethics” field enforces the development of action-oriented frame-
works and guidelines [129]. As such, recent guidelines [75],
[130] proposed recommendations on performing the translation.
Implementation based on these recommendations demand in-
puts from researchers from various disciplines and ultimately
draw stakeholders (with conflicting priorities) toward a consen-
sus on these implementations.

Much work was presented in terms of quantifying the impact
that trustworthy properties of autonomous systems have on
human trust. The difficulty of interpreting these properties as rel-
evant to machine-specific functions is a key impediment. Addi-
tionally, prior attempt to define and model trustworthy properties
has been context-specific and require generalization. A Bayesian
network-based trust modeling used in [131] demonstrates where
the trust impact of modifying system behavior is evaluated using
a utility function. The model enforces system behaviors that
yield the highest trust utility value depending on the status of
context variables. Despite the effort to computationally relate
system properties to trust, the system under investigation [131]
is not a learning system, and the system properties reflect user
perceptions of them instead of actual measurements.

VI. CONCLUSION

Evaluation, measurement, and calibration of trust in relation-
ship to HMI can facilitate and improve the effective integration
of complex autonomous systems into everyday use. Without an
appropriately calibrated level of trust, there is a tendency to
misuse autonomous systems because of overtrusting, or they
may fall into disuse because of a distrust in these systems. To
make the best use of ever-increasing interactions between hu-
mans and complex systems, trust measurement and appropriate
calibration have become a critical task to solve. This survey has
reviewed a large pool of research output that provide varying
solutions toward the measurement and calibration of trust. Most
importantly, the survey presents a discussion of the issue from
both a human-centric trust measurement and machine-centric
trustworthiness perspective. The survey leads the authors to con-
clude that proper calibration of trust depends on the appropriate
factors affecting human trust being properly accounted for; on
the relative importance of those factors being correctly measured
and validated; and also on the degree which how properly the
information regarding the operations, why and how the machine
carries out a task the way it does, is relayed to the human user
in an understandable way.

On one hand, concerning the human-centric aspect of trust
measurement and calibration, the current state-of-the-art trust
measurements have shifted from self-reporting approaches to
more real-time sensing of trust using psychophysiological sen-
sors. Measurements using these sensors provides an under-
standing of how human cognitive and physiological responses
correlate to the level of trust projected toward how an au-
tonomous system carries out a task. On the other hand, the
machine-centric assessment of the same, research on critical
aspects of machine trustworthiness influencing trust has gained
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further momentum to include detailed aspects such as robust-
ness, fairness, and transparency. The review of these influences
implies that providing cognitive cues about the machine’s state
(i.e., a continuous but appropriate level of system feedback
about the machine’s decision-making processes) and reporting
the machine’s self-confidence leads to promising results toward
adaptive trust calibration.
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