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Learning Complex Spatio-Temporal Configurations
of Body Joints for Online Activity Recognition

Jin Qi , Zhangjing Wang, Xiancheng Lin, and Chunming Li

Abstract—Geometric dynamic configurations of body joints play
an essential role in distinguishing different human activities. How-
ever, many existing human activity recognition approaches lack the
capability of automatically learning these configurations from se-
quences of joints in four-dimensional space (spatio and temporal).
In this paper, the authors propose an automatic joint configuration
learning method, based on dictionary learning and sparse repre-
sentation. The proposed method achieves the following features:
1) it automatically learns dynamic spatio-temporal geometric con-
figurations of body joints, involved in activities, in a simple way;
2) it dispenses with the hand crafted feature designing process
and provides a new method to organize joint coordinate data
as fixed length column vectors, which are suitable for dictionary
learning; 3) it replaces the conventional bag of words model with
sparse coding method; words in learned dictionary capture sub-
activity features, and the frequencies of different words appearing
in different activities characterize the categories of global activity;
4) it is robust to time misalignment and can classify any length of
video sequence (online classification) in real time; 5) it is easy to
combine this method with other forms of data for better perfor-
mance, because of its data driven nature and flexible framework.
The proposed method is tested with three state-of-the-art public
human activity recognition datasets and the results are found to be
better than those of CAD-60 dataset, and comparable to those of
both MSR Action 3D and MSR Daily Activity datasets (source
codes are publicly available at https://github.com/jinqijinqi/
SparseCodingDictionaryLearningHumanActivityRecognition).

Index Terms—Bag-of-words (BoW) model, body joints, dictio-
nary learning, human activity recognition, sparse coding.

I. INTRODUCTION AND MOTIVATION

SMART environment is a small world where different cat-
egories of smart systems work continuously to make in-

habitants’ lives more comfortable [1]. The extant environ-
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Fig. 1. Joint trajectories (to avoid cluttering, only joints from five randomly
chosen frames are shown; different joints with different colors and markers,
best viewed in the web version of this paper) of four example activities from
CAD-60 dataset: brushing teeth, cooking-chopping, drinking water and opening
pill container. H: head; N: neck; T: torso; LS: left shoulder; LE: left elbow; RS:
right shoulder; RE: right elbow; LHP: left hip; LK: left knee; RHP: right hip;
RK: right knee; LH: left hand; RH: right hand; LF: left foot; RF: right foot.

ment of ubiquitous computing systems, supported by cost-
effective depth image/body joints acquiring camera (for in-
stance, Microsoft Kinect), provides the right opportunity to build
a smart place, such as health-assistive home/environment, at low
cost [2]. To continuously track individuals’/patients’ functional
health and to initiate timely medical intervention, the daily
living activities, such as feeling painful, falling down, drink-
ing, eating, washing face, brushing teeth, cooking, dressing,
and taking medicine have to be monitored [3], [4]. Automatic
recognition of human activity, thus, forms the basis for building
a smart place. Some algorithms of body-sensor-based activity
recognition have been proposed earlier in [2], [5], and [6]. Re-
cently, body joint-based method has evoked great interest in
activity-recognition research community because of the avail-
ability of low cost, joint-acquiring Kinect cameras. Fig. 1 shows
body joint trajectories (x–y views for best observation) of some
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activities, from public dataset CAD-60 [7], such as “brushing
teeth,” “cooking-chopping,” ”drinking water,” and “opening pill
container.” From Fig. 1, it can be seen that different activities
have different joint trajectory distributions, whose geometrical
configurations carry important information that helps in iden-
tifying those activities. It has been shown that a multitude of
human activities can be recognized by using only joint posi-
tions [8]. Therefore, body-joint-based human activity recogni-
tion method is emerging to be the most popular one.

Conventional human activity recognition methods normally
use hand-designed local features and complex temporal dynamic
models (TDM). For example, [9], [10] use interest point detec-
tors (Harris3D, Cuboid, Hessian) to find key points and compute
local feature descriptors [histogram of oriented gradient (HOG),
histogram of optical flow (HOF), cuboid, and speeded up robust
feature (SURF)] for each key point to describe the local pattern
around each interest point. Then the histogram of frequencies
of local features that appear in the activity is used as TDM.
In [7], [11]–[13], humans or objects (such as mugs, bowls) are
segmented out and local feature HOGs computed from the data
around the centroids of segmented objects. The sequences of lo-
cal features in activity [13], Markov model [7], [11], and latent
support vector machine (LSVM) [12] are used as TDMs. Some
other methods, such as [14], [15], use volume local binary pat-
tern (VLBP) [14] and spacial time occupancy pattern (STOP)
feature [15] as local features of instant posture in a video. Others
use histogram of frequency of local features in the activity [14]
and action graph [15] as TDM.

