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A Collaborative Filtering Approach Toward
Plug-and-Play Myoelectric Robot Control

Jun-ichiro Furukawa
Asuka Takai

Abstract—Previous works in the literature have claimed that the
characteristics of electromyography (EMG) signals depend on each
person, and thus, EMG interfaces need to be carefully calibrated
for each user in myoelectric control. In this study, we show that the
EMG interface used to estimate the joint torques of a user can be
constructed simply by incorporating other users’ data without typi-
cal calibration process. To achieve this plug-and-play capability, we
introduce the concept of collaborative filtering to estimate the joint
torque of a novel user by exploiting the preidentified relationships
between motion-body features, including EMG signals, and the
joint torques of other users. To validate our proposed approach,
we compare the performance of estimating joint torque by the pro-
posed method with that by conventional linear regression models
as a baseline. We considered the following two baseline methods.
Linear-own: The parameters of the linear model are calibrated
for each subject from his/her own training data. Linear-others:
The parameters of the linear model are calibrated with the other
users’ data in which the novel user’s data are not included. As
a result, the estimated joint torques from our proposed approach
reveal a better estimation performance than those from the baseline
approaches. Furthermore, we also successfully demonstrate online
myoelectric control of an upper limb exoskeleton robot with an
attached mannequin arm.
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I. INTRODUCTION

YOELECTRIC interfaces have great potential to pro-
M vide an intuitive way of controlling external devices for
human users. In particular, intuitive interfaces are desirable for
prosthetic devices or exoskeleton assistive robots [ 1], [2] to allow
users to control them as a part of their own body.

To build a myoelectric interface, the measured muscle activ-
ities must be converted to control the commands for external
devices. Previous studies have mainly adopted either classifi-
cation methods or regression approaches. In the former, such
movement classes as hand postures were predicted from elec-
tromyographies (EMGs) [3], [4]. In the latter, the interfaces were
trained to estimate such user control commands as joint torques
from EMG signals [5]-[8]. For both approaches, calibration
procedures are needed to determine the parameters for esti-
mating the user-intended output from EMG signals. Moreover,
these calibrations are usually required for each subject and each
experiment, since the relationships between the EMGs and the
user-intended control outputs tend to be varied. Requiring such
a cumbersome procedure inhibits the potential distribution of
useful myoelectric interfaces. As a matter of fact, the calibration
procedure requires tens of minutes to learn one model [9],
perhaps even more for nonexperts. Minimizing the calibration
process is a challenge that must be met for assistive devices [10].

In this study, we construct an EMG interface that estimates
a user’s joint torques simply with the data of other users. In
other words, our proposed method requires no time-consuming
calibration process for each new user. This plug-and-play EMG
interface can be achieved by carefully taking human muscle-
skeletal properties into account.

1) The amplitudes of EMG signals are observed according

to muscle tensions [11], [12].
2) This relationship between EMG signals and muscle ten-
sions depends on muscle mass [13].

3) The relationship between muscle tension and joint torque

depends on the limb length and the joint angle.

From the aforementioned three properties, we found that the
relationship between joint torques and motion-body features can
be generalized among different users, where the motion-body
features are composed of EMG signals, joint angles, body
weight, and limb lengths. In our approach, this generalization
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Fig. 1. Schematic diagram of the proposed collaborative filtering approach
to constructing a plug-and-play myoelectric interface. Measured motion-body
feature (EMG, joint angle, body weight, and limb length) queries correspond to
joint torque for controlling external devices without a calibration process.

property is applied to a collaborative filtering framework often
used for recommendation systems [14].

Fig. 1 shows a schematic diagram of the proposed approach.
We first find the relationships between motion-body features
and the corresponding joint torques, where the joint torque
patterns are derived from inverse dynamics models. In other
words, we annotate the motion-body features with the joint
torques. From newly observed EMG signals, joint angles, body
weight, and limb length information of a novel user, we obtain
the corresponding joint torques using the collaborative filtering
method.

This article offers the following contributions.

1) The relationship between joint torques and motion-body
features is generalized among different users, where
motion-body features are composed of EMG signals, joint
angles, body weight, and limb length.

2) The extracted relationships between the joint torques and
the motion-body features from other users are found to be
more useful than the results of a standard linear regression
model in which the parameters are calibrated with the
user’s own data.

3) The generalization property is successfully applied to
achieve plug-and-play myoelectric control of a real robot
using collaborative filtering.

