IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 48, NO. 3, JUNE 2018

229

A Symbiotic Human—Machine Learning Approach
for Production Ramp-up

Stefanos Doltsinis

Abstract—Constantly shorter product lifecycles and the high
number of product variants necessitate frequent production sys-
tem reconfigurations and changeovers. Shortening ramp-up and
changeover times is essential to achieve the agility required to
respond to these challenges. This work investigates a symbiotic
human-machine environment, which combines a formal frame-
work for capturing structured ramp-up experiences from expert
production engineers with a reinforcement learning method to for-
mulate effective ramp-up policies. Such learned policies have been
shown to reduce unnecessary iterations in human decision-making
processes by suggesting the most appropriate actions for different
ramp-up states. One of the key challenges for machine learning-
based methods, particularly for episodic problems with complex
state-spaces, such as ramp-up, is the exploration strategy that can
maximize the information gain while minimizing the number of ex-
ploration steps required to find good policies. This paper proposes
an exploration strategy for reinforcement learning, guided by a hu-
man expert. The proposed approach combines human intelligence
with machine’s capability for processing data quickly, accurately,
and reliably. The efficiency of the proposed human exploration
guided machine learning strategy is assessed by comparing it with
three machine-based exploration strategies. To test and compare
the four strategies, a ramp-up emulator was built, based on system
experimentation and user experience. The results of the experi-
ments show that human-guided exploration can achieve close to
optimal behavior, with far less data than what is needed for tradi-
tional machine-based strategies.

Index Terms—Decision support, machine learning, ramp-up,
symbiotic human-machine systems.

1. INTRODUCTION

AMP-UP is the manufacturing phase during which a pro-
duction system is brought up to its required operational
performance, after its initial build or subsequent changes [1].
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The long time required by this phase and its unpredictable
nature are well-known issues in industry and academia [2]. Sev-
eral studies have investigated these issues and highlighted the
adverse effect of ramp-up on the overall economic viability of a
production system [3]. Prolonged ramp-up has significant effect
on companies’ abilities to invest in more complex manufactur-
ing systems, to respond to new market opportunities, and to
readily react to changes. Although the criticality of ramp-up
is widely recognized, no clear solution could be found so far
to resolve it, consequent to which it continues to be a major
bottleneck for new system introductions and changeovers.

During ramp-up, the technical operators apply actions to im-
prove the system’s performance. They often follow a trial and
error approach that gives them the experience and understanding
of the system’s behavior [4]. However, the operators’ experience
is not well utilized and often gets lost between different systems
and operators. This is caused mostly by inefficient communica-
tion and staff turnover [5]. Additionally, ramp-up sessions are
often repeated across production lines with similar characteris-
tics and the lack of transferable experience results in multiple
repetitions of the ramp-up. Those issues are well highlighted
in the literature, with stress on the need for a more effective
approach to capture and share experience amongst the humans
involved in the process [6]. Several studies have indicated that
extracting ramp-up knowledge is a potential solution to cap-
ture human experience [4], [7]. This requires a formal ramp-up
model and a learning mechanism, which can work across dif-
ferent ramp-up cases.

The need for human—machine collaboration during assembly
and for efficient communicating interfaces has been demon-
strated in the literature [8]. Hence, in their previous work, the
authors have developed a formal framework for the capture and
analysis of ramp-up processes [9]. The framework combines in-
terfaces that capture human observations along with automatic
recording of information on machine status, besides formally
representing the ramp-up state of a machine. This combination
allows for extraction and reasoning of the cause-and-effect rela-
tionships between actions and their impacts. Machine learning
algorithms have been shown to be capable of extracting more ef-
fective decision-making policies from several recorded ramp-up
episodes [10].

Humans are very good at reasoning under conditions of un-
certainty and incomplete data, while machines are good in stor-
ing, retrieving, and processing data, quickly and in a repeatable
manner. Hence, it is suggested that creating a symbiotic envi-
ronment which builds on their respective capabilities will be
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mutually beneficial as suggested in [11]. Therefore, to generate
better ramp-up strategies, human capabilities for understanding
and exploring new solutions need to be combined with machine
capabilities for faster processing and systematic pattern recog-
nition.

This work combines human and machine capabilities and
focuses on investigating the learning efficiency, with limited
data, by proposing a human expert guided exploration strat-
egy for reinforcement learning during ramp-up. The proposed
approach hypothesizes that a human operator guided explo-
ration strategy will be more efficient than a purely algorithmic
one. To test this hypothesis, a comparative study of the ex-
isting exploration strategies was carried out to find the most
effective ramp-up policy. The efficiency of different strategies,
along with the resulting characteristics of the policy and com-
pleteness of the state space, was assessed using a ramp-up
simulator.

The remainder of this paper is organized as follows:
Section II presents a review of the literature on the learning
approaches developed for ramp-up; Section III proposes the
symbiotic human-machine learning approach to support the
ramp-up process; Section IV presents the experimental pro-
cess, using a ramp-up simulation model of a real production
system, and discusses the results; finally, Section VI presents
the conclusions drawn from this study.

II. KNOWLEDGE AND LEARNING DURING RAMP-UP

The problems of long ramp-up times were extensively re-
searched, over the years [2]. A number of researchers analyzed
the characteristics that influence the ramp-up and suggested sev-
eral solutions to address different problems involved in this pro-
cess [12], [13]. Ramp-up includes all the processes, right from
the top strategic management decisions down to the lower level
technical procedures [1]. The need for decision support is a com-
mon requirement of all the processes across different levels. In
the shop floor level, ramp-up happens in new production lines,
where newly built production systems operate suboptimally.
Numerous equipment variations, building procedures, and pro-
duction processes render ramp-up behavior unpredictable and
stochastic.

