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A Review of Human–Machine Cooperation
in the Robotics Domain

Canjun Yang , Yuanchao Zhu , and Yanhu Chen

Abstract—Artificial intelligence (AI) technology has greatly ex-
panded human capabilities through perception, understanding,
action, and learning. The future of AI depends on cooperation
between humans and AI. In addition to a fully automated or
manually controlled machine, a machine can work in tandem
with a human with different levels of assistance and automation.
Machines and humans cooperate in different ways. Three strategies
for cooperation are described in this article, as well as the nesting
relationships among different control methods and cooperation
strategies. Based on human thinking and behavior, a hierarchi-
cal human–machine cooperation (HMC) framework is improved
and extended to design safe, efficient, and attractive systems. We
review the common methods of perception, decision-making, and
execution in the HMC framework. Future applications and trends
of HMC are also discussed.

Index Terms—Cooperative control, human–machine
cooperation (HMC), human–machine integration, human–robot
interaction, shared control.

I. INTRODUCTION

W ITH the continuous development of artificial intelli-
gence (AI) and automation, robots are gradually en-

tering the daily life and work of human beings and have been
increasingly used for various tasks, including search and res-
cue [1], surgery [2], space exploration [3], and oceanic discov-
ery [4]. Even though the autonomy of robots has progressed
rapidly in recent years, human intervention in the form of high-
level reasoning and planning is inevitable in unstructured envi-
ronments. It is well known that human agents (HAs) and robotic
agents (RAs) have complementary capabilities. HAs have strong
reasoning ability, adaptability, and robustness, independent of
data. RAs can store and analyze a large amount of data and have
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strong numerical abilities, repeatability, and high precision [5].
Therefore, human–machine cooperation (HMC) is beneficial
for completing tasks. The advantages of HAs and RAs can be
fully combined to improve some metrics of human–machine
systems.

A discussion about HMC should begin with the definition
of the word, cooperation. In general, “cooperation” means
“working together” or “the action or process of working to-
gether toward common goals” (Oxford Dictionaries). While
some literature distinguishes between the terms “cooperation”
and “collaboration” [6]–[8] the two are often used interchange-
ably. Many theories have been written and formulated under
the name “cooperation” with a very wide scope, which is no
longer compatible with a narrower definition. Therefore, the
term collaboration is not explicitly used here. Cooperation
is defined by Smith [9] as “working together to accomplish
shared goals.” Human–machine cooperativeness is defined by
Flemisch et al. [10] as a trait concerning the degree to which a
machine is generally agreeable in its relations, behavior and
interaction with humans, or better. It can be useful to think
of cooperation as a cluster concept rather than a clear-cut
definition [11].

HMC is discussed in a large number of papers [12]–[18].
Flemisch et al. [19], [10] discussed a dynamic balance be-
tween humans and automation and provided an overview of
commonalities and differences in shared control and human–
machine cooperation. Gervasi et al. [6] examined the concept
of collaboration and provide a conceptual framework for an-
alyzing and evaluating human–robot collaborations. Losey et
al. [15] summarized the physical human-robot interaction in
intent detection, arbitration, and communication aspects. Music
et al. [13] surveyed advances in human-robot team interaction
and identified factors affecting control sharing.

This work aims to provide researchers interested in HMC
in the robotics domain with a hierarchical HMC framework
combining people’s thinking and behaviors and a review of
common methods of perception, decision-making, and execu-
tion. The article is organized as follows. Section II discusses
cooperation strategies within the HMC. A hierarchical frame-
work is proposed in Section III. Next, HMC is reviewed from
the three functional levels of perception (Section IV), decision-
making (Section V), and execution (Section VI). In Section
VII, decomposition of applications along the three function
layers, perception, decision-making, and execution (PDE), is
illustrated. A discussion is presented in Section VIII. Finally,
Section IX concludes this article.
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Fig. 1. Cooperation strategies based on control authority. (a) Human-dominant
and robot-auxiliary. (b) Robot-dominant and human-auxiliary. (c) Human–robot
consensus.

II. COOPERATION STRATEGIES

HMC has different taxonomies based on different standards.
Millot and Mandiau defined the vertical and horizontal structures
of cooperation. Rieger and Greenstein proposed explicit and
implicit modes of cooperation. Therefore modes of cooperation
are more dealing with authority management for task alloca-
tion. Schmidt et al. [20] proposed three forms of cooperation.
According to the number of interactive agents, cooperation can
be divided into single human-single robot interactions, single
human-multiple robot interactions, multiple human-single robot
interactions, and multiple human-multiple robot interactions.
Based on whether the control interface and guidance system
are mechanically coupled, the form of cooperation is classified
as coupled or uncoupled [18] or haptic and state [21]. On the
basis of the consistency of the tasks, cooperation paradigms
can be divided into direct, unified, overlapping, and orthogonal
paradigms [13]. In [15], Losey et al. proposed classifications ac-
cording to the types of human-robot role arbitration hypothesiz-
ing the minimization of human error and control power, divided
into four categories: coactivity, master–slave, teacher–student,
and collaboration. Six modes are introduced in light of the modes
of control in human–machine interaction [5]: traded, indirect,
coordinated, collaborative, virtual constraints, and continuous.

