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Effects of Image Presentation Highlighting and Accuracy on Target
Category Learning

David T. Slayback , Benjamin T. Files , Brent J. Lance, and Justin Ryan Brooks

Abstract—This study alters various exemplar presentation parameters
to determine their effects on human online category learning for a future
system that combines humans and computer vision (CV). Online category
learning is necessary in this system because we envision that humans will
need to provide input to assist CV modules in determining category la-
bels without reducing throughput and without necessarily having expert
knowledge of each category. In our study, subjects participated in a Rapid
Serial Visual Presentation paradigm in which they were asked to determine
the target category from highlighted exemplar images interspersed among
distractor images. In Experiment 1, the highlighting method was varied
among four options and a negative (no-label) and positive (explicit, text-
based) control. In Experiment 2, label accuracy was altered by incorrectly
labeling some distractor and exemplar images. In both experiments, there
were three levels of difficulty that varied the similarity between distractor
and exemplar images. The results show that most highlighting methods
resulted in equivalent accuracy to the positive control, but certain modali-
ties were more effective at varying difficulty levels. In addition, the subject
accuracy was sensitive to distractors highlighted as targets, but not to non-
highlighted exemplars. Our results indicate that human online category
learning can be optimized for human–system interaction.

Index Terms—Attentional processes, human–automation interaction,
human–systems integration, information processing.

I. INTRODUCTION

Combining human and autonomous agents to leverage the advan-
tages of each has been a focus of many recent studies. Human–
autonomy teams already outperform either human or autonomy alone
in several applications, including predictions in complex environments
[1], playing strategy games [2], and planning and teleoperation [3],
[4]. The present study seeks to facilitate the human’s contribution in a
paradigm that combines humans with computer vision (CV) for image
classification by optimizing the way in which the image category of
interest is communicated to the human. If the human can quickly learn
the new category from a small number of labeled images, then the hu-
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man could transfer that understanding by rapidly labeling more images
for training the CV system.

Image classification is ripe for a combined approach because the lim-
itations of humans and computers in this area are numerous and well
documented [5], [6]. Recent research shows humans were better than
CV algorithms at classifying images with small objects, color, and
contrast-distorting filters, abstract representations, and strange view-
points, whereas CV more accurately classified fine-grained distinc-
tions (such as between species) and less common labels [7]. Using the
ImageNet database, the best CV algorithm had an error rate of 6.8%,
while a trained annotator had an error rate of 5.1% [7], [8]. A combi-
nation of human and computer, however, could ameliorate the issues
of fatigue and training time for humans, while allowing their input to
correct for more heavily obscured images.

Humans and computers have been teamed for image classification
before, such as in object detection and classification [8]. Generally,
these studies have explicitly provided a known target of interest and
required the participants to label presented images via various manual
and automatic mechanisms. The labels derived from the human are then
combined with labels from CV to generate a system-level combined
label for a given image. Within the constraints of known, communi-
cable target categories, this paper has shown significant progress. For
example, in [9], labels generated by human and CV agents were fused,
resulting in a 5% increase in labeling precision even over a fusion
of several CV algorithms. In [10], an ensemble of humans and CVs
performed 1.6 times better than a purely automated ensemble. Human
EEG output collected during rapid serial visual presentation (RSVP)
tasks has been successfully used to guide satellite image classification
[11], [12], and some CV algorithms, such as active learning, explic-
itly require human input to achieve their performance [13]. Even pure
CV-based algorithms have combined humans and autonomy to create
labeled datasets more efficiently, resulting in equally accurately la-
beled data with 40 times the number of images as could be obtained
with manual labeling [14].

Despite these successes, much of the research on human-in-the-
loop systems has focused on adapting vision algorithms to unreliable
human inputs rather than optimizing those inputs [15], [16]. Crucially,
these studies presume that explicitly communicating a target label (e.g.,
“fish”) is both an optimal and viable strategy for teaching the human
the image category of interest. This is category identification and works
well in general domains that humans can be expected to know. This
presumption will almost certainly fail, however, if the target category
of interest is unknown to the participant. For example, a participant
with no background knowledge of dog breeds is unlikely to accurately
label images of Pomeranians among images of other dog breeds.

