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Abstract—The high request for autonomous human–robot in-
teraction (HRI), combined with the potential of machine learning
(ML) techniques, allow us to deploy ML mechanisms in robot
control. However, the use of ML can make robots’ behavior unclear
to the observer during the learning phase. Recently, transparency
in HRI has been investigated to make such interactions more
comprehensible. In this work, we propose a model to improve the
transparency during reinforcement learning (RL) tasks for HRI
scenarios: the model supports transparency by having the robot
show nonverbal emotional-behavioral cues. Our model considered
human feedback as the reward of the RL algorithm and it presents
emotional-behavioral responses based on the progress of the robot
learning. The model is managed only by the temporal-difference
error. We tested the architecture in a teaching scenario with the
iCub humanoid robot. The results highlight that when the robot
expresses its emotional-behavioral response, the human teacher is
able to understand its learning process better. Furthermore, people
prefer to interact with an expressive robot as compared to a me-
chanical one. Movement-based signals proved to be more effective
in revealing the internal state of the robot than facial expressions. In
particular, gaze movements were effective in showing the robot’s
next intentions. In contrast, communicating uncertainty through
robot movements sometimes led to action misinterpretation, high-
lighting the importance of balancing transparency and the legibility
of the robot goal. We also found a reliable temporal window in
which to register teachers’ feedback that can be used by the robot
as a reward.

Index Terms—Human–robot interaction, humanoid robot,
reinforcement learning (RL), social robotics, transparency.
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I. INTRODUCTION

THE more robots become autonomous and flexible, the more
their behaviors need to be transparent. When interacting

with complex intelligent artefacts, humans inevitably formulate
expectations to understand and predict their behaviors. Indeed,
robots’ behaviors should be self-explanatory so that users can be
confident in their knowledge of what these systems are doing and
why [1]. Indeed, in the field, one of the interpretations of the term
transparency is related to the observability or predictability of a
system’s behavior, and the possibility to infer its intentions, e.g.,
understanding what the robot is doing, why it is doing an action
rather than another one, and what it is going to do next. Hence,
it is also a mechanism that exposes an agent’s decision-making
process [1].

Moreover, the possibility of interpreting the behaviors of
intelligent others, both in case of success and failures, is a
fundamental characteristic of successful interactions: it affects
human trust in automation [2]. This necessity is evident when
dealing with machine learning (ML) algorithms that control
robots’ behaviors. Through ML techniques, robotic systems can
understand and classify a large class of humans daily actions [3];
in turn, these actions are starting to be used in human–robot
interaction (HRI) applications.

Among ML techniques, reinforcement learning (RL) is a pow-
erful learning method that is widely used in robotics as it com-
bines perception and decision-making [4]. RL agents make er-
rors during their learning process not only because they have not
yet acquired the necessary skills, but also because errors and ex-
ploration are intrinsically part of RL training processes. Hence,
it is increasingly important to make the RL training transparent
to human users. Broekens and Chetouani [5] also foresee that
the transparency in robots’ behaviors could improve the quality
of the HRI, e.g., allowing the engagement of humans in complex
interactive scenarios. Furthermore, they stated that transparency
may have a direct impact on the robot learning process.

In this work, we refer to the term transparency by expanding
the meaning of predictability and observability. Legibility en-
ables observers to quickly infer an agent’s objectives, while pre-
dictability refers to match what an observer would expect [6], [7].
In addition to those characteristics, the concept of transparency
that we used also identifies the agent’s will of intentionality in its
communication. This presupposes a certain degree of autonomy
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of the agent [8] that is not strictly required in contexts of legibility
and predictability. Moreover, predictability does not necessarily
require communicative intentionality from the agent.

We aiming at evaluating the effects of transparency on the
quality of the subjective HRI [9] (e.g., the degree of well-being
that depends on how both natural and complex the interaction
is). The challenge we want to address is to make humans able
to better understand robots’ behaviors. In contrast, the majority
of work in HRI has been concerned with enabling robots to
understand human behaviors. Transparency allows people to
anticipate others’ behaviors [2] and be understood by others.
Thus, transparency needs to be a mutual agreement between
two (or more) partners. To build a mutual understanding between
humans and robots [10], we need to ensure that robots’ behaviors
are always transparent.

An example of a robot assistant could give us insights about
how robot transparency can improve the HRI. Let us imagine
a disabled or elderly person asking to their robot assistant to
go into the kitchen to take a delicate object on a high shelf.
It could be useful to interact with a transparent and expressive
agent because its uncertainty could implicitly communicate that
it does not know what object the user is referring to or that it can
not find it because it has been moved to another place.

In details, we focused on the transparency of the learning
process. We designed a model starting from a temporal differ-
ence (TD) RL theory of emotion (ToE) developed by Broekens
in [11]. His theory started from the definition of emotions
as “valenced reactions to (mental) events that modify future
actions, grounded in bodily and homeostatic sensations” [11].
This is founded upon both cognitive [12], [13] and biological-
evolutionary theories [14], [15]. The TD-RL ToE states that
TD error can model emotions as joy (distress) and hope (fear);
thus, a robot—learning through a TD-RL based technique—can
show its learning trend to the person with which it is interacting.
Our model enables an agent to select the appropriate nonverbal
behavior to both communicate its feelings related to its learning
trend and to detect and interpret human feedback (which is used
as a learning signal). Simulated emotions in robots are widely
used because humans have the innate ability to interpret them
and to use these signals to express their feelings [16]. Indeed,
emotion expression is a language-independent and species-
independent way to express the subjects’ internal states [5]. As
such, simulating emotions could be used to make learning robots
more transparent to their human users and coworkers. Moreover,
robots that display social behaviors are better liked by users
and rated more positively than are robots that display neutral
behaviors [17].