Human–robot collaborative control was defined as a mode of
human–machine interaction [22], which stressed the fact that
humans and machines share the same tasks and control a situa-
tion cooperatively [19], [23]. There are three forms of strategies
based on the control authority between humans and robots, as
shown in Fig. 1: human-dominant and robot-auxiliary control,
robot-dominant and human-auxiliary control, and human–robot
consensus control.

Fig. 2. Nested relationship in HMC, which is adapted and extended from [10].

In cases where there are many uncertain factors, such as
unstructured, nonlinear, and time-varying factors, manual con-
trol methods are usually adopted. In this control strategy, the
system depends mainly on HAs to perceive the external in-
formation, to make decisions in response, and to output con-
trol commands. However, due to uncertain psychological and
physiological factors, HAs may tend to have incomplete per-
ception of environmental information, and sometimes obvious
deviations and mistakes occur. To compensate for the short-
comings of HAs, it is necessary for RAs to supplement the
perception of HAs and assist HAs with control. The human-
dominant and robot-auxiliary control architecture is shown in
Fig. 1(a).

Robots can independently solve some problems that are
structured, linearized, quantitatively calculated, or difficult for
humans to solve through reliance on their mature autonomous
intelligence. In this control strategy, the RA can automatically
perceive external information, make decisions based on relevant
decision-making knowledge and experience, and output control
commands through the cooperative controller, while the HA
intervenes only in some special circumstances or affects the
generation of autonomous actions by high-level commands.
The robot-dominant and human-auxiliary control architecture
is shown in Fig. 1(b).

Human–robot consensus control is applied when agents have
similar skills or different and complementary skills. The partial
or global results of the other agents are compared to determine
which agent performs the function. The cooperative controller
blends the authority or allocates the subtasks between the human
and robot based on trust and self-confidence, among other fac-
tors. The human–robot consensus control architecture is shown
in Fig. 1(c).

The main feature of HMC relates to the two-way dialogue
initiated between the human operator and the robot. The results
of cooperation can be adjustable autonomy or adaptive automa-
tion, which reflects in a shift of autonomy (the adaptivity and
adaptability of the system), and allocation of tasks or functions
(fully or partially delegating) between different agents [24]–
[27]. We discuss this aspect in detail in Section V. Obviously,
these concepts are not exclusive, but are nested. In Fig. 2, we
show the nested relationship in HMC adapted and extended
from [10].
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Fig. 3. PDE hierarchical framework for human–machine cooperation. The
framework has three layers: perception, decision-making, and execution.

III. COOPERATION FRAMEWORK

A. Hierarchical Framework

Numerous studies from automation, cognition and different
disciplines are exchanged to establish a desired and efficient
HMC framework. Cooperation is presented from different per-
spectives such as levels of task [28] and the type of function
shared between humans and machines [29], [30]. The vertical
dimension (operational, tactical, and strategic levels) and hor-
izontal extension (information gathering, information analysis,
decision-making, and action implementation) of shared control
have been extended in recent work [31], [32]. Abbink et al. [17]
proposed a hierarchical framework with communication of sym-
bols, signs, and signals at four levels, strategic, tactical, opera-
tional, and executional (STOE). Different from task-centered
theory, the man–machine integration system theory was pro-
posed by Yongxiang et al. in 1995 [33], and . Canjun [34]
offered a practical discussion in his doctoral thesis. Based on the
hierarchical intelligent control framework [35], [36] combined
with people’s thinking and behaviors, the whole system can
be regarded as three main layers: perception, decision-making,
and execution. External information is perceived through the
sensory organs of humans, and signals are transmitted by the
afferent nerves to the brain for processing to obtain intentions.
This progress is similar to the function of the perception layer in
the proposed framework. According to the intention, the brain
decides how to react and generates the corresponding motion
plan and motion instruction, which corresponds to the decision
layer of the framework. The efferent nerves transmit the signal
of the behavioral response to the muscles and motor organs
to ensure the accurate execution of motion instructions, which
matches the executive layer. The PDE framework has been
improved, as shown in Fig. 3, where the number next to a line
(or curve) with an arrow indicates the relationship between the
elements.

The comprehensive information of the human operator, robot
sensors, and environment is fused by the perception layer, in-
cluding human characteristics, robot dynamic parameters, and

environmental information. The perceptual layer outputs the
possible intentions of the HA and RA. In the perception layer,
human perception includes (1) human perception of the environ-
ment; (5) human sensing information sent to the human–robot
interface; (23) human perception of self-motion; (25) human
perception of the object state and its feedback; and (29) human
self-sensing. Robot perception includes (2) robot perception
of the environment; (6) robot sensing information sent to the
human–robot interface; (24) feedback from actuations; (26)
robot perception of the object state and its feedback; and (30)
robot self-sensing.