Although the recent methods [12], [16]–[30] take advantage
of human body joint points, they still use engineered features
and complex TDM. In most of these methods, relative Euclidean
distance and direction between body joints are computed as
local features of instant posture in a video. The TDMs in vogue
include, besides others, Markov model [16], [19], [26], [30],
graph model [22], dynamic Bayes mixture model [21], bag of
words (BOW) model [17], Naive Bayes nearest neighbor [18],
latent structure model[12], voting model [22], and temporal
pyramid matching [29].

Most of the aforementioned models lack the ability to auto-
matically learn four-dimensional (4-D) spatio-temporal features
from pure body joint coordinate data. The purpose of this pa-
per is to make up for this deficiency by providing an automatic
feature-learning method for joint-based human activity recog-
nition, using only joint data. Although the focus is only on joint
data, the proposed method can be easily extended to other forms
of data too.

In this study, an automatic 4-D spatio-temporal feature learn-
ing method is proposed by using L0 norm constrained dictio-
nary learning and sparse coding. The proposed method achieves
the following features: 1) it automatically learns, in a simple
way, the dynamic spatio-temporal geometric configurations of
body joints that are involved in activities; 2) it dispenses with
the hand-crafted feature designing process and provides a new
method to organize joint coordinate data as fixed length col-
umn vectors, which are suitable for dictionary learning; 3) it re-
places the conventional BoW model with sparse coding method;
words in learned dictionary capture subactivity features, and the
frequencies of different words appearing in different activities

characterize the categories of global activity; 4) it is robust to
time misalignment and can classify any length of video sequence
(online classification) in real time; and 5) it is easy to combine
this method with other forms of data for better performance, by
virtue of its data driven nature and flexible framework.

Elaborate experiments were carried out across three public
databases. The experimental results show that the proposed al-
gorithm outperforms or compares well with the state-of-the-art
algorithms. The following are the chief contributions of this
paper to human activity recognition research:

1) provides a new method to organize joint-coordinate data
as fixed length column vectors, which are suitable for
dictionary learning;

2) proposes a new sparse coding-based BoW model to learn
word frequency histogram as feature vector;

3) proposes a simple dictionary learning-based method to
automatically learn the complex 4-D spatio-temporal ge-
ometrical configurations of all body joints involved in ac-
tivity, from joint coordinates alone, without going through
the handcrafted feature designing step;

4) proposes a flexible framework that can combine L0
norm-constrained dictionary learning with the sparse
coding-based BoW model for joint-based human activity
recognition. Besides, it can be combined with extra red,
green, blue and depth (RGBD) data for performance
improvement;

5) provides source codes to reproduce all the results pre-
sented in this paper.

To the best of the authors’ knowledge, this is the first attempt
in using L0 norm-constrained dictionary learning method to
jointly learn 4-D complex spatio-temporal geometrical configu-
rations of joints, directly from the original 4-D joint coordinate
volume in human activity recognition research community. It is
also the first to propose a new sparse coding-based BoW model,
and also a new method to organize joint coordinate data as fixed
length column vectors, which are suitable for machine learning.

For more information on human activity recognition, the
readers are referred to several survey papers on conventional
2-D image/video-based human activity recognition algorithms
[31]–[33] and recent surveys on depth/3-D data-based human
activity recognition [34], [35].

II. RELATED WORK

In this paper, a new method is proposed to automatically learn
4-D spatio-temporal features from body joint coordinate data
by using L0 norm constrained dictionary learning and sparse
coding.

Several automatic feature-learning methods have been devel-
oped earlier for human activity recognition. Ni et al. [36] use
dictionary learning-based approach to learn features from orig-
inal depth image sequences. In [29], a 3-D spatial dictionary is
learned for each joint from the difference in position (coordinate
difference) between that joint and each of the other joints within
the same frame. Different joints have different dictionaries and
these dictionaries are learned separately. In [37], conventional
independent component analysis (ICA) method with L1 norm
constraint is used to learn the dictionary from joint coordinates.
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These methods treat joints independently [29] or use conven-
tional ICA [37] and L1 norm [29], [37] for dictionary learning
and sparse coding. The performance of these methods can be
further improved by treating the joints jointly and using L0
norm constrained sparse coding.