Many researchers stressed the need for a formal model that
captures data in a structured manner to utilize the experience
gained during ramp-up and to draw conclusions in the form
of reusable knowledge [4], [14]. Terwiesch and Bohn, for in-
stance, studied the effect of learning from different sources dur-
ing ramp-up and demonstrated the link to process-improvement
[4]. They presented a dynamic model to balance the needs
for deliberate learning through experiments and for increased
production yield. Fjallstrom er al. highlighted the effect of
learning during ramp-up and studied different types of in-
formation that represent relevant experience to support this
phase [1]. They show that experienced personnel tend to seek
equipment and process specific information that provides bet-
ter ramp-up results. Hansen and Grunow highlighted the effect
of experience on effective production capacity [7]. They mod-
eled the ramp-up as a process of changing effective capacity
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(capabilities, based on gained experience) over time to provide a
decision support tool for capacity expansion in the pharmaceu-
tical industry.

Current research efforts build on the idea of enhancing a
system’s embedded intelligence and enhancing the data al-
ready collected during preproduction phases. The intelligent
network devices for fast ramp-up EU project, for instance, aims
at achieving fast ramp-up through networking between intel-
ligent devices [15]. The concept is based on agentification of
production devices by enhancing them with standardized inter-
faces and communication protocols to reduce their integration
effort. The structure of the agent allows for negotiation between
the devices on dynamic agreement of their roles in the pro-
duction process. This helps in reducing custom programming
effort to facilitate rapid changeovers, but does not directly ad-
dress the need for parameter tuning. The adaptive production
management EU project focuses on integrating information and
communication technology (ICT) based solutions to support
real-time decisions into planning and operation during ramp-
up [16]. Leitao et al. presented an overview of the project’s
architecture, which combines the functionalities, such as on-
tology services, data transformation, key performance indica-
tors (KPIs), etc., implemented through multi-agents and intel-
ligent enterprise service bus [17]. Ramp-up times can be re-
duced by capturing previous ramp-up experience and utilizing
the knowledge, so accumulated, to more effectively select ac-
tions during future processes [18], [19]. But, this cannot be done
based on the available sensor information alone, and requires
close collaboration between operators and machines to cap-
ture human actions during ramp-up and their decision making
strategies.

Ramp-up depends mainly on the knowledge and expertise of
the operators, who tune the production system until its perfor-
mance is stable and the disturbances are reduced to the min-
imum. This process is very complex, requiring an intimate
understanding of the equipment, the production process, the
product, the required performance, and the targeted quality.
There are many sources of uncertainties and variations that ren-
der ramp-up a highly unpredictable and stochastic process and
thus difficult to model in advance. However, there are a few
published works on modeling the required information, besides
enabling learning.

Konrad et al. presented a generic semantic model for fast
ramp-up modeling, which combines human decisions data with
machine data [20]. The use of semantic technology allows for
context-sensitive exploration of past ramp-up cases and thus
provides the foundation to employ learning techniques to dis-
cover more effective ramp-up strategies. Oates et al. used ma-
chine learning to learn from previous ramp-up situations in
a case-based reasoning approach to provide decision support
during the ramp-up. They reported an algorithm, based on the
k-nearest neighbors algorithm, to generate decision support for
case-based queries [21]. The algorithm performs well on similar
cases, but not so well on unknown states. The authors presented
a different approach where they focus on the sequential na-
ture of ramp-up and the advantage it creates for reinforcement
learning algorithms [10]. They define ramp-up as a sequence
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of state-transitions, driven through the adjustments applied by
operators. They used a reinforcement learning algorithm to cor-
relate state changes to performance, and to extract an efficient
decision-making policy.

Despite the increasing interest in ramp-up and numerous
on-going investigations of different decision-support methods,
based on experience-capture and learning, no clear strategy
could be evolved so far to gaining experience. Against this
background, this paper proposes a symbiotic human—machine
learning approach to guide exploration, within the space of
the ramp-up process, which mainly maximizes the benefit of
the gained experience.

III. SYMBIOTIC HUMAN-MACHINE LEARNING APPROACH

Providing support during ramp-up has so far been focused
predominantly on building frameworks to capture data and in-
formation in a structured manner. This provides the basis for
analyzing, and ultimately for guiding the process in a system-
atic manner [14]. Cognitive science and machine learning ap-
proaches are being increasingly investigated to provide more
intelligent decision support [22]. These efforts have led to the
concept of a symbiotic framework [23], wherein the human in-
telligence, which can capture the right data, can be combined
with the machine’s ability for fast and exhaustive data process-
ing to achieve effective learning.

The literature supports the notion of applying machine learn-
ing for improving the effectiveness of ramp-up, while it simul-
taneously stresses the challenge of limited data. Reinforcement
learning, in particular, has been identified as a promising ap-
proach to address this challenge [10], [24]. This involves learn-
ing of a policy from experience and interaction with the system,
without the need for significant preparation and predefinition of
a model.

The ramp-up process includes a number of characteristics
that render learning from experience a difficult, but a promis-
ing, task. Previous studies of the process show that operators
follow a sequential procedure in which they apply changes to
tune the system, based on monitoring its performance changes
[20], [25]. The experience so gained contributes to enhancing
the operator’s learning curve, which helps in handling unex-
pected events, but it also delays the process. The uncertain and
often stochastic consequences of a change (action) render learn-
ing from experience difficult. This results in slowing down the
ramp-up process due to unnecessary exploration.