According to the intentions obtained from the perception
layer, the decision interface in the decision layer organizes the
activities in the system, including human tasks and robot works,
or blends the control between the human and the robot. The
motion plan and high-level commands are outputted from the
decision interface in the decision layer. Serial numbers 13 and
14 indicate the transfer of the result of the decision from the
human–robot interface to the decision interface and then to inter-
active media, respectively. In the decision layer, human decision
includes the following: (3) human sensing information is sent
to the HA; (7) the results of robot decisions and robot sensing
information are received from the human–robot interface; (9)
human decision-making is sent to the human–robot interface;
and (11) the HA receives decision results from the decision
interface. The robot decision includes the following: (4) robot
sensing information is sent to the RA; (8) the results of human
decisions and human sensing information are received from the
human–robot interface; (10) the robot decision-making is sent
to the human–robot interface; and (12) the RA receives decision
results from the decision interface.

The executive layer converts high-level instructions into low-
level instructions and is responsible for the accurate execution
of movement. Depending on the case, it is crucial to note that the
robot or operator may require full self-control. In the execution
layer, human execution includes the following: (15) the motion
commands are sent from the HA; (17) the HA acts on interactive
media; (19) the results of the robot execution are sent to the HA;
(21) the human reflects motion to the outside motivation; and
(27) the human copes with the object at hand. Robot execution
includes the following: (16) the control signals are sent from the
RA; (18) the RA acts on interactive media; (20) the results of
the human execution are sent to the RA; (22) the signals from
the sensors are directly sent to the actuations; and (28) the robot
works on the object. In (31), the human and robot jointly work
on the object; in (32), the object and the environment interact.

B. Design Principle

The design purpose of the HMC system is to foster collabora-
tion between HAs and RAs to solve problems efficiently, where
the main task of an RA is to assist the operator in accomplishing
the mission rather than performing it himself. It should be noted
here that for problems that can be solved independently by an
RA, the possibility of autonomous completion is not ruled out.
The following principles for the design of a HMC system are
proposed.
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1) To encourage cooperation and minimize the conflict be-
tween human and robot intentions, human-centered au-
tomation [37] advocates modeling the robot behavior
based on human behavior [17]. In addition, the RA must
take into account the personal habits and preferences of
the collaborators.

2) Human safety needs to be prioritized regardless of whether
there is a conflict between the intentions of the HA and
the RA [38], [39].

3) With the assistance of an RA, the operator’s input some-
times does not need to be precise. It is not necessary for
the RA to provide the operator with the final answer, but
rather with feasible suggestions or solutions along with
reasonable explanations for the results.

4) HAs and RAs must be able to read each other’s intentions
and predict each other’s goals, which can affect safety,
comfort, and cooperative performance.

5) The integration of hierarchical functions should not be
fixed but dynamically adjusted depending on the spatial
and temporal information, the difficulty of the task, the
level of autonomy in the context, and the HA’s confidence
in automation.

IV. PERCEPTION LAYER

HMC is based on information sharing, and convenient com-
munication is the link between HAs and RAs. In human–
machine systems, perception has always been instrumental in
human–robot interactions, determining whether the HA and RA
can understand each other. There is an enormous amount of
literature on human–robot interface design, often for particular
applications. It is outside the scope of this article to perform an
exhaustive review of the different technologies. In the following,
two aspects of the perception of robots regarding humans and
the perception of humans regarding robots are explored.

A. Perception of Robots With Regard to Humans

Compared with humans, the most significant advantage of
robot perception is its high accuracy, and relevant physical
quantities can be quantitatively detected by various sensors.
Thus far, the perception range for robots is far beyond that of
human beings. The common ways that robots perceive humans
are shown in Fig. 4. According to the perception function, the
perception mode of robots to humans can be divided into the
following three parts.

1) Human Motion Perception: Currently, the use of ex-
oskeletons [40], [41], data gloves [42], and force feedback
devices [4] constitutes the most mature and reliable motion
perception methods. It is easy to measure the motion parameters
of the human body by a motor encoder or angle sensor and to
then directly control the joint of the robot. However, mechanical
equipment is redundant and heavy, which affects the comfort of
operators. Optical pose tracking methods are the least physically
restrained of all kinds of solutions, and they are designed to
capture poses by tracking reflective markers, such as OptiTrack.
Nevertheless, the calibration of the devices is complicated, and
the data processing algorithm is complex. Despite depth cameras

Fig. 4. Common ways that robots perceive humans.

such as Kinect [43] being viable for motion capture, they easily
experience infrared interference, which makes them vulnerable
to failure in outdoor environments. In recent years, increasing
interest in deep learning has driven the development of monocu-
lar image-based human pose estimation [44]–[46], which can be
used when the required precision is not high. Multiple inertial
sensors can also be employed to measure human motions in
real time [47], using inverse kinematics to calculate human joint
angles [48]. However, system errors may accumulate over time,
which eventually leads to incorrect measurement results.

It is also challenging to directly and effectively translate a hu-
man operator’s command into robot actions after obtaining hu-
man motion data. There are three main methods for human arm
motion mapping: end-to-end mapping [49], [50], joint-to-joint
angle mapping [51], and functional pose mapping [52]–[55],
which enable the operator to control the remote manipulator
through the action of their own arm.

2) Human Intention Perception: Human intention percep-
tion is a natural method of interaction that enables a robot to
understand human intention, such that the robot can properly
assist or implement the action according to the intention of
the HA. The extracted biological signals can be used to study
the mechanisms of human physiological systems and to reflect
human intentions.