This strategy necessarily limits potential participants in such a sys-
tem to experts and limits the selection of targets to those with explicit
labels. An alternative approach is to add an additional step before iden-
tification, category learning, wherein the human learns through some
method to recognize the target category. Previous research has been
done to incorporate nonexperts using a questioning procedure for cat-
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Fig. 1. Illustration of a real-time hybrid CV system.

egory learning, but for a real-time high-throughput hybrid system, this
is too slow [17], [18].

Furthermore, relying on explicit category labeling requires an inter-
ruption to communicate those new instructions. In fact, many previous
approaches to human-in-the-loop classification involve significant in-
terruptions that incur additional time to process and result in reduced
efficiency. Some approaches, mentioned earlier, use a guided ques-
tioning procedure [17], [18]. Others separate human and CV inputs
into sequential pipelines, either using CV to highlight potential points
of interest for later human labeling [19] or iterating subsets between
humans and CVs to prime each for labeling [15]. Alternatively, we pro-
pose that target category learning and identification could be integrated
within the presentation modality itself to prevent such disruptions of
the system. To this end, we introduce a novel methodology to teach
participants a category of target images, which is the focus of our
experiments.

Our proposed RSVP-based system should accurately label images
with a known target category, but also adapt to new target categories
in near real time. In this system, each human is seated in front of a
computer that displays a series of images in rapid succession, allowing
the human to give faster input and thus allowing for improved efficiency
over previous human–CV hybrid systems [20]. This is a similar concept
to the cortically coupled computing seen in [21]. During the stream,
the human labels the images both behaviorally (via button press) and
via near-real-time neural classification of EEG time series data. CV
modules simultaneously label the images, and the ultimate output of
the system is a combined label for each image. The system adapts
to new target categories by presenting exemplar images to both the
CV modules and the human. It does not provide the target category
to the human explicitly. There are several reasons for this. First, it
allows for rapid adaptation of the overall system to new information
without having to take the system offline (i.e., the time it takes to read a
description of the target). Second, it allows nonexpert humans to learn
what constitutes a target category while using the system; pictures
are likely to convey more of the new category features than words
[22] and permit nonexperts to utilize the system. To produce these
pictures, an external-domain expert chooses new target categories (such
as improvised explosive device), labels a small set of exemplars, and
provides these to both the CVs and humans in the system. This small
set of data is not enough for the CV modules to confidently label new
images, so the humans determine whether images below a confidence
threshold belong to the new category or not, thus providing additional
training data to the CVs and decreasing their reliance on human input
over time without needing expert input beyond the original exemplars
(see Fig. 1).

In relation to the category learning component, there are a few mod-
els of category learning that consider different mechanisms by which

the human learns. For example, the generalized context model (GCM)
is an exemplar-based model positing that humans determine an im-
age’s category by examining its similarity to example images of that
category (exemplars) from memory [23]. This contrasts with the pro-
totype model in which humans draw similarity to some abstract sum-
mary representation of the category instead [23]. In both cases, each
new image is considered as a point on some multidimensional feature
space.

A similar category learning model, COmpetition between verbal and
implicit systems [24] posits that humans learn categories implicitly or
explicitly. In implicit learning, humans learn the target category by
unconsciously recognizing similarities among the many exemplars they
have encountered [24]. An example of this type of learning is discussed
in [25], where dot patterns are presented to individuals, without explicit
category knowledge, who are then asked to categorize subsequent dot
patterns in a test sequence. By contrast, explicit learning is determined
by conscious formation of hypothesized rules to define the category that
can be verbalized or objectively measured [24]. An example would be
highlighting images that are “dogs” and not those that are “cats,” overtly
defining categories of interest whose membership can be tested with
hypotheses and explicit rules [26].