The authors propose here a ramp-up learning and decision
support framework, in which the operator carries out the tar-
geted exploration, supported by a computationally powerful de-
vice (see Fig. 1). This is de facto realization of the symbiotic
assembly concept proposed in [11], which combines free explo-
ration by people with complex pattern recognition by machine
learning. The actions of an operator and their consequences,
captured as a Markov decision process (MDP) model, consti-
tute a rich history of previous experience. The MDPs are most
commonly used to model such sequential and stochastic pro-
cesses [26]. The MDP model has a number of characteristics
that can benefit formal analysis and optimization of the ramp-
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up. It allows for the mapping of correlations between states and
adjustments (actions), and supports the learning of the associ-
ated transition probabilities. The MDP model can be solved to
find a policy that maximizes the system’s output (reward). For
ramp-up, this amounts to achieving the targeted goal state as
fast as possible or, more simplistically, using the least number
of steps (state-transitions). Reinforcement learning is used to
solve MDPs without having prior knowledge [27].

In the proposed approach, the ramp-up states (S) of an as-
sembly system are defined by a finite set of observable charac-
teristics (p). To change the behavior of the system, the operator
can apply a finite set of discrete actions (a). The learning core
captures the transition probabilities T'(. |.S,,, a,) from a state
(Sp), as the result of an applied action (a,, ), and uses a reinforce-
ment learning algorithm to extract the most effective ramp-up
strategy (policy) from successful ramp-up episodes [28].

The transition probabilities are learned through the learner’s
interaction with the environment. Alternatively, a policy can be
learned directly, and it is even possible to learn a partial model
[27]. This can accelerate learning by generating a policy, based
on a combination of successful ramp-up sessions (episodes). An-
other advantage of model-free approaches is that the algorithms
can compensate for nonstationary environment. The change in
the environment will be captured by learner’s exploration, which
will update its policy.

The authors have previously analyzed ramp-up data, using a
Q-learning algorithm [10]. These experiments focused on the
algorithm’s ability to converge even with limited data, achiev-
ing promising results. However, those results fail to address the
problems arising from limited data during ramp-up. This is best
overcome using better quality data and by infusing human in-
telligence into the learning process. This can be achieved by
creating a human—machine symbiotic environment and improv-
ing the algorithm’s performance.

To determine the viability of the proposed approach for ramp-
up, the overall performance of the learning algorithm and the
optimality of the exported policy were assessed. Two main el-
ements can affect the performance of a reinforcement learning
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algorithm, in terms of the learning process and the quality of the
exported policy [27]: the update rule and the exploration strat-
egy of the algorithm. They both control how well an algorithm
can cope with limited data during ramp-up, besides controlling
the algorithm’s speed and convergence.

This work expands on previously published results and ex-
plores for the most effective exploration strategy for learning
during ramp-up, based on the Q-learning algorithm. The ul-
timate aim is to compare different exploration strategies and
benchmark them against the proposed symbiotic learning ap-
proach, using human-guided exploration.

A. Update Rule

The update rule in reinforcement learning (RL) algorithms
refers to the approach used to update a state value when new data
become available. The Q-learning algorithm uses an update rule
which estimates the state action value @)’ (s, a) by comparing it
to the existing estimate ()(s, a). The new value is a combination
of the previous (s, a) one, plus the immediate return (r) from
the new experience, and the difference between the best known
subsequent state action value Q(s’, a’) and the existing estimate
Q(s,a). The update rule of the Q-learning algorithm is defined
as

Q (s,0) = Q(s,0) +a [r+y-maxQ (s, o) = Q(s, a)
ey

The two important characteristics of the algorithm’s update
rule that affect the convergence and the output policy are the
discount factor v (gamma) and the learning rate « (alpha). The
first weighs the effect of the existing best state action value and
the second controls the significance of a new value for the previ-
ously estimated state action value. Small learning rates should
result in slow convergence, minimizing the risk of instabili-
ties and oscillations between two values. However, very small
values require a high number of samples before the algorithm
converges to a final value, and this renders this approach difficult
to use for ramp-up.

In previous works that applied Q-learning during ramp-ups,
large gamma values and small alphas resulted in better ramp-up
policies [28]. The gamma chosen should be large enough, but
not extremely large (equal to one), since the algorithm’s aim
can change. Alpha value has been shown to affect the number
of iterations required to achieve convergence. Although large
values allow for faster convergence to a policy, the exported
policies were shown to perform poorly. Therefore, the value
chosen should be small enough, but not too small (approaching
zero), or else the algorithm will converge very slowly. Also, in
the reported experiments, it was assumed that infinite number
of episodes would be available, and constant exploration would
be possible. These assumptions are not realistic for a ramp-up,
where data are very limited. One way to overcome this problem
is the experience replay approach, developed by Kalyanakrish-
nan and Stone [29]. In their approach, the data from an episode
are processed several times to propagate the effect of change in
a state action value and eliminate data noise. By this approach,
faster learning can be achieved even with a limited number of
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ramp-up episodes. Experience replay allows the partial state
space to be fully fitted, but does not discover any unknown
states. Discovering the full behavior model of a system requires
a much more exhaustive exploration strategy. During ramp-up,
only a fraction of the state space will be used, and exhaustive
exploration does not provide a proportional benefit compared to
the large extra effort it would require. It needs to be noted that
a learning algorithm can discover the best policy only when the
quality of the provided dataset is equally good. In this work,
the experience replay method has been tested to find an optimal
policy from limited data. However, if the transitions within the
data do not include a good or optimal policy, then it will not be
possible to generate one either. The quality of the data is a result
of the exploration strategy, which can be enhanced by human
exploration.