The bandwidth of an electromyography (EMG) signal is
approximately 1 kHz, and the useful signal components are
concentrated between 0 and 500 Hz. The difference in muscle
contraction potential measured on the body surface is between
tens and hundreds of microvolts. Although the signal is very
weak and accompanied by considerable noise, the EMG signal
has the function of directly reflecting human body activity [56].
Therefore, it is considered an advanced human–computer inter-
face for predicting user intention [57]. Electroencephalogram
(EEG) signals express two parts of human response information
to external stimulation [58]. One part is the sensory information
generated by external stimulation, and the other part is the neural
signal of an action response to external excitation. The latter can
accurately reflect the real intention of a human and is an appro-
priate human–computer interface for controlling an intelligent
robot [59]–[61]. The amplitude of an electrooculogram (EOG)
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Fig. 5. Common ways that humans perceive robots.

is usually 15 to 200 μV, which is almost linear with eye move-
ment [62]. The user’s goal, future behavior, and mental state can
be conveyed by an EOG [63]. Many works have combined eye
tracking technology with machine learning to identify human
intentions for indirect input [64] or task assistance [65]. In addi-
tion, intention prediction via motion can be natural and seamless
and can be used as a supplement to other interfaces [66].

3) Human Affective Perception: Emotion is a key way for
humans to express and understand their intentions. Ekman [67]
proposed six main human emotions (anger, disgust, fear, happi-
ness, sadness, and surprise) in human beings. Facial expressions
(FEs) are vital signaling systems that convey clues regarding the
emotional state of a person [68]. Speech signals also contain
information that reflects the emotional state of the speaker
(such as special modal particles and changes in tone). Emotion
recognition extracts emotional features from collected speech
signals or image information and maps out the relationship
between these features and human emotions. The basic process
includes four steps: image/speech acquisition, preprocessing,
feature extraction, and emotion recognition. The perception of
human emotions could be used to improve safety and perceived
safety [69]. If the user appears anxious due to the robot motion,
the control system takes corrective action (by slowing down,
stopping the robot, or modifying the robot trajectory) sooner
than a controller based only on physical factors [70].

B. Perception of Humans With Regard to Robots

Human perception is the result of the work of a physiological
analyzer, a complex neural structure composed of receptors
(such as visual and auditory receptors), afferent nerves, and
the cerebral cortex. Analyzers and actuators (motor organs)
form a perception system that connects people with the outside
world. The common ways that humans perceive robots are shown
in Fig. 5. The perception of humans regarding robots is also
feedback that humans feel from the outside.

1) Visual Perception: In the process of understanding the
outside world, 70% of the information is provided by vision [71].
Visual feedback, which is generally regarded as the most impor-
tant form of perception in human–robot interaction, can provide
users with information on the state of a robot and its current

motion, and users can respond based on this perceived informa-
tion. For many simple tasks, the results can be directly expressed
in the form of numbers or graphs, such as lines and curves [72]. In
addition, a 3-D display is used in the human–robot interaction
to complete tasks [73]. To increase the immersive experience
of users, virtual reality (VR) technology and augmented reality
(AR) technology provide methods of simulating reality. Initially,
these technologies were mainly designed for entertainment, but
now, with the development of technology and the emergence of a
variety of applications and lower costs, they have been extended
to various industries [74] to achieve safer human–computer
interactions.

2) Haptic Perception: Haptic perception can be subdivided
into kinesthetic feedback (forces and torque applied to the hu-
man body and sensed at the muscles and joints) and cutaneous
or tactile feedback (forces and sensations sensed through the
mechanoreceptors in our skin) [15]. Kinesthetic cues can be
used to gradually limit the degrees of freedom (DOFs) available
to human operators based on the difficulty of the task or the
user’s experience. This type of perception exists in multiple
applications and tasks, for example, guiding the operator toward
a reference position [75] to avoid certain areas of the environ-
ment [76] and training for manual tasks [77]. The richness of
haptic stimulation can also be utilized to provide multiple pieces
of information through the tactile sense channel [78]. A combi-
nation of vibration rotation and kinesthetic feedback is used to
guide users away from the singularity points and joint constraints
of the manipulator [79]. In addition, tactile feedback has been
shown to enhance the cooperation between users and devices,
which is essential for motor learning. A flexible vibration tactile
belt has been developed [80] that can be worn on the human
body to achieve rich tactile communication. The layout of the
feedback module must also be considered [81], such that the
users can obtain the best feedback experience.

3) Acoustic Perception: Auditory feedback may reallocate
perceptual workload and reduce distraction [82] and is often used
in human–robot interaction. Acoustic perception is used to indi-
cate warnings or confirmation and sometimes to provide higher
level information [83]. The additional information provided by
hearing is a valuable supplement to relying only on vision [71].
Audiovisual interfaces also improve assembly tasks [84] and
teleoperation [71]. Similar forms of auditory feedback can be
applied to robot-assisted movement training [85]. Operators can
also use auditory information to locate the sources of sounds in
unmanned aerial vehicle control [86].

V. DECISION-MAKING LAYER

The most crucial part of HMC is human–machine integrated
decision-making. Reasonable decisions affect the performance
of a task, which is the key to later human–machine integrated
execution. Decision-making in different modes and arbitration
are discussed in this chapter.