In our preliminary study [15], we reported that the collabora-
tive filtering approach is potentially useful for estimating joint
torques from EMG signals (not from motion-body features). In
experiments with a limited number of subjects, we showed that
our proposed method’s torque estimation performance (without
a calibration process) was comparable with that of the standard
linear regression model that requires calibration.

On the other hand, in this study, by newly taking the biome-
chanical information of human users into account, we show that
our collaborative filtering approach outperforms the standard
methods through comprehensive experiments using ten subjects.
Furthermore, we now demonstrate that the data collected in

single joint movements can be used to estimate the joint torques
of multijoint arm movements.

The rest of this article is organized as follows. Section II de-
scribes related works. In Section III, we introduce our approach
to constructing a plug-and-play EMG interface. Section IV
describes our experimental setups, and Section V shows our
experimental results. We compared the joint torque estimation
performances with baseline standard linear regression models
and show online upper limb exoskeleton robot control perfor-
mances. In Section VI, we discuss how each motion feature ele-
ment contributed to the torque estimation performance. Finally,
Section VII concludes this article.

II. RELATED WORKS

Multiuser adaptation methods for myoelectric interfaces have
been explored in the previous literature to reduce the burden of
calibration processes. Although standard EMG-based interfaces
need to be calibrated for each user, the parameters acquired
from others can at least be useful for initializing a motion
classifier [16], decomposing EMG spike profiles for gesture
recognition [17], and deriving a style-content separation model
for one-shot classifier learning [18]. However, the aforemen-
tioned models still require the data of novel users, and the
output of their interfaces is discrete motion labels rather than
a continuous output, which is desirable for assistive control.

Using regression to derive the parameters of myoelectric inter-
faces is a standard approach for continuous EMG-based control.
In this approach, the joint torque or muscle tension values used
to control external devices are estimated from EMG signals and
motion data [19]. Due to its simplicity, using a linear model for
the interface has been a popular regression approach [5], [20]-
[23]. However, capturing complicated biomechanical properties
by simply using linear models limits the performance of esti-
mating the user’s movement intentions.

On the other hand, muscle tension models [24] have been
proposed that range from simple to quite complex models,
including one previous model [25] that required 50 parameters
to describe a simple joint motion. Although complex models
are expected to have high expressive capability, model learning
becomes difficult due to the requirement of large-scale data for
calibrating a great number of parameters for each user [26].

To the best of our knowledge, this paper describes the first
study of a multiuser data-driven approach to constructing a
myoelectric interface that does not require a calibration process
for novel users.

III. METHOD

A. Data Collection and Annotation

We first stored the motion-body feature dataset u”? of mul-
tiple subjects into a database (see Fig. 1).

1) Data Collection: The motion-body feature is represented
as follows:

u(t) = [e'(t),07(1), W, L] (1)
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where e is the EMG vector, ® is the joint angle vector, W
denotes the body weight information, and L represents the limb
length. Here, the N-channel EMG signal vector is represented
as e(t) = [el(t),e2(t),...,eN(t)]. Each element of the EMG
vector e(t) is derived as a moving summation of a processed
EMG signal for a fixed period

e(t)= > Z(n)At.

n=t—l

©))

This is because the EMG signals are activated a few millisec-
onds prior to the actual limb movements [8]. We take a time
delay between EMG signal observation and actual movement
generation into account by introducing latency /. Furthermore,
in order to find similarity to other users’ data, the ith processed
EMG signals s' are normalized as follows:

Zz(n) — Sz(n) B Sfiest

i
Smve

3

where the processed EMG signal s is derived as a full-wave
rectified and low-pass filtered value of the ith raw EMG mea-
surement with cutoff frequency of 8 Hz. Here, s’ indicates
the resting value and s!,. denotes the maximum voluntary
contraction (MVC) output.

To evaluate the distance among motion-body features u'(¢)
in (1), we normalized each component of the feature vector.
Concretely, we normalized it as

u(t) = (u,(t) - U/min) @ (Uinax - Uinin)

)
where the elements of the vectors U’ ;. and U/, are minimum
and maximum of each component of the motion-body feature
data, respectively. These vectors were detected from all of the
other users’ data. Here, the notation @ denotes element-wise
(Hadamard) division.