B. Human Exploration Strategy

The exploration strategy is a key aspect of any model-free
algorithm, because the entire space might never be explored,
unless the exploration strategy specifically aims for it. Most
of the exploration strategies aim to balance exploration against
exploitation by focusing on only the most relevant part of the
wider state-space. For the ramp-up case, it is proposed to limit
exploration to the choice of the operators, as they are intrinsi-
cally aware of the most relevant actions, though not necessarily
of the consequences or most effective overall strategy. Hence,
it is expected that by allowing the operator to choose the explo-
ration strategy, better results can be obtained compared to any
standard algorithmic exploration strategy. Also, by doing so, no
artificial disturbances will be created in the process, because of
prior knowledge of the operators and their ability to learn, in
parallel to any algorithm, during the ramp-up. No doubt, such
an approach might leave certain states and actions unexplored,
but the outcome is not necessarily detrimental, because the extra
effort that goes into exploration of rare states might be much
higher than the additional benefit that might accrue from such
exploration.

Finally, it needs to be stressed that the exported policy does
not aim at finding the optimal performance of the system that is
being ramped-up, because that would require several ramp-up
episodes, covering every state-action combination. Owing to its
stochastic nature, ramp-up can be achieved in different ways, by
applying different policies and depending on the nature of the
system behavior. Therefore, it is reported that policies, defined
during the development of a production line, can fail to support
ramp-up on site [1]. Thus, the exported policy has to be opti-
mal for a small number of datasets, because only limited data
will be available during the actual ramp-up, when the stochastic
behavior of the system will become apparent. Clearly, better
policies, in terms of time or even overall performance, should
exist if the system can be observed over a longer period of time.
The algorithm’s results can, therefore, be expected to improve
as new episodes arrive and the operator acquires a better un-
derstanding of the system, say from subsequent system reramp-
ups, e.g., following breakdown recoveries or changeovers. In
this paper, the emphasis will be on the quality of the data that
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Algorithm 1: Q-learning algorithm for ramp-up.
Initialize 7(s), Q(s,a),
Choose large v > 0.9 and small a < 0.05
generate a ramp-up episode restricted to human exploration
for each step:
update
Q'(s,a)= Q(s,a) + afr + v maxQ(s',a’) — Q(s, a)]
end of the step '

Replay the batch until
dQ = afr+vmaxQ(s', ') — Q(s,a)]
is stable.

Until there are no more episodes find the optimal policy
m(s) = argmax Q(s,a)

can be gained from smaller sets of ramp-up episodes, which is
assumed to be better when generated by a human operator. The
aforementioned methods and the key aspects of the proposed
learning approach are summarized in a reinforcement learning
algorithm, presented as Algorithm 1. The proposed algorithm
will be tested during ramp-up support and compared with other
exploration strategies.

IV. EXPERIMENTAL SET-UP

Many experiments were carried out to assess the functionality
and the efficiency of the ramp-up learning algorithm. The aim is
to compare the efficiency of the human exploration based algo-
rithm with those of the other established exploration strategies
and study its effect on the generated data. All the experiments
were carried out with the ramp-up data generated from a ramp-
up simulator that was developed, based on an industry-like as-
sembly system test bed. The simulator was used to automatically
test different exploration strategies, allowing for various degrees
of exploration in good time, which would not be possible in a
real physical system. Further details of the experimental proce-
dure and the ramp-up simulator are presented in the following
sections.

A. Simulation Model

A production station ramp-up simulation model was devel-
oped to generate ramp-up sessions for testing and evaluating
different learning algorithms. The model was formulated as an
MDP, and according to the proposed ramp-up model [10]. The
production station runs three processes sequentially, as shown
in Fig. 2.

The station delivers a box, filled with a predefined amount of
plastic components to emulate functionality, common to phar-
maceutical and food industry. First, a pick and place process is
triggered where a box is picked, checked, and delivered to the
processing area. There, the filling process assures that the de-
sired amount of product is placed into the box and then another
pick and place process removes the box out of the station area.

The MDP model includes the state parameters, the action list,
and the reward function. The following are the actions available:

qp
Pick and
Place 1
Filling
Process

Pick and
Place 2

Fig. 2.  Assembly station process sequence.
TABLE I
STATE VARIABLES
Not. Description Values

p1 The duration of the first pick and
place process

p2 The duration of the filling process  Acceptable/Unfunctional/Slow

p3 The duration of the second pick and Acceptable/Unfunctional/Slow
place process

P4 The weight of the produced product Less/Ok/More
discretized within acceptance and
rejection limits.

Ps Signals observed by an operator but Spilling/Box Lost/None
cannot be captured by a sensor.

Acceptable/Unfunctional/Slow

al: increase pressure (Yes/No); a2: reduce pressure (Yes/No);
a3: increase limits (Yes/No); a4: reduce limits (Yes/No); and
a5: align gripper (Yes/No). The state variables are presented in
Table I. A detailed description of the states and actions, as also
their full definitions, can be found in [28].

An appropriate reward function for ramp-up is defined in [9]
and the same can be seen in (5):

frG)==>_ kD, 2)
i=1
fo() == 1Q; 3)
j=1
Jo (j):_ZﬁjTa] 4)
j=1
1
Rpy = —w - fru (5
St

where w = [wy,w,,w,] is the weight vector and fry =
[ff, fq, fo] is the performance metric’s vector, composed of
three individual metrics relating to the functionality of the sys-
tem, the output quality, and the process optimization. These are
presented in (2)—(4), respectively. Parameters k; , A;, (3; de-
note the weights and D;,Q;,T,, the state parameters of the
MDP model. The reward function varies from —1 to 0, where —1
indicates the worst state and O the best, which also denotes the
end of an episode.
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The size of the state space is based on the number of state
variables and their number of values. In this system, with 6
parameters and 3 discrete values for each parameter p, the state
space has 243 states.