A. Decision-Making in Different Control Modes

Goertz [87] proposed manipulators for handling radioactive
material which can turn cranks according to coarse user inputs
in 1963. This is one of the earliest examples of shared control. In
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TABLE I
DECISION-MAKING METHODS FOR DIFFERENT CONTROL MODES

Fig. 6. Decision-making methods under different control modes. (a) Guided
control. (b) Traded control. (c) Supervisory control. (d) Indirect shared control.
(e) Direct shared control. (f) Allocation control.

later work, Sheridan [88] comprehensively introduced the theory
and technology of human–robot cooperation in remote robot
systems and developed various forms of cooperative control
on this basis. Since then, research on this topic has proposed
multifarious approaches for assistance, ranging from a robot
dealing with a subtask to guiding the operator control and from
shifting between predefined discrete levels of autonomy [89]
to blending the policy between HA(s) and RA(s) [90], [91]. A
framework is proposed to determine a robot’s autonomy level,
which is beneficial for guiding the cooperation between humans
and machines [6], [24]. Different control modes of HMC require
different methods of decision-making. Fig. 6 lists the different
decision-making methods. Table I provides a brief summary of
decision-making methods for different control modes.

1) Guided Control: Generally, the purpose of guided control
is to improve the operator’s perception of the environment. The
RA derives sensory cues according to programmed criteria and
displays these cues to the HA, with the aim of influencing the
input of the HA by stimulation. Through tactile and kinesthetic
feedback, users can identify the sources of force cues, keep
robotic arms away from singularities and joint limits [79], or
guide movement toward potential targets [99], thus assisting

users in completing tasks in unknown environments. Guidance
control can reveal the presence and location of virtual or real
obstacles rather than the dynamics, behavior, or performance [5].
While increased environmental perception may lead to a reduc-
tion in task cost, this method cannot directly satisfy the goal of
reducing task cost.

2) Supervisory Control: The concept of supervisory control
was coined by Ferrell and Sheridan [92], who emphasize that
the human operator supervises a lower level intelligence em-
bodied in the teleoperator itself by intermittent monitoring and
reprogramming as necessary for either routine or emergencies.
One of the best-known applications of supervisory control is in
teleoperation. Supervisory control does not require full robot au-
tonomy but “merely” the ability to independently achieve some
goals, while the human supervisor sets high-level intermediary
goals [17]. In the supervisory control mode, the authority of
robots is greater than that of humans, and the specific operation
is reflected in the autonomous decision-making of remote robots
dominating.

3) Traded Control: The HA or RA has control at some in-
stant, and one or the other may transfer full authority to either
agent in a trigger event. One common paradigm launches a fully
autonomous takeover when a trigger such as a user command is
activated [100], when a robot arm enters a critical region around
an obstacle, or when a goal predictor exceeds some confidence
threshold [93], [94]. Traded control is highly applicable for some
simple scenarios and tasks, such as teleoperation with delay [42],
while trigger conditions are difficult to universally apply to all
tasks.

4) Shared Control: Shared control is sometimes also termed
“shared autonomy” or “shared authority.” A hierarchy of sub-
tasks was introduced by Rakita et al. [101]: shared control
unburdens the user from the demands of low-level commands
and enables them to concentrate on higher level task objectives
by letting a robot handle some aspects of the control process.
Another concept of shared autonomy [102] is one in which the
inputs from a human operator are integrated with the compu-
tation of an autonomous system to produce the final behavior
of a robot. Shared autonomy emphasizes that human(s) and
machine(s) share control over a system together [10], and one
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definition is that both the human operator and robotic system
act simultaneously to achieve shared goals [103]. Additionally,
the definition emphasizes that some metrics (e.g., performance
and comfort) can be improved. In shared control, human(s)
and robot(s) interact congruently in a perception-action cycle
to perform a dynamic task in which either the human or the
robot can act individually under ideal circumstances [17].

Shared control can be divided into direct shared control and
indirect shared control [104]. Indirect shared control is also
called coordinated control in some areas of literature [5]. In
this scheme, an operator can control a robot only indirectly
through a controller, and the automation assimilates high-level
input and converts it into lower level commands to generate
robot actions [105]. The authors in [106] and [107] developed
a shared control system that enables users to specify 2-D end
effector path, and the RA plans in joint space based on this
path. The vast majority of related work relies on known models
of a given system’s dynamics and the user’s control influence
to define a shared control paradigm [108]. In data-driven shared
control [109], the necessary data from observations of the human
and robot interactions are collected, and then the interaction
information is integrated into an autonomous policy generation
method [103] and used to regulate how the control authority is
shared between the two partners [110].

Direct shared control treats the HA and the RA as two in-
dependent sources and combines them with some arbitration
functions that determine the relative contributions of each. Lin-
ear functions are usually used to combine the control commands
of the HA and RA [66]. The formula for the linear function is
as follows:

cS = αcR + (1− α)cH (1)

where α is the control weight of the RA, with a value range of
0 to 1. cH and cR are the control commands of the HA and RA,
respectively. The value of the weight can be fixed or variable.