We conducted a user study to evaluate how an expressive
behavior can make a robot more transparent to the human teacher
while it is performing an RL task. Consequently, we wanted to
make the robot’s teacher more aware of its emotional state to
build an easier HRI. Our aim was to investigate if managing
the robot’s emotional and behavioral expressivity via only the
TD error (without training for the user) could make the HRI
more efficient, likeable and effective. Since the robot had human
teachers, our goal was also to improve the teaching interaction
with no training for the user.

II. BACKGROUND AND RELATED WORKS

To improve the effectiveness of human–robot collaboration,
the HRI community often relies on reproducing human–human
interaction mechanisms. For many researchers, trust is the main
reason to build transparent robots: some guidelines and models
for HRI have been developed for this purpose [8], [18] [19].

Gaze cues can leak information about future robot intentions
but they work better when they are produced by human-like
robots [20], [21]. Gaze plays an important role in communicating
information about the environment [22]. When people refer to
objects in their environment, they are looking at those objects
before naming or grasping them. Usually, people fixate upon
objects one second or less before naming them [23]. Moreover,
people are good at identifying the target of their partner’s gaze
and then using that information to predict their partner’s next
actions [24].

Behavioral transparency and robot’s expressivity play crucial
roles in HRI. Indeed, in [25], the authors pointed out that
expressive robots are preferred to more efficient ones. In ad-
dition, Broekens and Chetouani [5] argued that researchers and
designers must develop transparent learning protocols for robots
and virtual agents. In this way, during online learning scenarios,
a human teacher has the opportunity to read the current state of a
learning agent intuitively and naturally. They further argue that
such an intuitive signal could be a good basis for expressing the
emotions on the TD error.

Transparency has been approached as the capability to answer
simple queries about the control algorithms [26], as well as
the capability to display information to support human–robot
communication through visual interfaces [27]; it has also been
considered the ability to show robots’ inner states through
emotions [25]. The main field in which robot transparency
and predictability have been investigated is robot motion. This
has occurred because it is one of the robots’ features that is
directly observable by the user [28]. Legible motion, which
is planned to clearly express the robot’s intent, leads to more
fluent collaborations than does motion planned to match people’s
expectations [29]. Other approaches have dealt with improving
transparency through the use of nonverbal cues [30]. Robot
transparency in HRI can improve bidirectional communication
between robots and human users: such a mutual communication
is necessary for a natural interaction [31]. Indeed, the authors
in [32], have shown that social models can improve learning
tasks powered by RL frameworks. It is crucial that humans
would naturally interpret robots’ social behavior, especially if
our objective is to improve the trustworthiness of robots: this
has been proved to be possible through nonverbal cues [19].

The majority of approaches in the literature dealing with
transparency use only explicit signals, such as gaze [33], but do
not consider the role that emotions could have during the interac-
tion. At this point, there is no generally accepted computational
framework that links emotions to RL (see [34] for a review).
Thus, robots and virtual characters that learn via RL currently
lack the ability to produce and interpret emotions in line with
their learning process. There are frameworks based on cognitive
appraisal theory [35]–[37]. However, these models assume that
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Fig. 1. RL general loop.

emotions arise from a cognitive reasoning process, not a learning
one based on exploration, with positive and negative feedback.
There are also works showing that robots and virtual agents
can use human feedback as signals to influence their learning
process based on RL [38]–[40]. In turn, this provides a good
starting point for humans in the loop learning perspective.

As such, we wanted to investigate how people react to a
robot expressing emotions during an RL task, and how this can
improve robots’ transparency during an online RL training. We
aimed to investigate how transparent a robot behavior that is
entirely driven by the TD is, i.e., that captures both the learning
process and the current state, without participants’ training. To
enrich the existing literature, we considered emotions as not
just social signals, but mostly as valuable reactions to learning
actions [38]. To involve people more, we asked them to take
the role of a teacher and to provide feedback to the robot, from
which the robot could calculate a reward signal [41], [42]. In
this manner, we wanted to make robots more transparent during
their RL exploration process.

III. METHODS

A. Reinforcement Learning

In the standard RL model (see Fig. 1), an agent is connected to
an environment via both perception and action. The environment
has a state s ∈ S, where S is the set of possible states, and the
agent performs actions a ∈ A(st), where A(st) is the set of
possible actions available in state s at time t [43]. At each step,
the agent perceives the environment and selects which action to
execute. This action changes the environment’s state. The value
of this state transition is communicated to the agent through a
scalar reinforcement signal, r [44]. The agent’s behavior is based
on its policy π. In RL, this policy gets updated after each step
taking into consideration the agent’s experiences. In particular,
the agent tries to maximise the total amount of the received
rewards by maximising the sum of such rewards. Usually, a
discount factor γ ∈ (0, 1) is applied to every received reward to
ensure there is a finite sum

Rt =

∞∑
k=0

γkrt+k+1. (1)

The agent’s goal is to find an optimal policy πopt that maps every
state with the best action the agent could do in that particular
configuration of the environment.

B. Markov Decision Processes

Standard RL tries to resolve the problem of finding the optimal
policy by satisfying a Markov process. The assumption (the
Markov property) is that the probability distribution of the next
state depends only on the previous pair (state, action). The
probability to get into state s′ coming from s after making the
action a, P a

s,s′ , can be defined as follows:

P a
s,s′ = P (st+1 = s′|st = s, at = a) (2)

and the expected reward with respect to the same variables,Ra
s,s′ ,

as follows:

Ra
s,s′ = E(rt+1|st = s, at = a, ss+1 = s′). (3)

With P a
s,s′ and Ra

s,s′ we can define the value V π(s) of each state
s, for the policy π

V π(s) = Eπ(Rt|st = s) = Eπ

( ∞∑
k=0

γkrt+k+1|st = s

)
.