The dynamics (transition probabilities) of the simulation
model are defined, based on a combination of expert knowledge
and experimentation. For building the simulation model, transi-
tion probability matrices were generated for every state-action
combination. This led to the generation of 5 transition probabil-
ity matrices, one for every action during the 243 states, resulting
in 1235 state-action probabilities. The size of the model high-
lights why it is not plausible to explore the entire state-space
during a normal ramp-up, particularly considering the stochastic
nature of the process and the resulting model.

B. Experimental Procedure

The proposed algorithm incorporates two main aspects; it
combines experience replay in order to gain the maximum in-
formation from the data and introduces human exploration. The
experiment was conducted in two parts. First, the efficiency of
the batch learning method was tested for different learning val-
ues (alpha) along with the efficiency of the exported policy. The
efficiency of the batch learning method was determined, based
on the algorithm’s ability to converge on stable Q values. The
algorithm was tested, with and without the experience replay,
for ten datasets (ramp-up episodes), under conditions similar to
those of real ramp-up applications, where the number of avail-
able datasets is limited. The ramp-up datasets were randomly
generated from the simulator, independent of the exploration
strategy followed, aiming to test only the effect of the experi-
ence replay mechanism.

In the second part of the experiment, the effectiveness of the
human exploration strategy was tested and compared with that
of the other well established exploration strategies: 1) random
exploration, 2) greedy exploration, and 3) greedy exploration
with increased probability. Hence, the experiment focused on
assessing the efficiency of the exported policies for different
exploration strategies, with or without experience replay. An
overview of all the four exploration strategies (automatic and
human based) is given as follows:

Random exploration: This strategy applies experience replay
on a dataset, which was generated by randomly choosing differ-
ent ramp-up actions.

Greedy exploration strategy: Greedy exploration aims to
choose those actions that can receive the highest possible re-
ward. This is done with a fixed probability, big enough to
assure the best choices. In this work, the greedy probabil-
ity E, was chosen to be 0.9 to reflect the greediness of the
strategy.

Increased greedy exploration strategy: This exploration strat-
egy is greedy with an increasing probability, rather than a con-
stant. Like the previous strategy, it aims to choose actions with
the best potential reward, but changes the probability of choice
throughout a ramp-up episode. The probability decreases as a
function of the number of iterations, which, in effect, means
that the probability of choosing a random action is high at the
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beginning of each episode, but decreases as the iterations of
the policy increase. Hence, the strategy becomes greedier. The
probability of exploration is given by

1
Ei,=1- - - . 6
Y <log (iteration + 2)) ©)

During each set of experiments, the number of iterations in-
creases from 1 to 70 and the probability of exploration E;, from
~0.23 to ~0.91.

Human exploration: The human exploration strategy uses in-
puts from human experts, who select the actions during ramp-
up. During the experimentation, ten different people (operators)
were asked to ramp-up the same emulated assembly station that
was used for the other three exploration strategies. The operators
were first provided with information about the system function-
ality and normal operation. The ramp-up process was described,
along with all possible actions that can affect the system’s op-
erations and the required targets for ramp-up. Thereafter, the
operators carried out the ramp-up, step by step. During each
step, they were interacting with the emulator through receiving
information, such as cycle times, product quality, and perfor-
mance measures. The operators would then choose to apply an
action, based on the situational context presented. The result
of the action would be computed and the new status informa-
tion fed back to the operator to choose the next action to apply.
This process was continued until the targeted ramp-up state
was achieved. The ramp-up was carried out using the simulator
described above.

Fig. 3 presents an overview of the underlying logic used dur-
ing all the experiments and shows how individual functions take
place. The same setup was used for all the exploration strate-
gies. The exploration strategies were applied, one after the other,
to the ramp-up simulator to extract specific ramp-up datasets.




DOLTSINIS et al.: SYMBIOTIC HUMAN-MACHINE LEARNING APPROACH FOR PRODUCTION RAMP-UP 235

These were then processed, using Algorithm 1, to export the cor-
responding policies. After applying the experience replay to five
and then ten ramp-up episodes, the policies attained from differ-
ent exploration strategies were compared with those exported
from the same number of episodes, without applying experience
replay. This was done to compare the exploration strategies, as
also the effects of experience replay. Number 10 was chosen for
the number of episodes to reflect a realistic ramp-up scenario
and number 5 to capture the effect of limited data. All the ex-
ported policies were then applied to the ramp-up simulator to
test their performance. To obtain statistically sufficient results,
each policy was applied to 1000 randomly generated ramp-up
episodes. To avoid the problem of endless episodes from bad
policies, the number of steps per episode was limited to 1000.
The above-mentioned process was tested ten times (for each set
of 1000 episodes) for every policy and the results were averaged.

V. RESULTS AND ANALYSIS

In the first set of experiments, the focus was on understanding
the effect of batch learning on limited ramp-up data scenarios, as
described in “Section IV.” The evaluation criteria for the batch
learning mechanism are the Q matrix hash function and the
Q-value discrepancy. The hash function calculates the unique
number for a matrix, which can therefore be used to infer every
change in the exported policy. The nonzero Q value discrepancy
indicates that the algorithm is still updating and that all the data
information is reflected in the outcome.

In the following sections, the results of the experiments, us-
ing the four different exploration strategies, are presented and
analyzed to understand which one of them is more efficient in
converging onto a good quality policy. The following are the
four strategies: 1) random choice of actions, 2) greedy strategy,
3) greedy strategy with increasing probability, and 4) a human-
based exploration strategy, as presented in Section IV.