The optimal weight value is determined through experiments
or simulations in fixed weight cases [111], [112]. Weight-fixed
shared control can achieve better operation effects in some
specified environments or operation objects, but the optimal
weights need to be determined in different scenes, leading to
a lack of universality. Dynamic weight can better adapt to the
environment and improve task efficiency [113]. Dragan and
Srinivasa [66] proposed a predict-then-act method that predicts
the user’s intention according to the user’s input and conducts
human–robot weight arbitration depending on the robot’s confi-
dence in target reasoning. The blending method can integrate the
control of HA and RA intuitively and simply. However, it can
lead to catastrophic failure, when two independent decisions are
combined without an evaluation of the actions that would be exe-
cuted. Even if each individual decision is successful [95]. Thus,
probability-based approaches, such as Gaussian product [21]
and operator biased linear trajectory blending [95], are also used
to blend commands of HA and RA.

5) Allocation Control: In this control mode, the whole task
is divided into two independent subtasks. The HA is responsible
for a specific input subset (direction [114], speed, or several
degrees of freedom of a manipulator [115]), while the RA

provides the rest of the input or assistance [116]. For instance,
in the next-best viewpoint for an external camera in-hand robot
method, a human operator has access to a system consisting of
two manipulators [97], one of which is equipped with a gripper
and the other with a camera to avoid occlusion of the manipulator
itself. An autonomous algorithm is in charge of regulating a
subset of the gripper DOFs to facilitate the approach toward
an object of interest. Additionally, the human operator is able
to steer the gripper along the remaining null-space directions
by acting on a force feedback device [117]. Additionally, the
RA modifies or prohibits the subspace of manual commands
(including the speed, direction, or motion trajectory) to meet
arbitrary constraints of the state. Diverse virtual constraint meth-
ods such as potential fields [118], virtual fixtures [119], and
shared dynamic curves [101] have been proposed for assistance.
For example, Rahal et al. [120] assisted the operator in cutting
tasks by limiting lateral motion, in situ rotation, and sharp turns.
The setting of constraints is related to the target task. Daniel
et al. [98] constructed a two handed action library by analyzing
how people perform two handed operations, inferring the current
action in the action vocabulary and taking the corresponding
action assistance, with the aim of effectively improving the
execution of specific two handed actions.

B. Arbitration

Arbitration refers to the division of control between HAs
and RAs during human–robot interaction [121]–[124]. One
key challenge in formulating cooperative strategies is finding a
balance between the control authority of humans and machines.
An enormous amount of research has focused on fusing human
and machine “decision-making” in human–robot interaction
communities, machine learning, and control theory [95].

It is common in the human–robot interaction community to
design rules that combine the control of the HA and RA. One
direct way is to designα in (1) based on the performance metrics
of human–robot interaction. Most work predefined a different
kind of function according to prior knowledge to calculate α.
The use of piecewise functions is universal. Performance metrics
such as hinge-loss [125], probability [66], the entropy of the
probability distribution [126], and prediction uncertainty [127],
[128] are used to adjust the control authority, which is used to
determine the grasping target in the process of teleoperation.

The family of the exponential function is the other approach to
gain a continuous and smooth α. Muelling et al. [113] compute
α using a sigmoid function considering the minimal control
contribution of a user to enable smooth, seamless distribution
of the control authority. Note that an excessively large value of
the derivative of the exponential function may lead to too steep
of authority switching [126].

Additionally, Trautman [95] proposes extension of linear
blending that properly conditions the autonomy according to
user statistics, where shared control is formulated as a random
process and the joint distribution over the random operator,
autonomy, and crowd functions is described.

Local weighted regression [129], [130], Gaussian mix-
ture regression [21], task-parameterized semihidden Markov
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model [131], and other machine learning methods are used to en-
code and learn human actions and trajectory distributions offline
to generate the actions of the autonomous system. When certain
trigger conditions [130] are met or in other special cases, the RA
assumes complete autonomy. Sylvain et al. [21] represented the
control input of both the human and automation by a GMM and
combined them using a Gaussian product. The product takes
the confidence of the actors into account, as expressed in the
covariance matrices.

The thriving of deep learning and reinforcement learning
has driven the development of shared autonomy. A partially
observable Markov decision process (POMDP) [132], [133] is
used to model shared autonomy with hindsight optimization
to approximate [103], [134], estimating the best robot action
at each time step. Reddy et al. [135] used human-in-the-loop
reinforcement learning with neural network function approx-
imation to learn an end-to-end mapping from environmental
observations and user inputs to agent action values.

Game theory, in which human–robot interaction is deemed
a two-agent game, provides useful tools for analyzing com-
plex interactive behaviors involving multiple agents [136]. In
game theory, interactive behaviors can be described by different
combinations of individual objective/cost functions and different
optimization criteria [137]. The strategy type of HA and RA can
be derived using Nash equilibrium, Stackelberg equilibrium and
Pareto equilibrium [104]. In Nash equilibrium, simultaneously,
each agent considers its own cost function such that each indi-
vidual strategy is a best response to the others. Nash equilibrium
can be achieved by the optimal control developed in [138] and
adaptive optimal control based on policy iteration and the critic
neural network developed in [137] to enable the HA and RA
to simultaneously exert control on the robot. Subsequently, Li
Y. et al. [139] optimized the cost function to model the task
objectives of robots and humans and proposed a differential
game theory framework for physical human–robot interactions.
A Stackelberg equilibrium emerges in situations where one agent
(i.e., the HA or RA) is the leader and the other agent serves
as a follower. For example, Nikolaidis et al. [140] presented a
game-theoretic model of human partial adaptation to a robot,
where the human responds to the robot’s actions by maximizing
a reward function. Both HAs and RAs try to reach a binding
agreement of interest, and their strategies are derived from global
optimality in the Pareto equilibrium [141]. A bargaining game
based distributed model predictive control scheme is proposed
in [142], where several players jointly decide which strategy is
best concerning their mutual benefit.