In this paper, the methodology we consider alters the common RSVP
paradigm to create a real-time hybrid labeling system in which humans
would be required to learn categories of real-world images “on the
fly” so as to maintain high throughput and near real-time analysis,
similar to previously proposed systems [12]. The value of this learning
could be demonstrated in the detection of improvised explosive devices
(IEDs) in images gathered from local camera feeds. Specific features of
IEDs are ambiguous and difficult to express, and the pool of available
experts familiar with them is small. CV agents would require a large
amount of training data to correctly classify images of IEDs, but as
we will demonstrate in this paper, nonexpert human labelers can learn
the target category from as few as seven exemplars. Thus, instead of
requiring extended offline training during a period of potentially critical
risk, this system’s few experts can quickly label enough images for a
larger pool of nonexpert humans to learn the category and act as both
a real-time labeler and force multiplier for training the CVs in real
time. To investigate this paradigm, we modify the RSVP stream to
present exemplar images or explicit definitions of the target category to
induce category learning. Subjects are able to form hypotheses based on
exemplars and test them against other exemplars and distractors, as they
would in the full system. In this regard, our work more closely aligns
with category learning models that utilize exemplar based, explicit
learning.

Building upon our previous work, we performed two experiments
in this study. The first examined different target indicator modalities
(TIMs) with which the system might present images to human labelers
to learn the target category [27]. TIMs are modifications to the exemplar
images that contain the target of interest and are displayed to the human
instead of explicitly communicating the target category. One method
seen often in the previous literature is to provide bounding boxes to
highlight relevant portions of the images [19]. Indeed, the dataset we
used provided such annotations for a large subset. However, given that
such a modality would incur significant additional cost to the domain
expert in real-world systems, we compared simpler modalities (e.g.,
adding a border to an image) with more costly choices (e.g., bounding
boxes and pauses). We also consider whether distinctiveness between
categories (as a surrogate for difficulty) interacts with TIM to affect
categorization accuracy. In the second experiment, we consider the case
where exemplar images are mislabeled (e.g., target category is cats but
images with dogs are labeled) as may happen in a real-world system.
We use the TIM that performed best in a pilot experiment performed
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with the Experiment 1 paradigm, vary the accuracy of exemplar and
distractor labels, and examine the participant’s accuracy.

In both experiments, we collected additional variables that can be
used to further refine human categorization accuracy. We determine
whether subjective perceptions of difficulty and response time (RT)
correlate with performance measures. RT in particular may be a poten-
tial indicator to the CV as to the reliability of the human agent [28].
We investigated subjective measures because they may be a valuable
indicator in this domain, and it is important to understand how they cor-
respond to the actual performance. Past research on subjective measures
has shown varying levels of correlation to performance, demonstrating
unreliability in subjects’ introspection that must be addressed if such
measures are to be used in a hybrid system [29]. Finally, since we
expect the end system to have to deal with the real-world noisy image
data, we use ImageNet to provide heterogeneous images of varying
display sizes, resolutions, and target saliency [30].

Results of the first experiment show most of the TIMs result in perfor-
mance increases above baseline that are similar to those in the positive
control. Results from the second experiment show performance de-
creases with increasing image similarity and higher levels of exemplar
inaccuracy, but distractor inaccuracy has no significant effect, suggest-
ing future systems should focus on accurately labeling exemplars. In
addition, we see a significant correlation between accuracy and the
subjective measures and RT, potentially providing another input with
which the system can predict human performance. These results have
implications for the design of future systems that are focused on com-
bining humans and computer systems for accurate image labeling.

II. METHODS AND MATERIALS

A. Participants

Total 13 subjects (one female) with ages ranging from 27 to 49 served
as participants. The voluntary informed consent of the participants was
obtained in accordance with U.S. Department of Defense human-use
regulations observed by the Army Research Laboratory’s Institutional
Review Board (i.e., 32 CFR 219 and DoDI 3216.02).