2) Data Annotation: We then annotated the stored data with
the joint torque values. Following previous studies [6], [8], [19],
the joint torque 777 was computed from the inverse dynamics

of a subject’s limb

PP = M(©)6 + h(©,0) + g(©) ©)

where © represents the joint angles, M (®) is the inertia matrix,
h(©®,©) denotes the centripetal Coriolis and viscosity, and
g(0®) is the gravity term. The subject’s body parameters used
to calculate the inverse dynamics, such as each link weight of
the limb and center of each link mass, were computed based on
a previous formulation [27] after measuring the subject’s body
weight and limb length.

B. Collaborative Filtering

Collaborative filtering methods have been widely used to
estimate a novel user’s purchasing preferences from other users’
product selection records by finding similarity between the novel
user and other users’ profiles [28]. In order to implement this
concept of collaborative filtering, in this study, we adopt one
of the most popular implementations using k-nearest neighbor
(k-NN) [29], [30]. By using this approach, joint torques of the
novel user can be estimated by measuring the similarity between
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Fig. 2. 'We measured three types of motions: shoulder and elbow single-joint
motions as training data, i.e., stored in database, and shoulder—elbow multijoint
motion as test data, i.e., query.
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the novel user’s motion-body feature data and the k-nearest other
user’s data (see Fig. 1).

With the k-NN, the jth joint torque of a novel user 77 (¢) is
estimated as

DB

Zf:l Timz
Tj(t) — D( ®)u, )

(6)
k 1
Zi:l D(u(t),ul:Bj)

where D(u(t), u?Bj ) represents the similarity between the
motion-body feature of the novel user u(t) and the ith nearest

DB; .

that of the database u, . In our experiments, we use the
DBj)

i

Euclidean norm to calculate the similarity as D(u(t), u

DB
[a(t) = ui™|.

IV. EXPERIMENTAL SETUP
A. Experimental Design

In order to validate our proposed approach, we considered the
following three types of upper limb motions: 1) shoulder single-
joint motion, 2) elbow single-joint motion, and 3) shoulder—
elbow multijoint motion. From the perspective of reducing the
calibration process, this study focuses on evaluating the case
where the motion tasks are different between the training and
the test phases. Concretely, the single-joint motions in 1) and 2)
were stored in the database as training data and the multijoint
motion 3) was used only to evaluate the joint torque estimation
performance as test data (see Fig. 2).

We asked subjects to carry out three types of motions under
the following four conditions.

1) Cond. 1: Slow speed (12 s/motion) with no-load condition.

2) Cond. 2: Slow speed (12 s/motion) with load (female:

0.5 kg, male: 1.0 kg) condition.

3) Cond. 3: Medium speed (8 s/motion) with no-load

condition.
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Fig. 4. EMG electrode locations on upper limb. EMG sensors for measuring
muscle activities related to each joint movement were placed around anatomi-
cally plausible locations.

4) Cond. 4: Medium speed (8 s/motion) with load (female:
0.5 kg, male: 1.0 kg) condition.

Subjects were asked to complete the target motion within 12
and 8 s in the slow- and medium-speed conditions, respectively.

We measured joint motion of ten healthy right-handed sub-
jects [four male and six female subjects, age: 21 to 33 (mean
26), height: 151 to 178 cm (mean 166 cm), weight: 45 to 66 kg
(mean 59 kg)] who gave informed consent. Only healthy subjects
participated in this experiment, and Fig. 3 shows the histogram
of subject characteristics. All experiments were approved by
the ethics committee of the Advanced Telecommunications Re-
search Institute International, Kyoto, Japan, and were conducted
according to the Declaration of Helsinki. For each subject and
each motion type, we asked subjects to generate the movement
four times. In total, 320 single-joint motions were measured and
stored in the database. On the other hand, 160 multijoint motions
were measured for the test data. In our evaluation, one subject
was selected as a novel user from among the ten subjects, and
the remaining nine subjects’ data were used to estimate the joint
torque. Then, the process was repeated nine more times with
each subject acting one time as the novel user.

B. Data Collection and Annotation

We simultaneously recorded the EMG signals and joint angle
trajectories when subjects generated target limb movements.
Body weight and upper limb length were also measured for each
subject.

Fig. 4 shows the EMG channel locations used to measure
muscle activities from the right upper limb using eight EMG
sensors. We used Ag/AgCl bipolar surface EMG electrodes and
derived the processed EMG signals from the brachioradialis

Shoulder
flexion / extension

Fixed joint

Elbow
flexion / extension

(72)

Fixed joint

Fig. 5. Upper limb exoskeleton robot. Shoulder flexion/extension and elbow
flexion/extension are actuated by pneumatic-electric hybrid actuators. In this
study, shoulder abduction/adduction and wrist flexion/extension joints were not
used, i.e., they were fixed.