Sparse constrained dictionary learning method is generally
considered superior to the traditional “BoW” model-based fea-
ture learning method [38]. In BoW method, the so called code-
book is constructed by k-means or fuzzy k-means clustering
method, and a local feature vector is quantized by one or sev-
eral codewords (representative words) through k-nearest neigh-
bor finding method. The traditional k-means clustering step
and k-nearest neighbor finding step can be replaced by mod-
ern sparse constrained dictionary learning method and sparse
coding method, which can learn more accurate dictionary and
avoid quantization error. BoW method, combined with sparse
constrained dictionary learning, is expected to improve the per-
formance of BoW-based recognition method.

Inspired by the works mentioned above and to obtain better
performance of human activity recognition, the authors pro-
pose to use L0 norm constrained sparse coding to learn 4-D
feature jointly and to replace conventional BoW method. The
proposed method is designed, based on L0 norm constrained
dictionary learning and sparse coding. In the proposed method,
a 4-D spatio-temporal dictionary is learned for each activity
(rather than a 3-D spatial dictionary for each joint in [29]) from
the original coordinates (rather than the position difference be-
tween joints in [29]) of all joints within the same subvolume
consisting of several adjacent frames (rather than joints within
one frame in [29]), using a recent L0 norm-based dictionary
learning method (rather than using conventional ICA in [37]).
Then , sparse coefficients from sparse coding are used, instead of
conventional BoW model, to build word-frequency histograms
as feature vectors. Finally, SVM is used to perform the classifi-
cation task.

In the method, proposed here, the 4-D atoms in the learned
dictionary naturally capture information about spatio-temporal
dynamics of subactivities. Therefore, atomic activities can be ef-
ficiently represented by the proposed dictionary atoms. Informa-
tion on temporal dynamics can be easily captured by tuning the
length of temporal dimension of each subvolume sample. Sparse
coding inference is performed in lower dimensional space by
using principal component analysis (PCA) for dimension reduc-
tion. The proposed algorithm achieves real time performance. It
performs more experiments in this paper than in [37]. The ex-
perimental results show that the method proposed in this paper
achieves better results than those in [37] with CAD-60 dataset.

The remainder of this paper is organized as follows: the
method proposed here is described in detail in Section III; the
experimental results are presented in Section IV, and the same
are discussed in Section V; and the conclusions drawn from this
study are presented in Section VI.

III. PROPOSED FEATURE LEARNING METHOD

The block diagram of the proposed method is shown in Fig. 2.
For better view, the combination of every three consecutive

frames, fewer than the number of frames in the algorithm, is
considered a subvolume. The joint coordinates of each subvol-
ume are reorganized into a column vector in joint category order
and denoted by a thin vertical rectangular bar, where “x,” “y,”
“z” indicate the x, y, and z components of each joint. Then,
these column vectors are used to learn a dictionary. Finally, the
histogram of word frequency is learned as input feature vector
to SVM classifier.

A. Data Organization and Preprocessing

For this paper, the number of body joints in each frame is
assumed to be N . Each joint is a point in 3-D space, consisting
of x, y, and z coordinate components, which form the output
of Kinect camera. The i th joint at t th frame is denoted by a
coordinate component vector, as shown below

pi (t) = [xi (t) yi (t) zi (t)], i = 1, 2, . . . , N (1)

where xi (t), yi (t), zi (t) denote, respectively, the x, y, and z co-
ordinate components of joint point pi (t). pi (t) is normalized by
subtracting the mean of all vectors pi (t), i = 1, . . . , N , in the
t th frame, to make it independent of camera coordinate system

p̂i (t) = pi (t) − 1

N

N∑

i=1

pi (t). (2)

Each normalized joint vector p̂i (t), i = 1, . . . , N , in the t th
frame, is arranged as a row vector of the 2-D coordinate matrix
P(t) at instantaneous moment t , i.e.,

P(t) =

⎡

⎢⎢⎢⎢⎣

p̂1(t)

p̂2(t)

· · ·
p̂N (t)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

x̂1(t) ŷ1(t) ẑ1(t)

x̂2(t) ŷ2(t) ẑ2(t)

· · ·
x̂N (t) ŷN (t) ẑN (t)

⎤

⎥⎥⎥⎥⎦
. (3)

A final 3-D coordinate matrix P is built by concatenating
all the 2-D coordinate matrices P(t) in the third dimension (t
dimension), in a chronological order.