VI. EXECUTION LAYER

In the execution layer, the main interaction between the human
and robot is the transfer of mechanical energy, such as force
and position. Many research results show that dynamic human
behavior in human–robot interaction is similar to that of a
mechanical damper [143]. In the process of human motion,
if there is an external force field affecting the movement of
human limbs, humans can change the viscosity of soft tissue
in the human skin by adjusting the contraction/elongation of the

muscle through neural signals to counteract the influence of an
external force, showing variable stiffness characteristics [144].
The key to human–robot integration in task execution lies in
the mutual adaptability of two independent subsystems. If the
goal of the system is consistent with that of the human, there
is a low-impedance interaction beneficial to the human in terms
of control effort and performance [145]. Through impedance
control of the neuromuscular system, a human can respond much
faster to forces on their control interface than visual cues.

The control interface exchanges force and position with hu-
man limbs through physical interaction in the execution layer,
which corresponds to haptic shared control [79], [97], [120].
Cooperative properties can be tuned by adapting force feed-
back gain and stiffness feedback gain to yield desirable re-
sponses [146], depending on the dynamics of the system [147]–
[149].The dynamics of the human–machine system in the Carte-
sian space are

Mx(xr)ẍr + Cx(xr)ẋr +Gx(xr) = FH + FR (2)

where xr, ẋr, and ẍr denote the robot end effector position,
velocity, and acceleration, respectively, Mx(xr) is the inertia
matrix, Cx(xr, ẋr) denotes the Coriolis and centrifugal forces,
Gx(xr) is the gravitational force, and FH and FR are the force
inputs attributed to the human and robot controllers, respectively.

It is an interesting way that dynamically changing the
impedance of the control interface to smoothly shift control
authority in the execution layer, and more guidance would
be provided only when needed [144], [150]. The impedance
stiffness coefficient is adaptively adjusted according to prede-
fined adjustable functions [151], [152] or reinforcement learning
algorithms [153].

It is also important to mention that when cooperative control
is active, both decision and execution levels occur at the same
time. The decision level calculates the level of authority of the
RA that would support the human with greater or lower force
according to the conditions and is applied at the execution level.

VII. APPLICATION

There are various cooperative control approaches catering
to the specific needs of each domain, such as patient assis-
tance [154], [155], autonomous driving [156], [157] unmanned
aerial vehicle systems [158], [159], assembly [160], and remote
operation [116], [149]. How the applications fit into the proposed
PDE framework is shown in Table II. Taking underwater tele-
operation as an example, an underwater manipulator is mounted
on a remotely operated vehicle (ROV) to carry out underwater
assembly, spraying, welding, and underwater salvage, as shown
in Fig. 7. Depth sensors, underwater cameras, and tactile sensors
are used to obtain information about the surrounding environ-
ment of the ROV. The data of the underwater environment are
transmitted back to shore through an optical fiber, and the actual
underwater operating environment can be reproduced by VR
technology. Information perceived by both agents is shared in the
perception layer. In the decision-making layer, the decision inter-
face performs task/function allocation and autonomy adjustment
to generate high-level control instructions. In the execution layer,
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TABLE II
EXAMPLE APPLICATIONS AND THE CORRESPONDING DECOMPOSITION OF HIERARCHICAL TASK EXECUTION ALONG THE THREE PDE FUNCTION LAYERS

Fig. 7. Application of human–machine cooperative control to underwater
robots.

Fig. 8. Human–machine shared control remote operation [126].

the operator controls the underwater manipulator with force
feedback equipment according to the feedback vision and force
information and completes the target task with the assistance
of autonomous intelligence. Shared control teleoperation was
initially realized in [126], as shown in Fig. 8.

VIII. DISCUSSION

The occurrence of conflicts should be taken into account in
HMC. The definition and types of conflict in HMC are pro-
posed in [163]. A well-designed HMC system should minimize
conflicts between the human and the robot [17]. One method
based on the human-centered automation principle requires the

human operator to bear final authority [37]. Another method
is adapting the system control strategy to that of humans or
shutting off support in case of conflicts. In addition, one of
the potential approaches to minimizing conflict is to establish
a mental model consistent and compatible with partners’ ca-
pabilities, authority, control, and responsibilities [19]. Beyond
human-centered automation, the final authority depends on a
metric to evaluate and analyze the conflicts between the HA(s)
and RA(s) [104]. Research on automation and human–robot
interaction provides insights for identifying variables influenced
by robot autonomy (such as safety, workload, trust reliability,
and transparency) [6], [24]. The triple binds between ability,
authority and responsibility have to be taken into account in
the metric [19]. In the proposed framework, the following four
aspects are considered to achieve successful combinations of
humans and machines.