(s'), the upper arm muscle (s?), the biceps (s%), the triceps
(s%), the deltoid front (s°), the deltoid middle (s°), the deltoid
back (s7), and the trapezius muscle (s%). To obtain MVCs, we
asked subjects to generate maximum muscle forces while our
physiotherapist gave resistance against the subject’s upper limb
movements. In order to measure the joint angle trajectories and
limb length, we utilized a motion capture system (OptiTrack
Japan, Ltd). The data measured from the motion capture system
often include sensor noises and missing data. Therefore, we
derived the joint angle trajectories and limb length from the
marker data using the probabilistic inference [31] to deal with
them. As for acquiring the body weight information, we used a
force plate system.

We sampled the amplified EMG with a sampling rate of 1 kHz,
i.e., the sampling period was At =1 ms in (2). For the joint
angles, we measured the marker position with a sampling rate
of 125 Hz. After the preprocessing described in (2) and (3),
EMG signals were down-sampled to match the size of the motion
capture data.

We also derived joint torque sequences from the inverse
dynamics model of a subject’s limb to annotate the motion-body
feature data. In the load conditions, the load weight was added
to the mass of the hand in the inverse dynamics calculation.

C. Collaborative Filtering

In our collaborative filtering approach, the distance D in (6)
is calculated by Euclidean norm. The number of neighboring
data k£ of k-NN in (6) and the time period for summing the
EMG observations [ in (2) were set through cross validation
as described in Appendix A. Note that we did not conduct any
calibration procedure for a novel subject to estimate the joint
torque when we used our collaborative filtering approach. U,
and U/, in (4) used for the normalization were determined
only from the single-joint motion data, i.e., training data.

D. Upper Limb Exoskeleton Robot

In our real robot experiment, the estimated joint torques of
the novel user are used to control multiple joints of our upper
limb exoskeleton robot: elbow flexion/extension and shoulder
flexion/extension (see Fig. 5). The details of the mechanical
design and the torque-based control method of the exoskeleton
robot were introduced in our previous studies [6], [32]. In order
to generate joint motions with the exoskeleton robot using the
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(B) Load condition
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joint torque [Nm]
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Estimated joint torque profiles during multijoint upper limb movement. (A) No-load condition. (B) Load condition. (a) and (b) Shoulder joint movements.

(b) and (d) Elbow joint movements. Solid blue line shows actual joint torques derived from inverse dynamics. Dashed red line shows estimated joint torques by
our proposed approach. Dash-dotted cyan line shows estimated joint torques by Linear-own. Dotted purple line shows estimated joint torques by Linear-others.
The proposed approach shows better estimation performance than standard methods. Each torque profile in this figure was postprocessed with a second-order
Butterworth lowpass filter with cutoff frequency of 1.6 Hz. Note that this cutoff is used only for better visualization, while the actual cutoff is 8§ Hz.

estimated torque, a mannequin arm was attached to the robot so
that the dynamical properties would come closer to the subject’s
data.

V. RESULTS

In order to evaluate the torque estimation performance of
our proposed approach, we compared it with standard linear
regression models [5], [33], [34]. Concretely, we considered the
following two baseline torque estimation methods:

1) Linear-own: The parameters of the linear model were

calibrated for each novel user from their own training data.

2) Linear-others: The parameters of the linear model were

calibrated with the other users’ data in which the novel
user’s data were not included.

Detailed implementations are described in Appendix B. Note
that our proposed approach also does not use any of the novel
user’s own data.

A. Torque Estimation Performance

We compared the joint torque estimation performance of the
proposed approach with Linear-own and Linear-others using
test data acquired from the multi-joint motions. To calibrate the
parameters of Linear-own and Linear-other methods, we used
only the single-joint motions as depicted in Fig. 2. Then, the mul-
tijoint motion data were used for performance evaluations. As
an example of torque estimation results, Fig. 6 shows the torque
estimation performances of our proposed approach, Linear-own,
and Linear-others for one of the ten subjects: Fig. 6(A) shows
results with the no-load condition. Fig. 6(B) shows results with
the load condition. The top four panels represent shoulder joint
movements and the bottom four panels represent elbow joint
movements. Each panel shows the results with either slow-
or medium-speed condition. The actual torque profiles were

No-load condition Load condition

Normalized shoulder joint
torque estimation error
(RMSE)