(4)
A state value is usually initialised and updated every time the
state is visited. Since states are policy dependent, they can be
used to update the policy. After each change of state, the values
are updated as follows:

Vk+1(s) = max
a

∑
s′

P a
s,s′
[
Ra

s,s′ + γVk(s
′)
]
. (5)

At this point, the policy becomes

π(s) = argmax
a

∑
s′

P a
s,s′
[
Ra

s,s′ + γVk(s
′)
]
. (6)

This algorithm can be used if the knowledge of the state space is
complete, even though this does not always happen. TD learning
updates those values after each visit. In its simplest method, it
updates values as follows:

V (st)←− V (st) + α [rt+1 + γV (ss+1)− V (st)] (7)

where α ∈ (0, 1) is a learning rate. After convergence, those
values can be used to determine the best actions with an action
selection method, e.g., with softmax.

C. TD-RL Theory of Emotions

As introduced in Section I, the TD-RL ToE developed in [5] is
a key part of this study. Indeed, inspired by this ToE, we designed
the robot’s emotional-behavioral response we present here.

The TD-RL ToE was born because the authors in [5] recog-
nised the lack of transparency of RL-based methods. Such a
theory states that the value and reward functions are a good
approximation of modeling RL-based emotions. TD-RL ToE is
based on the assumption that all emotions are manifestations of
a TD error [11]. This assumption is supported by the following
two main arguments: 1) TD error and emotions’ elicitation are
similar, in the sense that both are feedback signals that result
from evaluating a particular event, and 2) both TD error and
emotions affect future behaviors.

In its formulation, TD-RL ToE defined emotions such as joy,
distress, hope, and fear. Joy and distress have been thought of as
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manifestations of positive or negative TD error [11], [38]. They
refer to the present situation and they share the TD assessment
with hope and fear, as this is one of their basic features [5].
However, hope and fear do not refer to the present; rather, they
are about the future.

Our formulation started from the model cited above. In par-
ticular, we modeled emotions such as happiness and sadness, as
well as behaviors like certainty and uncertainty. Just as in [5],
we think that it is possible to make transparent learning robots
through emotions simulation, especially if these emotions are
related to the robots’ learning process. In our opinion, a model
based on the happiness-sadness dyad is very appropriate with
consideration of the exploitation–exploration nature of RL tech-
niques. However, we think that it could be more suitable to use a
behavioral factor—such as (un)certainty—to implement the RL
temporal dimension and the exploration–exploitation process
typical of RL techniques.

D. RL Task

Our main research hypothesis was that during the learning
process, endowing the robot with an emotional model of the
behavior is sufficient to make the robot decision-making process
more transparent to a human observer. We wanted to measure
to what extent an emotional-behavioral response could make a
robot more transparent while it was performing an RL task. To do
so, we placed a humanoid robot (iCub) in a simple RL scenario:
the robot had to learn a specific sequence of objects (coloured
balls) that had been defined a priori by the investigator. The
sequence was composed of five items, and it potentially had
repetitions. To determine the sequence, the robot had to point
to one ball after the other in the right sequence. In response to
each action, the human teacher could give positive, neutral, or
negative feedback. Since the sequence was composed of five
objects, for each step of the learning process, a final state was
reached after five actions. The experimental setup is shown in
Fig. 2: the robot iCub was placed on a fixed metal support in
front of a table. On this latter, there were five balls aligned in
fixed positions as well as a joystick. The participants’ chair was
on the other side of the table.

E. RL Task Formulation

We needed an RL task that could be carried out in a real
HRI scenario. For this purpose, because of its simplicity, we
modeled the RL task described earlier as a Q-learning problem.
We needed to have a simple space of states because the online
learning process could not take a lot of time. Thus, the robot
had five possible actions: pointing at each of the given balls. In
addition, the state space was composed of five different states:
each state represented which step in the sequence the robot was
in. This gives the Q-Table a shape of 5 × 5.

The robot’s multimodal behavior was selected according to
the learning process and, in particular, it was selected to the
following Bellman equation implementation [45]

Q(s, a) = Q(s, a) + α · (r(s) + γ ·max
a′

Q(s,′ a′)−Q(s, a))

(8)

Fig. 2. Experimental setup.

where r(s) is the reward given during the transition to state s
that, in our case, was provided by the human teacher. This update
rule uses the state and action of time t with the reward, state, and
action on the time t+ 1 to compute the TD error. An update rule
with this form is called associative because the learned values
are associated with particular states of the environment. Thus,
from the equation mentioned above, we extract the TD error as

TD = r(s) + γ ·max
a′

Q(s,′ a′)−Q(s, a). (9)

TD error is a local estimate of the learning trend. Hence, the
progress of the learning process can be measured with the TD
error, which reflects the amount of change needed to the current
estimate of the value of the state in which the agent is in [5]. Thus,
it provides information about the correctness of the previously
performed action in comparison with its estimation [46].

F. Robot Expressions

The TD-RL ToE postulates emotions as the manifestation of
assessing the worsening or improvement of the current situation.
In this direction, we defined the robot’s emotional-behavioral
response through three nonverbal communicative channels: the
(un)certainty of the movement, the facial expression, and the
gaze. Hence, we used each channel to display a particular
feeling: the degree of confidence the robot has about the ad-
vancement of the learning process, the degree of satisfaction it
has concerning the previous action’s result, and an anticipatory
signal for the next chosen action. All of these are communicative
channels that are already used in HRI [20]. Moreover, we chose
them with consideration of the learning task and the robot’s
physical capabilities.

1) (Un)certainty Movements: The (un)certainty of robot
movements depended on the sign of the TD error as follows:

a) if TD < 0, then the robot’s movement was uncertain;
b) if TD ≥ 0, then the robot’s movement was certain.
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Fig. 3. Uncertain movement’s steps: (1) the rest position, from which all the
robot movements began; (2) the thoughtful movement; (3) the final gaze; (4) the
pointing action.