The 3-D matrix P is densely sampled along time dimension
(the third dimension) to obtain subvolumes as samples. For this
study, the subvolume sample size ts , along time axis (t axis),
is set to 11, 13, and 23 for CAD-60 database, MSR Action3D
dataset, and MSR Daily Activity dataset, respectively. Each sub-
volume sample is collapsed into a column vector, called sample,
by concatenating all the column vectors in the subvolume sam-
ple. The length of each sample vector is 15 × 3 × 11 for CAD
dataset with 15 joints per body, 20 × 3 × 13 for MSR Action3D
dataset with 20 joints per body, and 20 × 3 × 23 for MSR Daily
Activity dataset with 20 joints per body.

Each sample vector is normalized by subtracting its mean
vector. Each normalized sample vector is treated as a column
vector of matrix X . The normalized sample vectors in matrix X
are whitened and their dimensions reduced by using PCA [39]
as follows:

X X T = W DW T , X̂ = Wk D
− 1

2
k W T

k X (4)

where D,W, Dk , and Wk denote, respectively, full diagonal
eigenvalue matrix, full eigenvector matrix, k largest eigenvalue
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Fig. 2. Block diagram of the proposed system: Each combination of three consecutive frames (fewer than the frames in the proposed algorithm, for better view)
is considered a subvolume; the joint coordinates of each sub-volume are reorganized into a column vector, in joint category order, denoted by a thin vertical
rectangular bar whose “ x,” “ y,” “z” indicate the x, y, and z components of each joint; these column vectors are then used to learn a dictionary; Finally the histogram
of word frequency is learned as the input feature vector to SVM classifier.

matrix and its corresponding eigenvalue matrix. k is the smallest
number of eigenvalues, whose sum is equal to or more than some
proportion (99% in this paper) of the sum of all eigenvalues.

B. Spatio-Temporal Dictionary Learning

With the whitened and dimension reduced sample vectors
as columns of matrix X̂ , the l0 norm-based dictionary learning
method, recently presented in [40], is used to learn 4-D dictio-
nary by solving the following optimization problem:

min
D,C

1

2
||X̂ − DC ||22 + λ||C ||0

s.t. ||di ||2 = 1, 1 ≤ i ≤ m (5)

where di is the i th column (word) in dictionary D, ||C ||0 is the
number of nonzero entries in sparse coefficient matrix C , and
m is the total number of words in dictionary D (m = 400 in
this paper). The balancing parameter λ in (5) is set to 6500, as
recommended by [40], and validated by cross validation of this
study. A fast proximal method is proposed in [40] to solve this
optimization problem and obtain the dictionary D.

It is well known that different kinds of human activities have
different features (for instance, different joint configurations and
their evolution along time axis). To capture the class-specific
features of each kind of activity of this study, a class-specific
dictionary is learned for each activity category, using samples of
the same class. Thus, the words in the class-specific dictionary
are very good for representing the samples of the same class,

but not for the samples of other class. To obtain a dictionary,
which can work for any sample from any activity class, a final
large dictionary D̄ is built by simply combining all the words
from the learned class-specific dictionaries.

C. Sparse Coding Based BoW Model for Feature
Vector Generation

Once the final large dictionary D̄ is built, the sparse coding
vector s of a sample vector x can be obtained by solving the
following sparse coding model:

min
s

||D̄s − x ||22 + λ||s||1 (6)

where l1 norm ||s||1 is the sum of the absolute values of entries
in vector s. The balancing parameter λ in (6) is the same as the
one in (5), and the same is validated by cross validation in this
study. A large number of algorithms were proposed to solve the
above sparse representation problem [41]. In this study, sparse
coefficient vector s is obtained by using “orthogonal matching
pursuit” (OMP) method [42].

The i th nonzero entry in sparse vector s of sample vector x
indicates that the i th word appears in sample vector x . Therefore,
by checking all the sparse coding vectors from an activity video,
the words that appear in the video, as also how many times
they appear, are known. Based on the “BoW” model [38], and
the words appearing in the activity video, a histogram of word
frequency is built as a feature vector of the video.
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D. SVM-Based Classification

Each feature vector is expanded by using the explicit γ
homogeneous kernel expansion [43] with “χ squared” kernel
(γ = 0.01 in this paper). In [43], the explicit expression of ker-
nel mapping function is as follows:

ψ[x] j√
x L

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
k (0), j = 0

√
2k

(
j+1
2 L

)
cos

(
j+1
2 L log x

)
, j = odd

√
2k

(
j
2 L

)
sin

(
j
2 L log x

)
, j = even

(7)

where ψ[x] ∈ R2n+1 and j = 0, 1, . . . , 2n. This function can
map a positive number x to a 2n + 1 dimension vector. For more
information on homogeneous kernel, the readers are referred
to [43]. The expanded histogram feature vectors are used in
training class-specific linear support vector machines [44], fol-
lowing the one-versus-rest strategy. For each class, the model
parameter w of one linear SVM classifier f (x) = wT x + b is
obtained (with balancing parameter c set to 0.01) by solving the
following quadratic optimization problem:

min
w,b

L(w, b) = 1

2
||w||22 + c

∑

i

max
(
0, 1 − yi (w

T xi + b)
)

(8)

where xi , yi denote the training sample vector and its la-
bel, respectively. After training, the test video can be classi-
fied by using the trained SVM classifier. The SVM classifiers
are trained by using the source codes publicly available from
http://www.vlfeat.org/.