0.2
) il' III } .II III
0.0 0.0

Slow speed Medium speed Slow speed Medlum speed
(a)

**

L
03 03

()
. 02
01 0.1
0.0

** slow speed Medium speed
(©)

mm Proposed approach mmm Linear-own mem Linear-others

**

Slow speed Medlum ‘speed

Normalized elbow joint
torque estimation error

Fig. 7. Comparison between joint torque estimation performances (RMSEs)
of the proposed and standard linear regression models in multijoint motion.
(a) and (b) No-load condition, and (c) and (d) Load condition results. (a) and
(c) Shoulder joint torque estimation performances. (b) and (d) Elbow joint
estimation performances. Slow-speed condition: 12 s/motion and medium-speed
condition: 8 s/motion. In all conditions, the proposed approach outperformed
two baseline linear regression methods (Linear-own and Linear-others) in
terms of averaged torque prediction error. We further applied a paired ¢-test
adjusted by Bonferroni correction to torque estimation errors of Linear-own and
Linear-others with reference to the proposed approach. We found statistically
significant differences between the proposed approach and baseline methods
except for the case in panel (a) (x : p < 0.05, ** : p < 0.01).

derived from the inverse dynamics of a novel user’s limb with
the actual joint trajectories.

Fig. 7 shows the torque estimation errors averaged over all
ten subjects for the test data. We plotted normalized torque



FURUKAWA et al.: COLLABORATIVE FILTERING APPROACH TOWARD PLUG-AND-PLAY MYOELECTRIC ROBOT CONTROL 519

TABLE I
STATISTICAL ANALYSIS WITH REFERENCE TO PROPOSED APPROACH
Speed Statistics Linear-own Linear-others
(a) Slow n.s n.s
(a) Medium n.s n.s
(b) Slow p 0.00066 0.00044
1(9) 5.6 5.9
CI [0.099 —0.22] [0.11-0.22]
Cohen’s d (effect size) 2.6 2.8
(b) Medium P 0.038 0.0011
1(9) 2.9 53
CI [0.021 —0.14] [0.060 —0.14]
Cohen’s d 1.3 2.5
(c) Slow P < 0.0001 0.00021
t(9) 8.0 6.5
CI [0.033—-0.057] | [0.043 —0.083]
Cohen’s d 3.8 3.1
(c) Medium P 0.030 < 0.0001
t(9) 3.0 7.82
Cl [0.0070 — 0.040] | [0.027 —0.047]
Cohen’s d 1.4 3.7
(d) Slow P 0.00011 0. 0049
t(9) 7.1 5.9
CI [0.079 —0.15] [0.090 —0.19]
Cohen’s d 3.8 2.8
(d) Medium P 0.0063 0.0032
1(9) 4.0 6.2
CI [0.032—0.11] [0.060 —0.12]
Cohen’s d 1.9 2.9

estimation errors where the errors were divided by the maximum
value of the actual joint torques. As shown in Fig. 7, in all of the
conditions, our proposed approach outperformed the two base-
line linear regression methods (Linear-own and Linear-others)
in terms of averaged torque prediction error. We further applied
apaired ¢-test adjusted by Bonferroni correction to the torque es-
timation errors of Linear-own and Linear-others with reference
to the proposed approach. Table I shows the results of statistical
analysis. Blocks indexed with (a)—(d) correspond to (a)—(d) in
Fig. 7, and we found statistically significant differences between
the estimation performances of the proposed method and the
baseline models in most cases. On the other hand, we found
no significant differences between the proposed approach and
baseline methods for the case of shoulder joint torque estimation
with no-load condition. For this particular case, the normalized
errors are smaller than in other cases. This result indicates
that the relationship between the joint torques and motion-body
features are relatively simple in the flexion-extension shoulder
joint movements without any load, and the relationship can be
captured relatively well not only by the proposed approach but
also by the simple linear models.

We compared the normalized RMSE values of the proposed
approach with those of the baseline methods under each of
the eight conditions shown in Fig. 7. Then, we counted the
actual number of subjects whose performances were higher,
i.e., a smaller RMSE, with the proposed approach than with
the baseline methods. The averaged counts were 8.8 out of 10
against Linear-own and 9.3 out of 10 against Linear-others.

Our proposed collaborative filtering approach outperformed
the Linear-own model, which requires a calibration process.
In other words, by properly applying the data acquired from
other users, we can achieve a better myoelectric interface than
one requiring the user’s own data. This capability allows us to
develop plug-and-play myoelectric interfaces.