During the experiment, the robot produced both certain and
uncertain movements. We modeled the uncertainty through a
fragmented movement of the robot arm that coincided with a
gazing action. In particular, when the robot showed uncertain
movements, before pointing its finger [see Fig. 3(4)], it moved
its hand in mid-air to appear thoughtful and uncertain [see
Fig. 3(2)]. Subsequently, it moved its head toward the chosen
object [see Fig. 3(3)]. In contrast, we modeled certainty by hav-
ing the robot perform a fast, well-directed pointing movement
that was anticipated by a gazing action. Hence, certain actions
were composed of two subactions: the anticipatory gaze and the
proper pointing [see Fig. 3(3) and (4)].

2) Anticipatory Signal: The gaze followed the same rule as
did the movements:

a) if TD < 0, then the robot’s gaze was not anticipatory;
b) if TD ≥ 0, then the robot’s gaze was anticipatory.
A gaze was considered “anticipatory” when it anticipated the

following movement. For example, in our experiment, the robot
looked at the chosen object before pointing at it. The aim of
reproducing natural anticipatory gaze was to show the robot’s
focus of attention and consequently the degree of certainty in
choosing the next object. In particular, people tend to look
at a particular object right before grasping or using it. It has
been shown that people can infer other people’s intentions using
just their gaze anticipatory movements [47] and these findings
have already been used in both computer science and robotic
fields [48], [49]. Such a signal has already been proved to be ef-
fective in increasing transparency by reducing uncertainty [33].

3) Facial Expressions: Moreover, the facial emotional reac-
tions were modeled according to the TD error differently. During
a preliminary study, we determined that the TD error values
range was [−2,+2]. Hence, we defined five facial expressions
to be associated with the integer values in that range. Table I

TABLE I
ROBOT’S FACIAL EXPRESSIONS AND TD ERROR VALUES

Fig. 4. Robot’s doubtful expression.

summarises the association between the robot’s facial expression
and the TD error values. The particular facial expressions were
chosen depending on the value closest to the TD error registered
by the algorithm.

Here, we would like to emphasise that the robot behavior was
not a just function of the human feedback. Rather, its behavior
was modeled by the TD error; as such, it was a function of its
current and previous states.

At the beginning of the experiments, iCub showed a neutral
facial expression and uncertain behavior. Subsequently, the robot
changed its facial expression immediately after the TD error was
calculated: at the end of the pointing action. Thus, it maintained
the selected expression for a few seconds; then, it became
neutral.

For uncertain actions, during the uncertain submovements
[see Fig. 3(2)–(4)], the robot changed its expression to one
expressing doubt (see Fig. 4), and then it went neutral during
the gaze and the pointing submovements until the calculation
of the TD error and the consequent change of expression. As
mentioned above, the robot’s emotional-behavioral response
was managed by the TD error; hence, also the (un)certainty of
the robot as a function of such a value. By definition, the TD
error is computed after the robot’s action execution but, since we
needed to model the robot’s behavior at each step of its learning
process, we stored the last TD error calculated for each state
the robot has encountered. This way, when the robot was in a
particular state s, the emotional-behavioral model used the TD
error calculated in the same state s at the previous epoch. Once
the action was completed, the TD was updated.
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IV. USER STUDY

A. Participants Feedback

Participants were required to give feedback to the robot during
each action by using the joystick on the table. Participants
gave continuous feedback to the robot’s actions in the range
[−100,+100]. Hence, it could be negative, neutral, or positive.
We used this range because it gave us a good level of precision
and granularity.

Starting with that feedback, we calculated the robot’s reward
with the following equation:

r =
1

Da

Da∑
t=0

ft (10)

where Da is the selected action duration (in hundredths of a
second) and ft was the feedback recorded during the tth joystick
reading. The joystick reading frequency was 100 Hz. So ft was
the feedback read during the tth hundred of a second. From
(10), it is clear that the reward was calculated as an average of
the feedback recorded during the entire action duration.

Through a preliminary study, we found a state-action config-
uration for which 20 epochs was enough to converge. Thus, we
provided a maximum of 20 epochs for each learning session.
We set the Bellman meta-parameters [45] with standard values
recommended in the literature. In particular, we had α = 0.8
and γ = 0.9. For the actions selection strategy, we used an
ε-decreasing method. As such, after each action, the probability
to choose the best action—according to the Q-Table—increased.
After every learning session, the Q-Table was cleaned. There-
fore, during each interaction, the robot had to learn the right
sequence from scratch.

B. Procedure

There were 23 participants, (Mage = 27, SDage = 8), 12 of
whom had been recruited from “Join the Science”1 program. The
participants recruited in this manner were university students
or workers. The other 11 participants were Ph.D. students or
external collaborators from the Italian Institute of Technology
(IIT), Genova, Italy. These latter were from IIT’s research units
that do not work with robots or AI, thus, they had no experience
with robots. The research protocol was approved by the Regional
Ethical Committee (Comitato Etico Regione Liguria—Sezione
1). All participants provided their written informed consent and
they received compensation of 15€.

The experiments consisted of two conditions: one mechanical
and one transparent. In both conditions, the robot was required
to learn the right sequence of balls taking into account the
human feedback. Notably, in one session, the robot showed
a mechanical behavior, while in the other one, it showed an
emotional-behavioral response. We balanced the order of the
sessions obtaining a counterbalanced within-subject user study.

When it was in the mechanical condition, the robot simply
pointed at the balls to indicate the chosen sequence. The pointing
action began from a rest position, as shown in Fig. 3(1). After

1[Online]. Available: https://www.great-campus.it/join-the-science/

performing the pointing gesture, it then returned to the rest
position. In the mechanical condition, during the pointing action,
the robot did not look at the selected object and it always showed
a neutral facial expression (Table I, central figure). All move-
ments produced by the robot were hard-coded. In particular, the
robot’s pointing movements were composed of the gesture of
pointing toward the target and a maintenance phase, in which
the robot kept its arm still. The duration of both was the same.
From now on, with “pointing movement,” we mean both the
gesture toward the target and the maintenance. The kinematics
of the different submovements, in both the mechanical and
the transparent conditions, were the same. The duration of the
robot actions varied depending upon whether the action was
mechanical, certain, or uncertain. At the end of each action, the
robot returned to the same rest position.