IV. EXPERIMENTAL RESULTS

A. Datasets for Performance Evaluation

The algorithm proposed here is tested exhaustively, with the
available body joints, using three public datasets: Cornell Ac-
tivity Dataset -60 (CAD-60) [7], MSR Action3D [45], and MSR
Daily Activity 3D [28]. The quality of joint data varies between
the datasets.

CAD-60 set is acquired by Microsoft Kinect camera with
frame rate 30 Hz and 640 × 480 image resolution. The skeleton
tracking algorithm [46] within the camera sensor outputs body
joint coordinates in 3-D space. In the database, each person has
15 joints. Four subjects (two males and two females) perform
14 activities in indoor environment. Each activity video is, on an
average, approximately 1000 frames-long. Of the four subjects,
three are right-handed and one left handed. The quality of this
dataset is good.

In MSR Action3D dataset, ten subjects individually perform
20 activities, repeating each activity two or three times. The
activities are covered by 567 depth videos, with image resolution
of 320 × 240 and frame rate of 16 Hz. The 3-D coordinates of 20
classes of joints are available. Of the 567 videos, only 557 videos
are used, just as in [28], because of missing or erroneous joints
in the remaining ten videos. The quality of this dataset is poor.

MSR Daily Activity 3D dataset, acquired by Microsoft Kinect
camera, has 960 RGBD videos, with 320 videos for each chan-
nel. For this dataset, each of the ten subjects performs each of
the 16 activities twice. The 3-D coordinates of 20 classes of

TABLE I
PARAMETER VALUE SETTING IN THE PROPOSED METHOD

ts : sample size along time dimension; Nw : number of words in dictionary; λ: balancing
parameter in (5) and (6); γ : kernel map parameter; c: balancing parameter in (8).

TABLE II
EVALUATION OF TIME PERFORMANCE OF THE PROPOSED METHOD, USING

DATASET CAD-60, MSR ACTION3D, AND MSR DAILY ACTIVITY 3-D

body joints for each person are available in this dataset. The
joint positions are very noisy as the activities are performed
in two different poses: “sitting on sofa” and “standing close to
sofa”. For the proposed method, only the joint information is
used. The quality of this dataset is very poor, because of which
it poses a big challenge to recognition algorithms.

B. Parameter Setting and Time Performance

Five parameters are used in the proposed method: 1) sample
size along time dimension ts ; 2) number of words in dictionary
Nw; 3) balancing parameter λ in (5) and (6); 4) γ parameter
with kernel map; and 5) balancing parameter c in SVM training.
Cross validation is used to find the optimal parameter values,
as shown in Table I. From this Table, it can be seen that only
the parameter ts (sample size along time dimension) changes
(depending on action speed and frame rate in video) across
different datasets.

The algorithm of the proposed method is implemented
in MATLAB language, with a single thread, using a nor-
mal personal computer with Intel(R) Xeon(R) CPU E5-
1603@2.80 GHz, under 64 bit Ubuntu 14.04.1 LTS. The av-
erage testing time for each video, across the three datasets, is
shown in Table II.

From this Table, it can be seen that the maximum testing time
per video in these three datasets is less than 1 s (0.9443 s).

C. Results From CAD-60 Dataset

In this dataset, the third subject is left-handed, while the
other three are right-handed. No good recognition performance
can be expected from a system, when it is trained with three
right-handed subjects and tested with a left-handed subject (the
so called “new person” setting in this paper). The joints from
the left-handed subject are mirrored to make her behave like a
right-handed subject, as was done in [7], [16]. Specifically, for
each frame of the left-handed subject, one plane l is computed by
fitting it to the four joint points: left-arm, right-arm, left hip, right
hip. Then, mirror plane lm is the plane, which is perpendicular
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Fig. 3. Four confusion matrices (with accuracies of 94.12%, 100.00%, 82.35.12%, 100.00%) for four experimental settings on CAD60 dataset: each setting
corresponds to the case in which one subject is for testing and the other three are for training.

to the computed plane P and passes through two midpoints, one
between two arm joints and the other between two hip joints.
Virtual joints, used in the proposed algorithm, are obtained by
mirroring joints within this frame , with respect to the computed
mirroring plane lm .