B. System

Participants were seated at a desk with a standard desktop computer
and keyboard in a sound-attenuated chamber. Stimuli were displayed
in the center of a 23-inch monitor with 1080p resolution. The task
was generated using Psychtoolbox, a commonly used MATLAB tool-
box [31] for precision-timed psychophysics experiments [32]. Stimulus
timing was verified using a photodiode. The images used for stimuli
were drawn from ImageNet [30]. Only images that had a bounding box
provided by ImageNet were used. All images with less than 200 pixels
in either dimension were scaled evenly such that their smallest dimen-
sion was 200 pixels, and all images larger than 1080p were scaled to¾
of their original size.

C. Task

1) Overall Design: Our task focused on the dynamics of target
category learning and identification in an RSVP-based image labeling
paradigm (see Fig. 2).

The task was divided into two experiments: The first examined the
effects of different TIMs, while the second manipulated the accuracy of
exemplar labeling to test the effect of labeling on the category learning.
Each experiment was further subdivided into blocks, one for each
unique combination of variables, each with a unique target category.

Fig. 2. Typical RSVP paradigm. D are distractors, E are exemplars of the
target category.

Fig. 3. Layout of an experimental block.

Blocks were randomly assigned and sequenced for each participant in
both experiments to mitigate any effect of blocks.

2) Block Design: Each block consisted of a training session and
a testing session (see Fig. 3). Our primary experimental manipulations
occurred in the training session, while the testing session, a category
identification task, determined how effective these manipulations were
to induce category learning. During the training session, participants
saw a number of exemplar images from a target category interleaved
with distractor images that were not members of the category. Within
each training session the participant was presented an RSVP stream at 3
Hz. Each stream consisted of seven exemplar images interspersed with
distractor images (see Fig. 3). Between exemplar images, there were 9
to 12 distractor images displayed. The specific number of distractors
displayed between each exemplar was varied so subjects could not
predict when exemplars would appear. Because each training session
began and ended with distractor images, there were total eight sets of
distractors used in each training session. Images containing the target
category were distinguished from distractors via the TIM. In the testing
session, subjects were serially presented ten images (self-paced) and
asked to press the letter “q” for images from the target category and “p”
for nontarget images. Each testing session contained five target images
and five nontarget images in random order (see Fig. 3). In addition, after
the testing session, subjects were asked to answer three survey questions
pertaining to the perceived difficulty of the block: How difficult was the
last block (1 to 10)? How confident were you in what the target category
was (1 to 10)? How well could you distinguish the target category from
the other categories (1 to 10)? Respectively, they will be referred to
as subjective difficulty (SDiff ), subjective distinctiveness (SDist ), and
subjective confidence (SConf ).

3) Experiment 1: In the first experiment, the presentation of im-
ages in the training session was manipulated according to 2 variables:



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 48, NO. 4, AUGUST 2018 403

Fig. 4. BI, BT, and CO modalities, left to right in top row. Implicit and EB
conditions in bottom row, left to right.

TIM and image similarity. There were six forms of TIM and three lev-
els of similarity, for a total of 18 blocks. Exemplar images containing
the target category were modified before being displayed to the screen.
The first five TIMs used were as follows:

1) bordered image (BI), where the image containing the target cat-
egory was bordered with an orange (255, 102, 0 RGB) surround
(see Fig. 4, left);

2) bordered target (BT), where the actual target within the image
was surrounded with an orange border (see Fig. 4, center);

3) cutout (CO), where the image was cropped tightly around the
target and centered (see Fig. 4, right);

4) paused, where the image was unchanged, but displayed for twice
the duration of other images; and

5) implicit baseline (IB), where there were no distinguishing char-
acteristics.
The sixth TIM was the explicit baseline (EB) condition: Instead
of being presented with an RSVP stream to learn the target
categories, subjects were told explicitly (via text displayed on
the screen) which image category they would look for and then
given the same test as in other blocks. The IB served as a negative
control to ensure there was no structure in our experiment that
may induce identification of a particular category, and the explicit
condition served as a positive control to compare the current
standard practice.