Four criteria were used for this comparative study:

1) the number of unfinished episodes,

2) the average number of steps required per episode,

3) the accumulated reward per episode, and

4) the number of unsupported states.

The number of unfinished episodes shows how many times
a policy has failed to finish the ramp-up process within the
predefined limit (1000 steps). The number of steps required
should be as small as possible to indicate that the policy is good.
The accumulated reward indicates the quality of the states (in
terms of the system’s performance) that the ramp-up process
has gone through during an episode. It should be close to zero.
The unsupported steps indicate the number of cases for which
the applied policy has no information regarding a state, because
of which a random action has to be chosen to move to the next
state. This value should be as close to zero as possible.

A. Experience Replay

The results of applying experience replay on the simulator,
as described for the first set of experiments, are shown in Fig. 4
which shows the changes in Q-value discrepancy and the pol-
icy hash function, while replaying the experience of ten datasets
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(ramp-up episodes). The graphs show the effect of experience re-
play on the learning process, through Q-value and policy change.

Fig. 4(a) and (c) shows that the policy changes significantly
during experience replay, but stabilizes after about 300 iterations
of the whole dataset. As aresult, all the information of the dataset
was extracted and reflected in the policy. By varying the learning
rate (alpha) of the algorithm, it can be seen that small alpha
values increase the number of iterations required to achieve
convergence and larger ones reduce it. Fig. 4(b) and (d) shows
the changes in Q-value and policy discrepancy for different
alpha values. The alpha values were chosen to be small, but
not extremely small, based on the results of previous research
[28]. For three of the values (0.05, 0.1, and 0.5), the algorithm
converges to the same policy, requiring about 600, 300, and 200
iterations, respectively. For values, smaller or larger than these,
the algorithm converges to different policies. In the case of larger
values, this can be explained as due to the big change in the Q-
value, which is controlled by alpha and does not provide enough
resolution to the algorithm. In the case of a very small alpha, the
algorithm does eventually converge to the same policy, but after
numerous iterations. The average accumulated reward [based
on (5)] for the three policies, namely for alpha equal to 0.02,
0.1, and 0.2, is, respectively, 62.11, 57.97, and 61.15, as shown
in Fig. 5. This confirms that the second policy (alpha = 0.1) has
better quality.
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episodes, (b) average number of steps, (¢) accumulated reward, and (d) number
of unsupported states.

The above-mentioned results highlight the significant effect
of experience replay on the exported policy and which alpha
value is more suitable for the current experimental setting. The
effect of experience replay on policy quality is shown in the next
part wherein the results of comparison are presented for all the
aforementioned exploration strategies.

B. Random Exploration Strategy

The results of the exported policy for five and ten ramp-up
episodes, with random action exploration, are shown in Fig. 6.
Both single experience iteration and experience replay algo-
rithm were applied to compare their effects on the quality of the
resulting policy.

Fig. 6(a) shows that the number of medians of the unfinished
episodes was reduced by ~42% (840 to 505) after the number
of episodes was doubled from 5 to 10. When experience replay
was applied, the number of unfinished episodes became 0, for
both 5 and 10 episodes, thus indicating that both the policies
could successfully manage to guide all the ramp-up episodes to
the end state. Fig. 6(b) shows that the average number of steps
required per episode is roughly proportional to the number of
unfinished episodes, except for a small difference between the
two cases for which experience replay was applied. It can be
further seen that the policy derived from ten episodes requires,
on average, 1.5 fewer steps. The same relationship is also re-
flected in Fig. 6(c), which presents the accumulated reward per
episode. On average, the policy from ten episodes accumulated
—2.35 more reward. Considering that the reward is negative and
that it varies from —1 to 0, this reduction indicates that the policy
is better. Fig. 6(d) shows a different perspective by showing the
number of cases where the policy could not support the ramp-up
process, because of which a random action had to be chosen.
Contrary to expectation, this graph shows that the number of
unknown cases is very small for the first case, even though ex-
perience replay was not used and the number of episodes to
learn the policy was small.
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episodes, (b) average number of steps, (¢) accumulated reward, and (d) number
of unsupported states.

When considering the large number of unfinished episodes,
it can be seen that this is due to a poor policy which creates os-
cillations between states. This artificially reduces the number of
unknown cases. This number is expected to increase when ex-
perience replay is applied, because the new policy better reflects
the optimal combination of the datasets and can generate much
different paths. When the number of the episodes becomes big
enough to generate a more complete policy, the unsupported
states should decrease. Finally, the policy generated from ten
episodes, without experience replay, resulted in a large num-
ber of unsupported states, which do not follow the expected
trend. This is because, the dataset becomes big enough to have
enough data over a wider part of the state space, but because
of using single experience iteration, optimal information is not
well reflected in the final policy and therefore the policy again
oscillates between states.

C. Greedy Exploration Strategy

Results for five and ten ramp-up episodes, after applying
greedy exploration with 0.9 probability, are presented in Fig. 7.

Fig. 7(a) shows that the number of unfinished episodes was 0
for both the policies exported with experience replay algorithm,
whereas it is significantly high for those to which experience
replay was not applied. The same trend can be observed for
the required number of steps per episode and the accumulated
reward. The policy exported from the bigger dataset requires the
least number of steps and accumulates the largest reward. From
Fig. 7(b), it can be seen that, although the second policy (5/E.R.)
presents very good results in terms of the accumulated reward
and the required number of steps, the number of unsupported
steps is higher than that of the other policies. This reflects the
effect of the training data size on the policy. However, this is
not the case for policies without experience replay, because
they require a large number of steps due to oscillation between
nonfinal states.