°
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Fig. 8. Comparison among joint torque estimation performances (RMSEs)
using the proposed method with different motion-body feature sets. We in-
vestigated how each element contributed to improving the torque estimation
performance. Consequently, each element seemed to provide a nearly equivalent
contribution. We applied the Wilcoxon signed-rank test adjusted by Bonferroni
correction to the estimation performances of three different features (xx : p <
0.0001).

The average computational time needed to estimate the joint
torque using the proposed collaborative filtering method was
about 1.4 ms on a computer equipped with Intel(R) Xeon(R)
CPU E5-1650 v4 at 3.6 GHz. This result indicates that we can
apply our approach to real-time control.

B. Generalization Performance Among Different Users

Since we aimed to minimize the calibration process for a
novel user to generate novel movements, we conducted different
motion tasks between the training and the test phases in our
experiments. On the other hand, here, to highlight the general-
ization performance among different users, we gave attention
to the estimation performances for the single-joint motions.
Concretely, we used single-joint motion data both for training
and test phases. Because our goal is to see the generalization per-
formance among different users, the Linear-own model is out of
our focus. Thus, we compared our proposed method with Linear-
others. The normalized and averaged torque estimation errors
over the load/no-load conditions and shoulder/elbow joints were
0.17 for our model and 0.26 for the Linear-others model. These
results clearly show the effectiveness of our approach of using
other users’ data for a novel user.

C. Contribution to Estimation Performance of Each Element
in Feature Vector

In this study, in addition to EMG signals, we took joint angle,
body weight, and limb length into account as the elements
of the motion-body feature. Here, we investigate how each
element contributed to improvement of joint torque estima-
tion performance. Fig. 8 shows the averaged torque estimation
performances of the proposed approach over all experimental
conditions with different motion-body features. We plotted nor-
malized torque estimation errors as in Fig. 7. We found that each
element seemed to provide a nearly equivalent contribution to
improving the torque estimation performance. Here, we high-
lighted the effects of the “joint angle” element and the combined
“body weight + limb length” element. We applied the Wilcoxon
signed-rank test adjusted by Bonferroni correction to the joint
torque estimation performances by the proposed approach
among cases with the three different features: v’ = e (¢)]",
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Fig.9. Comparison among joint torque estimation performances (RMSEs) of
different motion body features: “EMGs only,” “EMGs and joint angles,” and all-
motion body elements in proposed, Linear-own, and Linear-others. We applied
the Wilcoxon signed-rank test adjusted by Bonferroni correction to estimation
performances of three different features in each method. We found significant
difference between “EMGs only” and “EMGs and joint angles”: p < 0.0001,
between “EMGs and joint angles”: p < 0.0001, and between “EMGs only” and
all motion-body features: p < 0.0001 in the proposed approach. On the other
hand, we did not find significant differences in Linear-own and Linear-others
methods.

u=1[e(t),0" ()", and u' = [e(t),©"(t),W,L]". As a
result, we found significant differences among them, and the
estimation performance gradually improved as each element was
included.

Fig. 9 shows a comparison of the averaged torque estimation
performances among the proposed method and baseline linear
regression models with different motion-body features. Specif-
ically, we investigated the performances when using EMGs
only, EMGs and joint angles, and all motion-body features. We
applied the Wilcoxon signed-rank test adjusted by Bonferroni
correction to the estimation performances of three different
features in each method. We found significant differences among
the three different features in our proposed approach, but not in
the Linear-own and Linear-others methods. Although Linear-
own showed better performance than the proposed method when
the EMGs only feature was used, Linear-own needs the user’s
own data while ours does not. Results indicate that the pro-
posed method can take advantage of incorporating additionally
available features to improve the torque estimation performance.
Below, we summarize our findings from the above results: First,
in addition to EMGs, using other motion-body features is very
useful if we estimate the joint torque from other users’ data.
Second, a simple linear model may not be sufficient to represent
a novel user’s joint torque from other users’ data, even with the
motion-body features. Third, in other words, a memory-based
approach such as our method can show strong generalization
performance with the motion-body features.