At the end of each condition, we asked the participants to
respond to some questionnaires: the inclusion of other in the
self (IOS) questionnaire [50], the Godspeed questionnaire [51],
and the Mind Attribution Test [52]. We used these questionnaires
to determine any perceived differences between the two robot
behaviors.

C. Experimental Hypotheses

Our first hypothesis was that the proposed emotional-
behavioral model could improve the legibility of the robot’s be-
haviors. Hence, (H1) a robot emotional and behavioral response,
which is entirely driven by the TD error, is sufficient to make the
robot’s behaviors more transparent to the human teacher. In
particular, we tested H1 by studying the timing and the shape
of participants’ feedback in both behavioral conditions. Second,
we expected that the robot’s anticipatory signals would elicit
reliable feedback. As such, (H2) the recorded feedback following
the robot gaze signal matched the final participants’ reward. To
test this hypothesis, we checked the coherence between feedback
recorded during both gaze and pointing movements; then, we
performed statistical tests to reach reliable results. For our third
hypothesis, we expected that (H3) people should prefer to inter-
act with an expressive robot compared with a mechanical one.
We tested H3 through questionnaires that participants answered
after each interactive session with the robot.

V. RESULTS

A. Learning Performance

We looked for differences in the robot’s learning performance
between the two types of sessions, regarding the number of
epochs needed to reach the highest accuracy: mechanical (m),
and transparent (t). We found that the learning performances
were fairly similar regardless of the showed behavior (two-tailed
t-test t(17) = 1.1346, p = 0.2732), with averages and the stan-
dard deviations of the number of epochs needed to reach the
highest accuracy μm = 8.2 with σm = 3.5, and μt = 9.2 with
σt = 3.8.

https://www.great-campus.it/join-the-science/
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Fig. 5. Averages and standard deviations of participants’ feedback given through the joystick over time. (a) mechanical movements, (b) transparent certain
movements, and (c) transparent uncertain movements. The feedback values belonged to the range [+100,−100]. The vertical lines indicate when a robot subaction
ends and another one begins (see description in the text).

B. Teacher Feedback Analysis

In this work, rather than focusing only on the robot’s learning,
we also focused on studying the participants’ feedback. Our
objective was to understand how the participants reacted to every
type of robot’s behavior.

To analyse the participants’ joystick use, we split the data
into six sets. A first division involved the robot’s behavioral
conditions. Thus, we separated the feedback given during the
mechanical sessions from the feedback collected during the
transparent ones. Subsequently, we split the feedback given
during the transparent sessions depending on whether the partic-
ipants provided this feedback to the robot’s certain or uncertain
actions. Finally, we divided the values of all these sets of feed-
back depending on whether they were negative or positive.

Fig. 5 shows the average participants’ feedback in each type
of session from the beginning of the robot’s action sequence
to its return to the rest position. Fig. 5(a) shows the results
from the mechanical sessions, while Fig. 5(b) and (c) shows the
results from the transparent ones: certain and uncertain actions,
respectively. The vertical lines indicate the time in which a
robot subaction ends and when another one begins. Therefore, in
Fig. 5(a), we have no lines because the mechanical movements
were composed of just the pointing movement. In contrast,
in Fig. 5(b), we have one vertical line (third second), which
indicates the moment in which the gazing submovement ends
and when the pointing starts. Finally, in Fig. 5(c), we have two
lines, the first one (sixth second) indicates the moment in which
the uncertain submovement ends and the gazing begins, while
the second line (ninth second) indicates the moment in which
the gazing submovement ends and the following pointing starts.
As we can see from the plots, we made a distinction between
positive and negative feedback. We say that feedback is positive
(in blue) if it is given to a correct robot action; in contrast,
negative feedback (in red) is given to an incorrect robot action.

As one can see from the figure, during the mechanical ses-
sions, the participants’ feedback was concentrated at the end
of the robot pointing gesture. This result shows that, during
the mechanical sessions, participants understood the robot’s
intentions at the end of the robot’s gesture toward the pointing
target, just before the robot started keeping the pointing position

Fig. 6. Averages and standard deviations of feedback given during the gaze
and the pointing movements.

still. In contrast, during the transparent sessions, participants
were able to start giving their feedback during the robot’s
anticipatory gaze; thus, when the robot started pointing, they
were already giving relevant feedback. One can also see that
during the uncertain robot subaction [see Fig. 5(c) zeroth–sixth
seconds], people gave negative feedback in both cases: very little
for right actions and stronger negative feedback for wrong ones,
on average (see Fig. 6). This type of action was not pointing or a
signal communicating intentions. In the case of an uncertain
movement [see Fig. 5(c) zeroth–sixth seconds], participants
tended to immediately opt for negative feedback. Such feedback
became even more pronounced when the robot pointed to the
wrong ball [see Fig. 5(c) sixth–ninth seconds]. Conversely, more
time is required to turn negative feedback into positive feedback,
as a result of the robot gazing at the right target.

From the plots in Fig. 5(b) and (c), it is clear that the anticipa-
tory gaze was well perceived by the participants and that it had
a fundamental role during the interaction, both in certain and in
uncertain behaviors. During the latter, the feedback drastically
changed with respect to the previous submovement. In addition,
we can see from Fig. 5(b) and (c) that we had a decrease in the
magnitude of participants’ feedback at the end of the robot’s
pointing (especially for uncertain movements).
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Fig. 6 shows the average feedback values provided during the
robot gazing movement [see Fig. 5(b) zeroth–third seconds and
Fig. 5(c) sixth–ninth seconds] as well as the ones provided during
the pointing movement [see Fig. 5(b) from third second onwards
and Fig. 5(c) from ninth second onwards]. The feedback col-
lected during the gazing was consistent with those given during
the following pointing action. Since we aimed to investigate the
reliability of the teacher feedback in concomitance with every
robot action, we further analyzed these data. Specifically, we
separated the feedback depending on the type and correctness
of the robot actions: thus, they were divided into either certain
(right or wrong) or uncertain (right or wrong).