From a comparison of the best policies exported, using greedy
and random exploration strategies, it can be seen that the former



DOLTSINIS et al.: SYMBIOTIC HUMAN-MACHINE LEARNING APPROACH FOR PRODUCTION RAMP-UP 237

'S: éingle Exneru'em:e Iteral'uon'
E.R.: Experience Replay

g G
T 800 = = w00l =
2 8 =
o 600 % 600 s
W
8 400 @ a00
= o
4 [ 56.1
200
£ Z 200} \
[ =
= 0
55 SER. 1055 10G/ER 55 SER. 10/5  10/ER.
(a) (b)
° ’ — | w 18F ’ i = 1
T a4 -
=-100 © 16} !
g 3118 @ 14|
©-200 g | t o |
o = A {
®.300 s ]‘2| -
2 &wl- A [
40| — D 2
a _—— e H a si |_:|
o 5
<-500 | 2 6l s
5/S  SER. 10/S 10/ER. 5/5 S[ER. 10/S 10/ER.
(c) (d)
Fig. 8. Policy evaluation for increased greedy exploration in terms of

(a) unfinished episodes, (b) average number of steps, (c) accumulated reward,
and (d) number of unsupported states.

strategy required an average of 53.49 steps, and the latter 102.6.
This shows that greedy exploration strategy gives a significantly
better policy.

D. Increased Greedy Exploration Strategy

Fig. 8 presents the results after applying the policies exported
from five and ten ramp-up episodes, using the increased greedy
exploration strategy.

The behavior of the applied policies is similar to that of the
policies exported from episodes, using the greedy exploration
strategy. The experience replay, when applied to all the episodes,
generates a very good policy with an average accumulated re-
ward of —31.18 and average required steps of 56.1. The per-
formance of the policy is similar, but slightly inferior, to the
policy exported from greedy exploration. A significant differ-
ence compared to the previous cases is that the policy presents
poor performance, when experience replay was applied after
five episodes. This is due to the small size of the dataset, which
contains a small number of nonoptimal actions, and the number
of episodes is not enough to guarantee good exploration. This
changed with the second set of five ramp-ups, when the policy
performed better.

E. Human Exploration Strategy

To test the efficiency of human exploration, ten ramp-up
episodes were carried out under the guidance of different peo-
ple. These episodes were processed, and a policy was exported
for every new episode. This is to realize the value of every new
human-based episode and its effect on the efficiency of the pol-
icy. The results of applying the exported policy are presented in
Fig. 9.

The average numbers of the required steps and the number
of unsupported states are presented for every policy. Fig. 9(a)
shows a continuous improvement of the policy during the first
three episodes, but after the fourth episode, a rapid change oc-
curred resulting in a very poor policy. Thereafter, the policy kept
improving until the seventh episode, but after the ninth episode,
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Fig. 9. Policy comparison in terms of (a) average steps and (b) unsupported
states, for increasing number of ramp-up episodes.

it again became poor. However, the final episode improved the
policy, giving the second best policy, in terms of the required
number of steps. Fig. 9(b) shows a constant improvement of the
policy from the first to the fifth episode, in terms of the number
of unsupported states. The performance became poor after the
sixth episode, but thereafter the results started improving until
the last episode with small variations.

Considering the two graphs together, the following conclu-
sions can be drawn. With successive episodes, the number of
unsupported states decreases. With the addition of a new episode
that contains unexplored states, the performance drops, but the
number of unsupported states decreases. This trend continues
for a few more episodes with the same states, until the policy
matures for these set of states. This is repeated until another
episode with previously unexplored state(s) is added and the
performance drops, but the number of unsupported states in-
creases. This is expected to continue until new episodes do not
any longer include unexplored states. At this point the policy
will only improve.

The first seven episodes generate the best p, because they
contain enough cases with the same states. On the other hand,
the final policy need not be considered worse than the seventh
policy, if the number of supported states is also reckoned to be
an important performance indicator, because it indicates a more
complete policy, which can produce more robust results. In that
sense, the final policy is the most complete one.

A comparison of the different exploration strategies, in terms
of average required steps and unsupported states, is presented
in Fig. 10. From this figure, it can be seen that the random
exploration policy gave the worst results, in terms of both the
average number of required steps and the number of unsupported
states. All the other policies gave similar results in terms of the
required number of steps. The greedy exploration strategy gave
the smallest number of unsupported states, because the amount
of exploration was very high and the policy guided the decisions
through known states. The increased greedy exploration strat-
egy and the human-based exploration strategy yielded policies
with very similar performances, because the human exploration
is very similar to the increased greedy exploration. At the be-
ginning of the episode, the human operators tend to explore
until they acquire knowledge and then follow the same strategy.
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TABLE III
DATASET COMPARISON

required steps and (b) unsupported states.

TABLE II

EXPLORATION AND THREE OTHER STRATEGIES

P-VALUE AND 7-VALUE RESULTS FOR THE 7-TEST BETWEEN HUMAN

Random In. Greedy  Greedy
Unsupported states (p-value)  4.5%e-08  1.2%e-09  0.1674
Average reward (p-value) 2.3%e-10 0.0363 0.1802
Unsupported states (z-value) 8.98 -11.35 1.43
Average reward (t-value) 12.57 -2.26 -1.39

Overall, the performance of human exploration strategy can be
considered very efficient, because human—machine collabora-
tion during the ramp-up creates a good balance between the
optimality of the solution and the efficiency of the exploration
required. This symbiotic framework is more robust than the sys-
tems, based entirely on computers or humans. The similarities
of the last two policies can also be observed in the generated
datasets, which will be discussed in the next section.