Fig. 10 shows representative examples of the nearest neighbor
users and movement conditions when the joint torques of a novel
subject are estimated with our approach using “EMGs only,”
“EMGs and joint angles,” and all motion-body features under a
motion condition with no-load and slow-speed movement. We
found that the selected nearest user and motion condition to the
novel subject varied during the multijoint movement under the
three different feature conditions, and this trend was observed

No-load condition / Slow-speed No-load condition / Slow-speed No-load condition / Slow-speed
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Fig. 10. Representative examples of nearest neighbor search in database when
joint torques of subject #1 are estimated as novel user under a motion condition:
No-load and slow-speed condition. Horizontal axis shows motion time and
vertical axis shows all time-series data points of single-joint motion in four
conditions of remaining nine users in database. (a) Nearest neighbor users
calculated by EMGs only. (b) EMGs and joint angles. (c) All motion-body
features.

in all other subjects and conditions. Regarding the joint torque
estimation in this study, the selected nearest neighbor data by
using all-motion body features seem to be relatively consistent
against the other two. The body weight and the link length
features are constant during the movement, and these features
appear to stabilize the selection of the nearest neighbor data.

D. Online-Realtime Robot Control

In order to evaluate the feasibility of our proposed approach
as a myoelectric interface for controlling external devices, we
used our upper limb exoskeleton robot (see Fig. 5) with a
mannequin arm. The total weight of the exoskeleton robot and
the mannequin arm was close to the upper arm weight of a subject
who conducted the robot control experiment. In this actual robot
experiment, the number of neighboring data %k in (6) and the
time window for deriving the EMG vector [ in (2) were set to
k = 1000 and [ = 80, respectively. We derived these values by
averaging the metaparameters selected through the joint torque
estimation processes in Section V-A (see also Appendix A).

The shoulder and elbow joints of the exoskeleton robot with it
mannequin arm were controlled by the estimated torques using
our collaborative filtering method under the no-load and load
conditions. In the load condition, a 1-kg weight was attached
to the tip of the mannequin. Fig. 11(a) shows the generated
motion of the robot under the no-load condition, and Fig. 11(b)
shows that under the load condition. The exoskeleton robot with
amannequin arm was successfully controlled using the proposed
myoelectric interface in the two different load conditions.

To validate the joint angle trajectories generated by the es-
timated joint torques, we evaluated the correlation between the
joint angles observed from the users’ actual motion and the joint
angle trajectories of the robot. Since we used torque control and
the physical properties of the robot with the attached mannequin
arm are not equivalent to that of the human user, the movement
amplitudes of the robot and the user can be different. There-
fore, we evaluated the correlation rather than the joint angle
differences. As a result, the average correlation over shoulder
and elbow movements with the no-load and load conditions
was 0.9. This high correlation indicates that our collaborative
filtering method can properly estimate the joint torques in an
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1kg load

Fig. 11.

Scaled time

Control performances of exoskeleton robot with a mannequin arm’s upper limb attached. (a) No-load condition. (b) 1-kg load condition. The robot could

be successfully controlled using the joint torques estimated by the proposed collaborative filtering approach.

online/real-time manner to generate the intended joint angle
movements of the user.

VI. DISCUSSION

In this study, we introduced the concept of a collaborative
filtering approach to estimate the joint torque of a novel user by
exploiting the preidentified relationships between motion-body
features, including EMG signals, and the joint torques of other
users. In the evaluation, the joint torque estimation accuracy of
our proposed approach outperformed the following two baseline
methods.

1) Linear-own, where the parameters of the linear model
were calibrated for each novel user from his/her own
training data.

2) Linear-others, where the parameters of the linear model
were calibrated with other user’s data in which the novel
user’s data were not included.

In addition, we found that the proposed approach could suc-
cessfully control an actual upper limb exoskeleton robot with a
mannequin arm attached to it. From these results, our approach
showed a strong potential to construct an EMG-based robot
interface without the need for a time-consuming calibration
process by using the data of other users.

Generally, EMG-based robot control faces the difficulty of
electrode placement. Among different users, it is not clear how
we should even define the corresponding electrode positions.
Therefore, the best we can do is to place electrodes at similar
positions based on biomechanical knowledge. However, even
with this difficulty, the proposed method works well, possibly
because it relies on the similarity between body-motion features
rather than electrode placement. In addition, the proposed ap-
proach also requires the acquisition of MVC for first-time users,
and the necessity of this identification process can be considered
a limitation of our method, although MVC can be very easily
detected.

The results of Fig. 8 indicate that we can possibly further im-
prove the joint torque estimation performance if we additionally
include relevant motion-body feature elements such as upper
limb circumference [35]. In addition, since EMG measurement
is known to be affected by subcutaneous fat [36], which can be

easily measured, it would be an interesting future study to also
incorporate that information in the motion-body feature.