Image categories for the three levels—Easy, Medium, and Hard—of
similarity were selected by a combination of depth within the ImageNet
hierarchy of their common parent categories and manual selection such
that subjective difficulty was the same within each level. This was nec-
essary because the available ImageNet hierarchy has redundant links
and is not completely connected. Different categories within the Ima-
geNet hierarchy could be reached at multiple levels, meaning that for
a purely depth-based selection, most categories were ambiguous. Sim-
ilarity, in particular, refers to the difficulty of distinguishing the target
category from the other categories. Fig. 5 shows representative exem-
plar and distractor images. At the low similarity level, target categories
were chosen that were completely unrelated to distractor categories
in the hierarchy. The Easy similarity level featured nine distinct cat-
egories, three of which were “maple,” “trucks,” and “domestic cats”
(e.g., Fig. 5, first row, target category is “maple”). The Medium sim-
ilarity level featured types of nuts, wheels (e.g., Fig. 5, second row,
target category is “car wheel”), and sports balls. The highest similarity
category contained species of spiders, snakes (e.g., Fig. 5, third row,
target category is “hognose snake”), and old world primates. Exem-
plar images for a given block were sampled from images within that
level of similarity (e.g., vertebrate: mammals) while distractors were
selected from parallel nodes (e.g., vertebrate: amphibians, reptiles, and
birds).

Fig. 5. Examples of task with different levels of similarity. Exemplar images
are highlighted in orange. Actual number of distractor image varies between
blocks.

4) Experiment 2: In the second experiment, the presentation was
manipulated according to three variables: exemplar label accuracy (per-
centage of labeled images that actually belonged to the target category),
distractor label accuracy (percentage of nonlabeled images that actu-
ally did not belong to the target category), and image similarity. When
exemplar label accuracy was not 100%, some of the images in the
RSVP stream that were labeled as exemplars with a TIM were not
actually members of the target category. When the distractor accu-
racy was not 100%, some of the images not labeled with a TIM were
actually members of the target category. There were three levels of ex-
emplar and distractor accuracy: 50%, 75%, and 100% accuracy. Image
similarity retained the same three levels from Experiment 1, result-
ing in 27 total blocks for each participant. All blocks used the BT
modality from the previous experiment, which had shown the best
(though not statistically significant) results in pilot testing of the first
experiment.

D. Dependent Measures and Statistical Analysis

The primary dependent variable measured was accuracy. Accuracy
was determined as the number of hits plus correct rejections divided by
the number of trials. RT was determined for each trial as the difference
in time between presentation of the image and the button response.
Subjective measures were gathered at the end of each block by hav-
ing the participant click on a bar displayed on the screen. Depending
on where they clicked, their response was scored on a continuous
scale of 1–10. A generalized, linear mixed-effect modeling approach
was used for both experiments. In each model a logistic regression
was used to relate accuracy to the experimental manipulations, the
responses to the subjective questions, RT, and all pairwise interac-
tions between these variables. In the first experiment, accuracy was re-
lated to TIM, RT, target similarity, SDiff , SDist , SConf , and all pairwise
interactions

Accuracy ∼ 1 + similarity∗TIM∗SDiff
∗SDist

∗

SConf
∗RT + (1|subject) . (1)

In the second experiment, the same procedure was imple-
mented; however, the predictor variables were target similarity,
SDiff , SDist , SConf , distractor accuracy, exemplar accuracy, and all
pairwise interactions

Accuracy ∼ 1 + similarity∗ExemplarAcc∗DistAcc∗

SDiff
∗SDist

∗SConf
∗RT + (1|subject) . (2)

An iterative, backward model selection procedure was performed
wherein terms in the model were sorted by p-value. The term with the
largest p-value above 0.05 was then eliminated from the model. The
model was refit without this term until all terms in the final model were
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Fig. 6. Summary of Experiment 1’s results with 95% confidence intervals
(CIs). All CIs calculated using corrected Cousineau method [34]. Different
colors are different subjects. TIMs are BI, BT, CO, Imp, and Exp. E, M, and H
are easy, medium, and hard difficulties, respectively.