Also, of the four subjects, three are chosen for training and
one for testing, by strictly following the “new person” experi-
mental setting in [7]. Therefore, four experimental settings are
available, and anyone of the four subjects can be used for test-
ing. The four confusion matrices, corresponding to the four
experimental settings, are shown in Fig. 3. The proposed algo-
rithm achieves accuracies of 94.12%, 100.00%, 82.35%, and
100.00%, respectively, with the first, second, third, and fourth
subjects, as testing subjects. From the top left subfigure in Fig. 3,
it can be seen that the “talking on the phone” action is wrongly
classified as “brushing teeth” action, when the first subject is
used as the testing subject. These two actions are quite similar
to each other, because both of them have similar geometrical
configurations of body joints at many moments. Therefore, in-
formation from body joints alone is not enough to differentiate
one action from the other. The relatively low accuracy (82.35%)
obtained with the third subject as testing subject could possibly
be due to the error introduced by the extra mirror operation,
which converts left-handed subject to right-handed subject.

The proposed method is compared with other state-of-the-art
algorithms in terms of average accuracy, average precision, and

TABLE III
AVERAGE ACCURACY VALUES (%) WITH CAD-60 DATASET

Proposed algorithm, with accuracy of 94.12%, ranks first among the seven algorithms.

average recall (see Tables III and IV). The results relating to the
state-of-the-art algorithms are taken directly from the website
http://pr.cs.cornell.edu/humanactivities/results.php.

From Table III, it can be seen that the proposed algorithm ,
which uses only joint information, outperforms some other joint
[22] or RGBD [9] or RGBD + Joint [20]-based methods. The
proposed method, with accuracy of 94.12%, ranks first among
the seven algorithms. The second best algorithm, called “pose
kinetic energy” [22] in Table III, uses only joint information
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TABLE IV
AVERAGE RECALL AND PRECISION VALUES (%) ON CAD-60 DATASET

Proposed algorithm, with 92.86% recall and 90.18% precision, ranks, respectively,
second and fourth among the 12 algorithms, in terms of recall and precision.

TABLE V
ACTION SETTINGS FOR SUBSETS AS1, AS2, AND AS3

and gives lower accuracy of 91.9%. Table III also shows that
the performance of the proposed method, which is a joint-based
method, is better than that of even the nonjoint-based methods.

The performance of some algorithms is reported only in terms
of their precision and recall values. The performance of the pro-
posed algorithm is compared with such algorithms also in terms
of the same metrics, as shown in Table IV. From this Table, it can
be seen that the proposed algorithm, using only joint informa-
tion, outperforms some other joint [17]–[19], [30] or RGBD [13]
or RGBD + Joint [7], [11], [12], [16]-based methods. Further,
the proposed method, with 92.86% recall and 90.18% precision,
ranks second and fourth among the 12 algorithms, in terms of
recall and precision, respectively. However, the performance
gap between the proposed method and the other top ranking
methods is very small.

TABLE VI
ACCURACY VALUES (%) OF THE STATE-OF-THE-ART METHODS ON MSR

ACTION 3D DATASET, UNDER “OVERALL” SETTING

Proposed algorithm, with accuracy of 86.81%, ranks third among the 11 algorithms.

D. Results From MSR Action3D Dataset

As in [29] and [45], this dataset also is divided into three
subsets (see Table V): AS1, AS2, and AS3. AS1 and AS2 sub-
sets include data of similar actions, and AS3 data of complex
actions, which are combinations of simple activities. The pro-
posed algorithm is also tested with AS1, AS2, AS3 subsets and
whole dataset (hereafter called “overall”), using the same cross-
subject experimental setting: subjects with numbers 1, 3, 5, 7,
9 worked for training and those with numbers 2, 4, 6, 8, 10 for
testing.