For each participant, we analyzed the average feedback
recorded in the temporal windows in which the robot was
performing the gazing and pointing actions (see Fig. 6). In par-
ticular, we performed one-sample two-tailed t-tests to determine
whether the average feedback values were significantly different
from zero: therefore, they could be considered reliable feedback,
from which build reliable rewards. We considered feedback as
“reliable” if it was clearly distinct from zero, showing a clear in-
tent of participants to show either positive or negative feedback.
During the certain robot behavior [see Fig. 5(b)], we found that,
for correct robot actions, the feedback recorded during the robot
gazing was significantly higher than zero (μ = 6.81, σ = 16.25;
one sample two-tailed t-test t(22) = 12.098, p < 0.001) (see
Fig. 6). In contrast, for incorrect robot actions, the feedback
was not significantly different from 0 (μ = 0.65,σ = 14.68; one
sample two-tailed t-test t(22) = 0.785, p = 0.432) (see Fig. 6).
To identify a temporal window in which the feedback was
significantly negative, we considered the feedback recorded
from second 2.5 to the second 3.5 [see Fig. 5(b)], which was
the feedback related to the end of the gazing movement and the
beginning of the pointing one. In this time span, the feedback
becomes significantly lower than zero (μ = −5.58, σ = 26.6;
one sample two-tailed t-test t(22) = −3.682, p < 0.001). In
contrast, for uncertain robot actions, we found that the average
feedback was significantly lower than zero during the uncertain
submovement both during correct actions (μ = −4.86, σ =
17.9; one sample two-tailed t-test t(22) = −4.869, p < 0.001)
and incorrect robot actions (μ = −6.59, σ = 28.62; one sample
two-tailed t-test t(22) = −5.521, p < 0.001). Moreover, during
the uncertain robot actions, the feedback registered during the
gazing movement was significantly lower than zero for wrong
actions (μ = −21.24, σ = 40.29; one sample two-tailed t-test
t(22) = −7.649, p < 0.001), but it did not significantly differ
from zero for correct ones (μ = 1.41, σ = 35.2; one sample
two-tailed t-test t(22) = 0.784, p = 0.469). As we did for the
previous analysis of certain movements, we slid the temporal
windows of the latter condition. We found significant differ-
ences in the window starting between the seventh and the ninth
seconds [see Fig. 5(c)]; thus, for the second half of the robot
gazing movement, the average feedback became significantly
larger than zero (μ = 4.69,σ = 34.38; one sample t-test t(22) =
2.399, p = 0.016).

It has to be noted that, in both the mechanical and transparent
sessions, even though we told participants that their feedback
would be a continuous signal within the interval [−100,+100],

the participants tended to use the joystick as a discrete ±1
signal. During the mechanical sessions, approximately 65%
of the positive feedback fell into the range [0, 25] and around
30% into the range [75, 100]. For certain negative feedback, we
had similar results: approximately 59% belonged to the range
[0,−25] and around 33% to the range [−75,−100]. Finally,
concerning uncertain feedback, approximately 62% of the pos-
itive feedback fell into the range [0, 25] and 31% fell into the
range [75, 100]. We had the same percentages for uncertain
negative feedback but within the negative ranges [0,−25] and
[−75,−100], respectively.

C. Teacher Wrong Feedback

We performed a total of 46 interactions. In 6 cases during
mechanical sessions, and 5 cases during the transparent ones, the
robot was not able to learn the entire sequence, only learning part
of it. The reason for these failures can be attributed to the incor-
rect feedback provided by the participants and, consequently, to
the way we computed rewards starting from those feedbacks. In
fact, we found that the number of wrong feedbacks registered in
sessions in which the robot learned the entire sequence was sig-
nificantly lower than the number in those sessions in which the
robot failed to learn the sequence (two-tailed z-test z = −3.60,
p < 0.001). Thus, we investigated further. Depending on the
environment’s state, we split the robot actions into two sets:
correct and incorrect actions. We considered a participant’s
feedback to be wrong when the robot’s performed action was
correct and the participant’s feedback was negative and also
when the robot performed the wrong action but received positive
feedback; otherwise, we considered the feedback to be correct.

Subsequently, we assessed whether the frequency of wrong
feedback was different in response to the two robot behaviors.
To do so, we plotted the frequency of wrong feedback for all
the subjects when they were confronted with the mechanical
behavior against the frequency exhibited of wrong feedback
by the same subjects when facing the transparent robot (see
Fig. 7). From that plot, it emerges that the frequency of errors
was similar during the two conditions, with a consistent behavior
for a given subject in both (i.e., the participants that made more
mistakes did so irrespective of the robot’s condition). However,
on average, we registered a nonsignificant higher frequency of
wrong feedback during the transparent sessions (see Fig. 7)
(μm = 10.28, σm = 10.21 and μt = 14.58, σt = 12.28).

The main reason participants provided wrong feedback was
found to be attributed to the way we computed the rewards:
considering the joystick values through the whole duration of
the action. These results suggest that the uncertain movement
sometimes was a threat to robot transparency and that, if we
considered the feedback starting from the robot gaze, we could
have gotten fewer errors and better performances.

D. Questionnaires

We used paired t-tests (with a confidence interval of 95%)
to determine differences between the averages of the question-
naires’ answers as they relate to the transparent and mechanical
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Fig. 7. Wrong feedback frequencies registered in both mechanical and trans-
parent sessions. Average values and std errors are also indicated.