significant (i.e., < 0.05) [33]. For ease of interpretation, odds ratios
(ORs) were calculated separately for the significant continuous and
categorical predictors from the models using the formula in (3). In the
continuous case, OR refers to a change in the odds of accuracy relative
to a unit increase of the variable being studied. In the categorical case,
OR refers to a relative increase in the odds of an accurate response
from a baseline condition

OR = eco effi cient . (3)

III. RESULTS

A. Experiment 1

1) General Results: The average accuracy across all subjects and
experimental conditions was (mean ± std) 0.73 ± 0.24 with an average
RT of 1.26 s ± 0.73 s. As is shown in Fig. 6 there is a wide range of ac-
curacies related to the TIM and the difficulty. The average responses to
surveys were SDiff = 6.03 ± 3.24 (5.13 Easy difficulty, 5.11 Medium,
and 7.86 Hard); SDist = 5.26 ± 3.47 (6.13 Easy, 6.02 Medium, and
3.63 Hard); and SConf = 5.39 ± 3.17 (6.45 Easy, 6.45 Medium, and
3.28 Hard).

2) Modeling: As stated in Section II, a generalized logistic re-
gression was performed that related accuracy of target categorization
to the experimental manipulations (TIM and Difficulty) and the re-
sponses of the participant (RT, SDiff , SDist , and SConf ) and all pairwise
interactions. After the backward selection procedure, the most parsi-
monious model contained just the TIM term; an analysis of variance
(ANOVA) performed on the model yielded F (5, 228) = 58.94, p =<
0.0001, and η2 = 0.356. Fig. 7 shows the OR for each of the TIMs
relative to the implicit condition. Each increase of 1 in OR corresponds
to a 100% increase in odds of an accurate response as compared to
overall subject accuracy.

For reference, the accuracy with implicit TIM was equal to near
chance 0.53 ± 0.14. The BT, Pause, Explicit (Exp), and BI modali-
ties all show significant improvement over the Implicit (Imp) and CO
conditions. BT, Exp, BI, and Pause are not significantly different from
each other as indicated by overlapping 95% confidence intervals.

The coefficients and associated statistics for the full model are avail-
able as supplementary information (S1).

Fig. 7. OR from the reduced model. BI = 3.17, BT = 5.46, CO = 0.92,
pause = 4.58, Imp = 1.17, and Exp = 5.59. The y-axis is the multiplicative
improvement over chance. Red line represents baseline accuracy. Error bars
represent 95% CIs.

Fig. 8. Summary of Experiment 2 results with 95% CIs for easy, medium,
and hard difficulties.

B. Experiment 2

1) General Results: The average accuracy across all subjects and
experimental conditions was 0.77 ± 0.21 with an average RT of 1.01 s
± 0.38 s. In Fig. 8, we show the data for all participants and demonstrate
the range of behavior elicited by the target and distractor accuracy con-
ditions for varying levels of category difficulty. The average responses
to surveys were SDiff = 6.72 ± 2.63 (6.15 Easy, 5.89 Medium, and
8.12 Hard); SDist = 4.83 ± 2.85 (5.58 Easy, 5.56 Medium, and 3.37
Hard); SConf = 5.03 ± 2.77 (5.99 Easy, 6.20 Medium, and 2.89 Hard).

2) Modeling: A generalized logistic regression was performed
that related accuracy of target categorization to the experimental ma-
nipulations (Exemplar Accuracy, Distractor Accuracy, and Difficulty)
and the responses of the participant (RT, SDiff , SDist , and SConf ) and
all pairwise interactions.