The four confusion matrices of the proposed algorithm, corre-
sponding to the four experimental settings: AS1, AS2, AS3, and
overall, are shown in Fig. 4. The proposed algorithm achieves
accuracy of 81.90%, 83.04%, 97.30%, and 86.81% in AS1, AS2,
AS3, and overall settings, respectively. The third confusion ma-
trix shows that the proposed algorithm performs very well, with
accuracy of 97.30%, in recognizing complex activities of subset
AS3. Only three “high throw” actions are incorrectly classified
as “tennis serve”, because both these actions are quite similar
to each other, in terms of joint configuration. The proposed al-
gorithm achieves lower accuracies (81.90%, 83.04%) in subset
AS1 and AS2 than in subset AS3, because some actions in AS1
and AS2 are quite similar to each other. For example, the first
confusion matrix (with accuracy 81.90%) from AS1 shows that
“tennis serve” action is quite similar to “hammer,” “forward
punch,” and “high throw” actions. The average performance of
the proposed algorithm with CAD-60 dataset is better than that
with MSR Action3D dataset. This is because the data in MSR
Action3D dataset is more noisy.

Table VI compares the proposed algorithm, in terms of ac-
curacy, with other state-of-the-art methods in overall setting.
The accuracies of the state-of-the-art methods in Table VI are
taken directly from [29]. From Table VI, it can be seen that the
proposed algorithm, with accuracy of 86.81%, ranks third in
overall setting. However, it is much simpler and more flexible
than the two more accurate methods in the top [28], [29], both
of which are based on pyramid strategy.
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Fig. 4. Four confusion matrices from four subsets AS1, AS2, AS3, and “overall,” using MSR Action 3D database, with accuracies of 81.90%, 83.04%, 97.3%,
and 86.81%, respectively.

TABLE VII
ACTION SETTINGS FOR DATA SUBSETS AS1, AS2, AND AS3

E. Results From MSR Daily Activity 3D Dataset

This dataset is also divided into three subsets: AS1, AS2,
and AS3 (see Table VII). The proposed algorithm is tested with
these datasets and the overall dataset, using the same cross-
subject experimental setting as the one used in [45] i.e., using
the subjects with numbers 1, 3, 5, 7, 9 for training and those
with numbers 2, 4, 6, 8, 10 for testing.

The four confusion matrices of the proposed algorithm, cor-
responding to the four experimental settings-AS1, AS2, AS3,
and the overall one are shown in Fig. 5. The proposed algorithm
achieves accuracies of 68.33%, 81.67%, 86.00%, and 68.75%
in AS1, AS2, AS3, and the overall settings, respectively. The
first confusion matrix shows rather low accuracy of 68.33%,
because many pairs of activities in subset AS1 are similar to
each other, such as “eat” versus “read book,” “eat” versus “toss
paper,” and “read book” versus “use laptop.” Subsets AS2 and

AS3 show relatively higher performance, because such similar
activity pairs are fewer in them. From the first and fourth con-
fusion matrices (see Fig. 5), it can be seen that the accuracy in
“overall” setting (68.75%) is a little bit higher (less than 0.5%)
than that in AS1 (68.33%). Compared to AS1, the “overall”
setting does not show much higher performance, because it has
more activities that need to be distinguished, although many
easier cases (relatively easy to distinguish) are added to it from
AS2 and AS3.

Once again, it is seen that the performance of the proposed
algorithm drops when used with MSR Daily Activity 3D dataset,
because the noise in this dataset is much higher than that in the
other two datasets.

Table VIII provides a comparison of the proposed algorithm
with other state-of-the-art algorithms, in terms of accuracy, un-
der the overall setting, used in MSR Daily Activity dataset. All
the accuracies in Table VIII, except that of the algorithm pro-
posed here, are taken directly from [29]. From this Table, it can
be seen that the proposed algorithm, with accuracy of 68.75%,
ranks third among the eight algorithms. However, the two more
accurate methods in the top [28], [29] use more information,
including RGBD and body joints. From the fifth row of Ta-
ble VIII, it can be seen that the second best algorithm in [28]
(with accuracy 68%) is a little worse than the proposed algo-
rithm (with accuracy 68.75%), when only joint information are
used. Furthermore, the proposed method is much simpler than
the two methods in the top, which are pyramid strategy-based
methods [28], [29].



QI et al.: LEARNING COMPLEX SPATIO-TEMPORAL CONFIGURATIONS 645

Fig. 5. Four confusion matrices from the four subsets AS1, AS2, AS3, and “overall”, using MSR Daily Activity 3D dataset, with accuracies of 68.33%, 81.67%,
86.00%, and 68.75%, respectively.

TABLE VIII
COMPARISON BETWEEN THE PROPOSED METHOD AND THE STATE-OF-THE-ART

METHODS, IN TERMS OF ACCURACY, USING MSR DAILY ACTIVITY 3-D
DATASET UNDER “OVERALL” SETTING

Proposed algorithm ranks third among the eight algorithms, with accuracy of
68.75%.