Fig. 8. Averages and standard deviations of the answers given to the Godspeed
test.

conditions. The results of the mind attribution test showed signif-
icant differences in the robot’s ability to feel pleasure (t(22) =
−3.49, p = 0.002) and joy (t(22) = −4.54, p < 0.001). This
means that during the transparent sessions, people perceived
the robot to be more able to feel emotions during its learning
process. In addition, there were differences regarding the robot’s
ability to plan its action (t(22) = −2.55, p = 0.018), to have
self-control (t(22) = −2.61, p = 0.015), and to recognise emo-
tions (t(22) = −2.79, p = 0.01); participants perceived their
role to be more important during the transparent conditions than
in the mechanical sessions.

The Godspeed test provides a scale that goes from 0 to 7. In
this test, participants provided higher values for the transparent
sessions than they did for the mechanical ones. There were
significant differences between the robot’s anthropomorphism
(t(22) = 2.158, p = 0.036) and animacy (t(22) = 2.765, p =
0.008). We have reported the means and standard deviation
values of the Godspeed test in Fig. 8. We also found a significant
difference in answers given on the IOS questionnaire (t(22) =

−3.54, p = 0.001): people felt closer to the robot during the
transparent sessions than they did during the mechanical ones.

Through open-ended questions, approximately 14% of the
participants explicitly complained about some inconsistencies
in the robot’s facial expressions. As stated earlier, the robot
reactions were managed by the TD error while people expected
more of a match between their positive/negative feedback and
the robot’s happy/sad expressions.

The open-ended questions also revealed that about 50% of
the participants explicitly claimed the iCub’s more expressive
behavior was able to put forth the idea that the robot cared about
the task. Moreover, the participants provided more feedback
in the transparent sessions than they did in the mechanical
sessions. People perceived indecision and the need for more
help when iCub showed insecure behaviors.

VI. DISCUSSION

We found no significant differences in the learning perfor-
mance, regarding the number of epochs needed to reach the
highest accuracy, between the two behavioral conditions of the
robot. This result was not particularly surprising: we expected
the robot to receive similar reward values in the two conditions.
Rather, the differences we were looking to find concerned the
timing of participants’ feedback. Specifically, how the robot’s
different behaviors would change the teachers’ responses.

A. Robot Expressiveness

In general, our results confirmed the fundamental role of
robot gaze in improving transparency in HRI. Moreover, in
the case of uncertain actions, we supposed that the uncertainty
submovement could be correctly interpreted by the subjects as
an index of the exploration process of the RL algorithm and,
consequently, to an action that is probably wrong. Indeed, such
negative feedback was corrected as soon as the anticipatory
gaze was performed. This also suggests that the transparent
expressions of uncertainty can “pause” an observer, much like
what happens in human–human interactions. We noted that
expressing doubt or uncertainty with the robot’s movements
can lead to misinterpretation and have a bad effect on the
robot’s transparency. The choice to reveal the robot’s uncertainty
through movement segmentation had a double effect: on the
one hand, it triggered earlier feedback, though this was always
negative, which might be seen as a sign of increased participation
and engagement by human participants. On the other hand, it
puzzled participants, who sometimes suggested that they were
confused by this behavior, making them unable to infer the
robot’s goal. As a consequence, it could be relevant to consider
different approaches to show uncertainty without compromising
the legibility of the movement itself [10]. Not all the expressive
signals used by the robot in the transparent condition had
the same positive impact on transparency. Implementing basic
sensorimotor regularities proper of human behavior, such as the
anticipatory gazing toward the target of a future action [53], sped
up participants’ understanding of actions. Conversely, mapping
the robot facial expressions to the degree of satisfaction based on
the previous actions’ effect proved to be less effective. This could
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be because participants considered robot facial expressions to
be an explicitly communicative social cue and, therefore, they
expected the robot to respond to the social interaction rather
than to the robot’s internal evaluation. Indeed, in the context of
human–human interaction, people often set their facial expres-
sions voluntarily for a social purpose, even this is in contrast
to their hidden feelings (e.g., non-Duchenne or “social” smile).
Hence, participants expected a simpler coupling between the
robot’s facial expressions and the feedback they provided. This
suggests that participants perceived such a communicative cue
as a high-level signal. As such, these results suggest that the
robot’s facial expressions might be better suited to provide
explicit feedback to the partner’s actions rather than supporting
transparency about its internal states. Thus, we should model
them simply starting from the received reward.

We aimed to model the robot’s transparency to be naturally
perceived by the participants and entirely guided by the TD error.
For this purpose, we needed signals that could be intuitively
understood because they derive from our interaction vocabulary.
We can not exclude that a part of the observed benefits on
transparency was related to the effect of interacting with a robot
behaving in a human-like manner.

Our results show that people prefer to interact with an expres-
sive robot also in learning scenarios. Moreover, the TD error
is a good estimation of the learning trend and our emotional-
behavioral response resulted to be coherent with this latter,
even though some adjustments are needed: some communicative
signals (e.g., the facial expressions) could be better modeled
through a simpler reward-based approach, and the way by which
the robot express uncertainty (a fragmented movement) should
be fine-tuned. In our opinion, our work provides a good starting
point in the investigation of TD-based models for robot trans-
parency during RL tasks.