After the model selection procedure, the final terms were Diffi-
culty, Exemplar Accuracy, RT, SDiff , SDist , Difficulty: SDiff , and RT:
SDiff . Since this model contained a mixture of categorical predictors
(Difficulty) and continuous predictors (Exemplar Accuracy, Distractor
Accuracy, RT, SDiff , SDist , and SConf ) the actual coefficient values
are plotted separately for ease of explanation. Reporting for variables
is done as ORs. In Fig. 9, the ORs from the reduced model are plot-
ted for the categorical values. The ANOVA for the reduced model for
Difficulty showed F (2, 341) = 29.267, p < 0.001 and for Difficulty:
SDiff F(2, 341) = 10.77, p < 0.001. Medium difficulty images were
not significantly different from Easy; however, Hard images were as-
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Fig. 9. Categorical OR relative to easy condition for Experiment 2 and inter-
action terms with 95% CIs. OR, respectively: 1.20, 0.50, 0.82, and 1.55. An OR
of 1 is baseline odds of an accurate response. Red line corresponds to baseline
accuracy. Nonsignificant results are shown in supplemental material.

Fig. 10. Continuous OR for Experiment 2 and interaction terms with 95%
CIs. OR, respectively: 1.12, 0.83, 0.67, 1.71, and 1.19. Red line corresponds to
equivalent accuracy. Nonsignificant results are shown in supplemental material.

sociated with a nearly 50% reduction in performance accuracy across
all other conditions. The interaction between Medium difficulty and
the SDiff was not significantly different from the interaction between
Easy difficulty and SDiff . However, interestingly, the interaction be-
tween Hard difficulty level and SDiff showed a positive improvement
over Easy: SDiff as being associated with a near 50% increase in per-
formance accuracy.

The significant, continuous predictors (Exemplar Accuracy, RT,
SDiff , SDist , and RT: SDiff ) are plotted in Fig. 10. The ANOVA
for the reduced model for exemplar accuracy showed F (1, 341) =
7.66, p = 0.006; RT F (1, 341) = 11.48, p = 0.0008; SDiff F (1, 341)
= 9.06, p = 0.003; SDist F (1, 341) = 32.01, p < 0.001; and RT :
SDiff F (1, 341) = 9.04, p = 0.003. Exemplar accuracy, subjective
distinctiveness, and the interaction between RT and subjective diffi-
culty were associated with an increased likelihood of accurate catego-
rization. RT and subjective difficulty were both related to a decreased
probability of accurate categorization.

IV. DISCUSSION

This study was motivated by the concept of a real-time human–CV
hybrid system for image labeling. The idea of a hybrid vision system
for tasks that cannot be performed by CV alone is not new. Tohme is a
system that combines CV and crowd-sourced human input to identify
pedestrian ramps at road intersections [19], and other systems have
used communication between CVs and humans to distinguish fine-
grained or semantic categories [17], [18], [35]. An important limitation

of these methods is that they cannot be adapted to new targets in real
time because their human-input paradigms are fundamentally detached
from the actual labeling task or separated into batch pipelines. Our
goal is to incorporate these human inputs on the same timescale as CV
labeling by leveraging an RSVP paradigm. Critically, we also want our
system to maintain the ability to make semantic distinctions and to use
primarily nonexpert input. To this end, we needed to refine methods
by which the system could teach its human agents new categories such
that they could later identify them.

In the first experiment, we examined which TIM produced the best
results while controlling for the difficulty of the categorization as well as
which subjective measures might also predict performance. Following
the GCM framework for human categorization, the purpose of our TIMs
was essentially to increase the resolution of the various features the
subject would use to compare new images to stored exemplars. Given
that our task likely provided too few examples for implicit learning,
subjects would develop explicit rules of comparison based on those
features [24]. From previous research on visual image processing, it
seemed likely that different modalities might increase the salience of
relevant features within those exemplars, improving recall of those
features in exemplar-based classification and, thus, leading to superior
performance for particular TIMs [36], [37].