The performance of the proposed method with MSR Daily
Activity dataset (68.75% accuracy) is worse than that with MSR
Action3D dataset (86.81% accuracy), possibly because some
activities, such as “sitting on sofa” or “standing close to sofa,”
produce highly erroneous and noisy joint positions with MSR
Daily Activity 3D dataset [28]. Furthermore, the average number
of frames per video in that dataset is also small (60 frames per

video), which may not provide enough information that can
enable distinguishing between similar activities.

It can be seen that the performance of the proposed algorithm
drops progressively, across the three datasets, in the following
order: CAD-60 (accuracy 94.12%), MSR Action 3D (accuracy
86.81%), and MSR Daily Activity 3D (accuracy 68.75%). This
is because these datasets have different properties, such as the
length of the video, the number of activity classes and the quality
of body joints. The quality of body joints in MSR Daily Activity
3D is particularly very poor or even erroneous [28].

F. Performance Comparison Across the Three Datasets

To the best of the authors’ knowledge, there is no work, other
than the one in [28], that reports on recognition performance
across all the three datasets: CAD-60, MSR Action 3D, and
MSR Daily Activity 3D. The recognition performance of the
“actionlet ensemble” method [28] and that of the method pro-
posed here, across these three datasets, are presented in Table IX.
From this Table, it can be seen that, when these algorithms are
used with CAD-60 dataset, the proposed algorithm, giving ac-
curacy of 94.12%, performs much better (close to 20%) than
the “actionlet ensemble” method [28], which gives accuracy of
74.70%. With MSR Action 3D dataset, “actionlet ensemble”
method performs a little better (less than 1.4%) giving accuracy
of 88.20%, compared to 86.81% accuracy given by the pro-
posed method. On the other hand, with MSR Daily Activity 3D
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TABLE IX
PERFORMANCE COMPARISON OF THE PROPOSED METHOD, IN TERMS OF

ACCURACY (%), ACROSS THE THREE DATABASES, USING ACTIONLET

ENSEMBLE METHOD [28]: “NEW PERSON” SETTING IN CAD-60; “OVERALL”
SETTING IN BOTH MSR ACTION 3D AND MSR DAILY ACTIVITY 3D DATASETS;
“JOINT” MEANS THAT ONLY JOINT INFORMATION WAS USED; “JOINT+DEPTH”

MEANS THAT BOTH JOINT AND DEPTH INFORMATION WAS USED

dataset, the proposed algorithm gives slightly higher (less than
0.8%) accuracy (68.75%) than the “actionlet ensemble” method
(68%). To sum up, both “actionlet ensemble” method [28] and
the proposed algorithm give comparable accuracies with MSR
Action 3D and MSR Daily Activity 3D datasets. Once again,
it is observed that the performance of both of these methods
deteriorates when they are used with MSR Daily Activity 3D
dataset, because of the poor quality of body joints in that dataset.

V. DISCUSSION

The experimental results presented in Section IV show that
the proposed method is simple and can perform very well across
three public datasets; it even outperforms some RGBD + Joint
based methods. The results also show that the quality of data has
significant influence on the performance of the proposed algo-
rithm. The performance of the algorithm is best with CAD-60
dataset, but poor with MSR Daily Activity 3D dataset, because
of highly noisy or erroneous joints in the latter dataset. The per-
formance of the proposed algorithm can be further improved by
simply extending it to other forms of data, such as RGBD im-
ages. Once it is extended, the proposed algorithm will be tested
with other popular public datasets, such as ACT 42 Dataset [47],
and compared with the trajectory-based method [48].

The proposed sparse coding-based feature learning method,
which is simple and uses only joint information, is superior
or comparable to the state-of-the-art methods that use joint or
nonjoint information (RGBD) or both. The algorithm proposed
here does not use any RGBD information, although it can be
used to improve the performance of the proposed method.

VI. CONCLUSION

In this paper, the authors propose a new sparse coding and dic-
tionary learning-based human activity recognition method, us-
ing only joint information. In this method, complex features with
spatio-temporal geometric configurations of body joints from
atomic subactivities are automatically learned. The proposed
method achieves real time performance with PCA dimension
reduction because of sparse coding in lower dimensional space.

The performance of the proposed algorithm is evaluated elab-
orately, using three datasets. The experimental results show that
the proposed algorithm can achieve good performance with
those datasets and it even outperforms some RGBD-based meth-
ods. The performance of the proposed method can be further

improved by including other forms of data into its framework.
Also source codes are provided here for reproducible research
work and for encouraging other researchers to further improve
the proposed method.
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