A. Multimodal Perception Fusion

Because each sensor provides information only on a spe-
cific area of the environment, multimodal perception fusion
technology is needed to integrate the information from various
sensors into a unified perception system and to organically utilize
the information obtained by multiple sensors [164]. The high
universality of multimodal signals can reduce the influence of
sensor noise [165]. As a result of the information transmission
mechanism in the HMC system, a multimodal perception fusion
model must be developed that is accurate and reliable. Based on a
certain optimization criterion, the model integrates the sensory
dynamics of human operators along with the complementary
and redundant information of various perceptions in both space
and time to infer the operator’s intent. In this way, it improves
the comfort and safety of human–machine systems and reduces
the conflict between the human operator and automation. In
light of changes in data and dynamic mapping, the multimodal
perception fusion model should be active (feedforward control
strategy prior to situational changes) rather than reactive (feed-
back control strategy after situational changes) [166].

B. Integrating Humans and Robots Decision-Making
Dynamics With Feedback

In HMC, the main challenge is to integrate human cogni-
tive abilities with a robot’s ability to autonomously execute
tasks, while maximizing the task performance efficiency and
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intuitiveness of the interaction [13]. Determining an appropriate
balance between human intervention and autonomous assistance
remains an open research question. Some studies [106] have
found that users prefer autonomous help since autonomy makes
tasks easier. However, when an automation system fails, the
problem is often not detected, and an operator not in the loop
cannot intervene in time [100]. Due to the inconsistencies in
the logical mechanisms of the HA and RA and their temporal
and spatial relationships, cooperative control is difficult. Co-
operation involves the interaction and transformation of data,
information, wisdom, and knowledge [166]. In fact, the coop-
erative decision-making model should integrate environmental
information, spatial and temporal information, the difficulties of
a task, the levels of automation within the context, the current
self-confidence of personnel, robotic trust in automation, and
commands from the HMC system to balance decision-making
between HAs and RAs.

C. Integrating Humans and Robots for Efficient Task
Execution

Previous work has proven that a good understanding of
neuromuscular-skeletal dynamics constrains the dynamics of
perception-action coupling [104]. Generally, human intention
can be expressed by the applied force/torque to obtain the
reference motion of the system, that is, to transfer it to system
dynamics to determine the reference state (speed and position) of
the system through the human limb dynamics model. However,
it has been proven that the muscle impedance of human limbs
is a kind of mechanical sensor unit that can be adjusted during a
task and displays the characteristics of variable stiffness [144].
The robot controller must adjust the damping of the system to
meet the dynamic requirements of the human to accomplish a
task. In contrast, the human neural system adapts to the robot by
adjusting the dynamic characteristics of the operator. A dynamic
model between impedance regulation and human intention must
be established to increase the stability of tasks and to avoid subtle
conflict.

D. Feedback From the Virtual and Tangible Environment

In HMC, the information exchange between the human and
the robot is bidirectional. Users expect to obtain more feedback
when interacting with a robot, and this feedback makes them feel
that the robot is a part of their body. Tangibles can be added to
support VR and AR content to provide more modalities of sen-
sory experience [167]. The properties and physical constraints
of physical objects in tangible interfaces can restrict how they
can be manipulated, which helps to bridge the real and virtual
worlds [168], [169]. With the combination of visual, haptic, and
other feedback approaches and the use of technologies such
as VR and AR [170], the perception of users is simulated,
presenting a virtual and tangible environment where users can
operate at will and feel immersed. This results in enhancement
of the interactivity, multisensitivity, and autonomy of the feed-
back function and improves the user’s sense of immersion and
presence.

IX. CONCLUSION

This article reviews the related concepts and approaches in
HMC research. Human intelligence and autonomous intelli-
gence are combined in HMC systems, exhibiting the following
characteristics.

1) Active: An HMC system perceives external information
and shares control strategies to produce near-perceptual
operation or control under the interaction of the human–
machine-environment rather than reactively responding to
external changes.

2) Clear division: The clear division between HAs and RAs
means that neither side needs to complete all tasks; they
need to perform only what they are good at.

3) Adaptive: To ensure optimal performance, the control
strategy of the HMC system changes as it interacts with
the outside environment.

This leads to the cooperative system being widely used in
medical treatments, autonomous vehicles, and remote operation,
but it is not appropriate for all situations. An RA can complete
simple and repetitive tasks on its own, and its effect can be
better than that of HMC. The common cooperation strategies
include human-dominant and robot-auxiliary, robot-dominant
and human-auxiliary, and human–robot consensus. Strategic
evaluation must consider both objective factors, such as time
consumption and accuracy, and subjective factors, such as oper-
ator willingness and feelings.

A coevolution of humans and robots is required in HMC [166],
which is dependent on the level of intelligence of the RA.
Both the HA and RA must learn from each other, the external
environment, experience, and lessons, and continuously modify
their own states to optimize the configuration of the system based
on the states.

Efforts in cognitive neuroscience and artificial intelligence are
improving the performance of HMC systems. HMC may soon
play a significant role across a wide range of fields.
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