B. Participants Feedback

During the transparent sessions, the user feedback started
decisively during the gaze, meaning that this occurred before
the pointing movement would begin. Thus, we can state that
the anticipatory gaze was enough for the human participants to
understand the robot’s intentions. This confirms our hypothesis
H1. On average, the feedback collected after the anticipatory
gaze signal was consistent with the feedback that was given
during the robot pointing action. However, the two intensities
were very different from each other. For this reason, additional
statistical analysis was needed to find the temporal window from
which we could individuate reliable feedback. We found that, for
some of our experimental conditions, reliable feedback began
in concomitance with the beginning of the gazing movement.
Hence, we can claim that our hypothesis H2 was partially
confirmed. It cannot be considered fully confirmed because we
also found that the feedback given during the gazing movement
was not reliable enough in all our experimental conditions. In
particular, in two cases (i.e., certain wrong actions and uncertain
correct actions), we found reliable feedback sliding to the right
the temporal window of reference. However, just a little slide
was needed to find reliable feedback: in fact, at least half of this

feedback belonged to the gazing temporal window. A possible
explanation for this effect could be that, especially with regard to
uncertain robot actions, the feedback recorded during the gazing
movement was strongly influenced by the previous movement by
the robot. This occurred because of the continuous nature of the
teachers’ feedback. In the latter scenarios, the feedback signal
was not reliable enough. However, the closer we moved toward
the pointing temporal window, the more reliable the teacher
feedback became. From these results, we can certainly state that
participants perceived the robot gaze as very informative regard-
ing its intentions. Hence, we could start recording the teacher’s
feedback during this stage, but not before it. In addition, we
should pay particular attention to robots expressing uncertainty
and we should start recording the teacher’s feedback only when
we are sure about its reliability: this occurs in the middle of the
anticipatory robot movement.

Therefore, we can exploit the information on feedback timing
to compute the rewards in a more precise way: we could start
reading the feedback from the moment the anticipatory signals
start, taking the maximum value registered in the time window
starting from the anticipatory signal and ending at the time half
the action is executed. Since the participants used the joystick
as a ±1 signal, we could also approximate the reward received
depending on its sign. Such an anticipated reward could be
exploited during the learning process to block the execution
of wrong actions. To do this, we would need to enrich the
interaction by introducing social cues that could explain that
the robot understood its failure. This could make the interaction
more natural since, just as when we are teaching something to
children, we would not expect them to persist in wrong actions
after the moment we tell them they are totally mistaken.

In both transparent types of movements, we recorded a de-
crease in the magnitude of participants’ feedback at the end
of the robot’s pointing. This phenomenon is due to a return in
a neutral 0 position of the joystick. In particular, the majority
of participants gave the maximum feedback (in magnitude) and
then they returned back to the neutral position. This phenomenon
was more emphasised during the human-like sessions because
1) they had more time to provide their feedback and 2) they
understood the robot’s intention earlier.

C. Questionnaires

The results of the questionnaires showed that the participants
noted the differences between the two robot’s behaviors and that
they appreciated more the transparent one. Moreover, they felt
closer to the robot during the transparent sessions. These results
confirmed our hypothesis H3. Even though the transparent
behavior made the robot more transparent, the more responsive
the robot was, the more people expected that it would be able to
have a complex interaction. Almost all the participants noted the
robot’s lack of speech communication; this was especially the
case during those times they would have liked to ask the robot
for explanations, particularly after repeated robot failures.
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D. Limitations and Future Works

The findings derived from this work could be generalised to
more complex tasks. However, to this aim, it would be necessary
to overcome a few limitations of the current settings.

First of all, we need to resolve the simplifications introduced
in our experiments. Participants’ use of the joystick suggests
a change in the method by which they provide the feedback:
from a joystick to a reading of the teacher status via a valence-
arousal-based classification. Reading both teachers’ reactions
and nonverbal cues could allow having a good approximation of
reward signals. Both the anticipatory signals and the expression
of uncertainty could allow us to redefine the online training
phase making the robot able to suspend part of it depending
on the teacher’s reactions. This could redefine the RL paradigm
to better align it to a more natural interaction from the human
teacher’s point of view. Moreover, issues related to RL tasks’
complexity may require a two-steps learning strategy: training
via simulation, and tuning and customisation via online training
as in our experiments.

Finally, in modeling the robot’s behavior, we used the gazing
movement only when the robot was certain about the action
it was going to perform. However, due to the important role
that such signal has played, we plan to investigate further the
impact of the robot’s gaze in transparency by standardising it
in both conditions. In particular, we plan to model TD error in
one condition on a happy-sad scale, and on an uncertain-certain
scale in a second condition.

VII. CONCLUSION

In this work, we studied robot transparency during RL tasks
by providing a TD-based emotional-behavioral model to a robot
(iCub). For this purpose, we designed a user study in which a
robot performs an RL task, while a human teacher provides it
feedback through a joystick. We studied differences in partici-
pants’ reactions during two experimental conditions: they had
to interact with a transparent and a mechanical robot.

Our model provided for the management of the robot’s behav-
ior by the TD-error to obtain a coherent and solid expressivity.
However, this turned out to be an approximation that did not pro-
duce optimal results. Even though our multimodal behavioral-
emotional response had a good effect on transparency, we need
to investigate further how to differentiate signals related to social
aspects and those related to the robot’s internal state. Users with-
out training expect that the robot’s emotions would reflect the
received feedback rather than the learning trend. The approach
we used resulted to be effective in transparency more from the
behavioral side than from the emotional one, but not always: gaze
movements were crucial in understanding the robot’s intentions,
while uncertain movements sometimes led to misinterpretation.
Nevertheless, our model made the HRI more likeable: teachers
perceived the transparent robot as more involved in its task.
Moreover, we do not exclude that this latter was due to a robot
using communicative signals that were familiar to humans.

Our experiment provided for a simple RL problem because it
had to be faced in an experimental context. Real RL problems
are not so easy, thus usually they require a learning phase done in

simulation. We think it could be very useful—after the learning
phase—to have an interactive customisation phase in which the
system can be fine-tuned based on the user’s needs. In this
scenario, interacting with a transparent robot can bring several
benefits for both the HRI and learning performance, e.g., it could
give clues about errors of bias the robot faced during the learning
phase, or the robot could exclude learning paths that the teacher
considers useless.

We need to investigate further what is the role of social
signals in robots’ transparency. Simply adding information is not
enough. We need to study deeper how humans interact with each
other; in particular, how humans differentiate communicative
signals to assess their social objectives. This way, we could try
to reproduce the interaction mechanisms we use in our everyday
lives to improve the HRI and to make robots’ behaviors more
natural for their human partners.
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