We used a camera-based motion capture system to measure
the joint angles. This could also be considered a limitation of our
approach when it is used in outdoor environments. As a possible
solution, we could attempt to use an inertial measurement unit
(IMU)-based motion capture system, as we previously used in
a study on a rehabilitation robot [37]. Recently, a wearable
IMU sensor system has become commercially available (e.g.,
Xenoma Inc.), and it could possibly be used for real-life appli-
cations.

In this study, the motion speed was set within a safe range for
the experiments. However, these motions seem to be relatively
slow compared to our daily life movements [38]. We will inves-
tigate how our approach works in a faster movement range in
our future study.

We used low-pass filtering with a cutoff of 8§ Hz. By following
suggestions from the previous literature, we also tried other
cutoff frequencies such as 4 Hz [39] and 6 Hz [40]. As a result,
however, we did not find any significant difference in the joint
torque estimation performance.

VII. CONCLUSION

In this study, we proposed a myoelectric interface based on
the idea of collaborative filtering to achieve plug-and-play EMG-
based robot control. In our approach, by using the extracted rela-
tionships between joint torques and motion-body features from
other users, a new user does not need to calibrate parameters of
the myoelectric interface. Despite its simplicity, our proposed
approach outperformed the standard linear regression method
that requires a calibration process. We also showed that a torque
estimation model that separately uses elbow and shoulder single-
joint movements as training data could be generalized to esti-
mate the joint torques of shoulder-elbow multijoint movements.
Furthermore, we found that the required computation time to
estimate the joint torques was short enough for our method to
be applied to an online/real-time control system. However, the
estimation time needed to find the similarity between the novel
user’s data and the existing data in the collaborative filtering can
increase when the number of users’ data in the database becomes



522 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 51, NO. 5, OCTOBER 2021

much larger. To cope with this issue, our future study will
focus on using parallel computation to implement collaborative
filtering algorithms [41], [42].

Although we showed that our approach could estimate the
joint torque even under conditions with additional load, the
sudden occurrence of external forces has not been explicitly
taken into account. For example, physical contact between the
user and an object may lead to a sudden change of muscle activity
and an unexpected movement of the robot. To cope with this
type of situation, as a future study, we will consider combining
the proposed collaborative filtering with an anomaly detection
method [6] to safely derive joint torques.

Since our method opens the door to using other users’ data
to construct an EMG-based robot interface, we will attempt to
collect a wider variety of motion-body data with the goal of
managing versatile tasks.

APPENDIX
A. Setting Metaparameters

To determine the metaparameters of our joint torque esti-
mation method, such as the number of neighboring data %k of
k-NN in (6) and the window size [ to derive the EMG vector in
(2), we adopted a nested cross-validation method. Concretely, in
this study, we conducted experiments with ten subjects. Then,
one of the ten subjects was considered a novel user and the
selected subject’s data were not used as training data. We then
performed fourfold cross validation among the remaining nine
subjects to determine the metaparameters. To find the number of
neighboring data k, we set the search region from 100 to 3000
with a step size of 100. For online/real-time control, k = 3000
was the maximum number in our computational environment.
To find the window size [, we set the search region from 10 to 200
with a step size of 10. By considering the time delay from EMG
signal detection to the occurrence of muscle tension [8], [27],
we set the upper bound of the search region to [ = 200. We then
conducted grid search with the above regions and step sizes in the
cross-validation framework. For the number of neighboring data
k, we found that £ = 1000 was selected for 7 out of 10 subjects
and the average was also k = 1000. This result indicates that
we can find an appropriate metaparameter for k-N N by using a
subset of data in a database and then use that parameter for the
novel user. Note that the number of data points in our database
was 180 000 (= 9 subjects x 2 load conditions X 4 motions
per subject x 2500 data points acquired from the slow- (12 s)
and medium-speed (8 s) motions measured at the frequency of
the 125-Hz sampling rate). Therefore, the frequently selected
neighboring datasize £ = 1000 was much smaller than the entire
set of data points in the database.

B. Linear Myoelectric Interface Model

We compared the proposed collaborative filtering approach
with the standard linear regression models, linear-own and
linear-other. Each model used different datasets but adopted
the same linear conversion formula

7(t) = Ku' (1) (7

where 7(t) = [71(t),72(t)]" is the estimated shoulder and
elbow joint torques and u(t) is the normalized motion-body
feature as introduced in Section III-A. We used the conventional
least-squares algorithm to derive the parameter matrix K.
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