The two TIMs with borders (BI and BT) both demonstrated high
accuracy but no significant differences from each other. The lack of
differences between the two border conditions is unsurprising, as visual
search literature has shown that subjects often do not take full advantage
of selective highlighting methods such as BT despite the potential
advantages [38]. This suggests that future systems may be able to
do away with the data requirements the BT condition imposes. The
lack of difference between these modalities and the EB, however, is
potentially a key insight for our proposed system. Explicitly telling a
participant what the target category is can be effectively approximated
in our experiment by simply displaying labeled images containing the
target category. The lack of correlation of accuracy with difficulty is
counter-intuitive, as the GCM model would suggest that more similar
nontarget images would be more difficult to distinguish [23]. We think
this is primarily due to the large effect the TIMs had above the implicit
and CO baselines.

Both the CO and the implicit TIMs were associated with near-chance
probabilities of accuracy, demonstrating the substantial improvement
observed with the other modalities was much larger than the effect of
the other predictors in this experiment. The lack of difference between
performance with CO and the IB could be due to the elimination of
contextual information in the removed portions of the images, which
has been shown to be vital to guiding attention to areas or images of
interest [39], [40]. Given that the task images were of various sizes, as
were the bounding boxes, it is also possible that cropping the images did
not make exemplar images sufficiently distinct from distractor images.

In the second experiment, we examined how modulating the ex-
emplar and distractor accuracy affected performance across different
levels of difficulty. The results showed that participants tended to focus
more on learning the target category rather than learning what was not
a member. Our initial hypothesis, based on an explicit learning model,
had been that mixing exemplar images with distractors would make it
more difficult for humans to learn a consistent set of rules to identify the
target [24]. Based on these results, it is acceptable to let some degree
of target images (up to 50%) be mislabeled as distractors; however, it
is not advisable to present nontarget images labeled as exemplars.

The significant effect of the Hard difficulty condition on accuracy
indicates changes to TIM may have overshadowed it in Experiment 1.
Previous research on image similarity among stimuli corroborates
this effect [41], [42], and it fit with GCM classification as discussed
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previously [23]. This supports the effectiveness of our creation of a
difficulty hierarchy from the ImageNet structure that may be of benefit
for other experiments. The lack of significant difference between Easy
and Medium conditions, though, suggests future refinement and testing
is necessary.

RT and the rating of block difficulty were both negatively related
to performance. Prior research on psychomotor vigilance tasks has
correlated RTs with confused or inhibited information processing [43].
However, it did appear that participants subjectively determined their
accuracy with respect to block difficulty and in evaluation of their
confidence.

In contrast, when participants rated a difficult block as difficult,
there was an increased probability of being accurate. This indicates that
participants who rated those blocks as easier may have been confident
but learned the wrong target category or used an incorrect abstract
distinction, and thus had worse performance. However, these results
may also be related to a previously observed effect wherein participants
perform better than their expectation [44].

V. CONCLUSION

These findings, though preliminary, have direct bearing on how in-
formation is presented to humans in a combined human–CV image-
labeling system. We acknowledge our sample size is small and there-
fore requires replication to validate. We further suggest future research
should likely focus on the effects of confidence and subjective task dif-
ficulty on learning, especially how those factors relate to more difficult
tasks such as categorizing semantically categorized image databases
(e.g., Places2 [45]).

In addition to the use for IED detection mentioned earlier, we en-
vision this research work expanding crowdsourcing applications for
real-time data, such as security and traffic camera monitoring, aerial
image classification, and collaborative mapping with robots. Many of
these applications are task-specific and/or require a certain level of
expertise from their labelers; our research might allow these systems
to leverage nonexpert labelers and adapt to changes in task demands.
For this research work, it will also be vital to determine how to detect
and reject misclassifications from these nonexpert labelers, studying
how both rate and cause may change during operation, and identifying
methods by which the system might adapt. This could include eliciting
further feedback from domain experts in an iterative process.

It is important to be cognizant of how information is presented to the
human in the future and how confident humans feel in their judgments
with that information—not just which particular CV algorithm to use
or what percentage of human labels to discount. The human factors in
learning and categorization must be treated with the same importance
as the CV parameters in training and processing. In the same way
that an active-learning algorithm carefully chooses data points that
will provide the most information when relabeled, we must carefully
consider our inputs to the human side to enhance their understandability
and, thus, maximize information they can provide.
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