To evaluate the statistical significance of the produced results,
a t-test [30] was run on the data presented in Fig. 10. The test
was run in pairs with human exploration strategy on one side
and one of the other three strategies, on the other side. The p
and the ¢ values of the test are presented in Table II, from which
it can be seen that the results are statistically significant for
both random and increased greedy exploration strategies, but
not for the greedy exploration strategy. Additionally, the mean
value of greedy exploration is very close to that of the human
exploration, as indicated by the ¢ values. This finding need not be
viewed negatively, because the proposed approach is not aimed
at proving its superiority to the other two exploration strategies,
but at highlighting the additional advantages it offers, as will be
discussed in the following section.

F. Dataset Analysis

The exploration strategies directly influence the nature of the
generated datasets that were used in exporting the policies. The
quality of the dataset, in terms of its volume and information,
gives an additional indication of the performance of the exported
policy. In this part, the training sets exported by different ex-
ploration strategies were analyzed directly and the results are
presented in Table III. The first two rows of the table give the
number of visited states for ten episodes (all states/ten episodes)
and for five episodes (all states/ten episodes); rows 3 and 4 give
the number of unique states in every dataset, generated by each

Random  Greedy In.Greedy Human
All States/10 ep. 640 641 638 290
All states/5 ep. 324 323 298 108
Unique states/10 ep. 161 115 107 109
Unique states/5 ep. 111 67 68 51
Exploration usage 640/640  530/641 194/638 N/A

strategy; finally, row 5 gives the usage of exploration by each
strategy, in comparison to the total visited states.

The total number of states explored by each strategy gives an
indication of the size of the dataset used in exporting a policy. It
can be observed that, for the same number of episodes, the sizes
of the datasets generated by the first three exploration strategies
are very similar, while that of the dataset generated by human
exploration is less than half their size. This trend becomes even
more pronounced when only half the number of episodes is
considered. Human exploration resulted in only 108 states. This
confirms the expectation that a person would ramp-up a system
faster and the significantly smaller number of required steps
since they can use their understanding and wider knowledge
of how the system operates. It also highlights the significance
of human-machine collaboration and stresses the need for a
symbiotic environment that enables such collaboration.

The number of unique states in each episode reflects the
amount of exploration carried out by each strategy. Random
exploration generated the most unique states, as expected. The
other three explorations strategies generated almost the same
number of unique states, i.e., 115, 107, and 109. This finding
is very interesting in that it confirms that human exploration
strategy is a lot more efficient, because, with half the ramp-up
data, it manages to explore the same unique number of states
and exports an equally efficient policy.

The exported data of every exploration strategy confirm the
results presented in Section V-B and highlight the influence of
exploration strategy on the exported policy. Overall, the greedy
strategy can provide a thorough state-space exploration, both in
terms of the number of states and the applied actions. However,
in practice, it is not possible to automatically implement an ac-
tion, and, therefore, an operator is always needed. This makes
the greedy strategy more effort-intensive, as operator can other-
wise ignore the less promising actions in each state. Besides, it
helps in exploring a smaller proportion of the state space. The
humans can apply their knowledge of the system’s operation and
support the ramp-up with less data. This capability is significant
for ramp-up, because every change applied to a real system has
to be decided carefully to avoid performance deteriorations and
production delays.

Finally, a conclusion has to be drawn regarding the feasibil-
ity of implementation and practical limitations of the proposed
symbiotic approach. The results presented are based on ramp-up
simulation and therefore, their reliability depends on the qual-
ity of the ramp-up simulator. In practice, the stochastic nature
of ramp-up cannot be simulated exactly, because of which the
response of the real system will always be a little different from



DOLTSINIS et al.: SYMBIOTIC HUMAN-MACHINE LEARNING APPROACH FOR PRODUCTION RAMP-UP 239

that of the simulated system. Also, the actions applied by human
operator, during a simulated ramp-up, might be much different
from those applied during the actual ramp-up. Additionally, the
implementation of the RL. model can become very challenging
in practice, because it is not easy to predefine the list of actions,
whose recognition requires much effort during the development
phase. The implementation of the proposed approach in large
systems can also be challenging, unless it is broken down into
simple workstations. Despite this challenge, this work shows the
advantages of symbiotic human—machine collaboration and the
impact it can have on reducing ramp-up time, with little data.
Keeping these challenges in view, future research will have to
be carried out to further enhance the benefits of the proposed
symbiotic approach.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a reinforcement learning algorithm
where human exploration can be implemented. The proposed
algorithm is based on reinforcement learning due to its ability
to operate without a predefined model. For generating ramp-
up data, a simulation model of an assembly station was used.
The proposed algorithm was designed, based on Q-learning
and the positive results of previous studies. The algorithm uses
experience replay to reduce noise from the data and apply hu-
man exploration to improve its quality. The results obtained
from the experiments facilitate, for the first time, a comparison
between different exploration strategies, with focus on human
exploration and the advantages of human—machine symbiosis.
The human exploration strategy exploits the intrinsic system-
operating knowledge of the humans and their ability to reason
under uncertainty.

The results show that the experience replay approach signif-
icantly improves the quality of the policy with fewer datasets.
The application of different exploration strategies reveals the
significant effect they have on the quality of the exported data
and the final policy. It is found that random exploration strategy
will not lead to good results, unless unlimited data are avail-
able. The greedy exploration strategy, on the other hand, can
generate good results, but does not take advantage of human
knowledge. Even though the results of greedy exploration are
marginally better than those of the human-based exploration,
the greedy exploration strategy visits more states, implying a
longer ramp-up time. The human exploration strategy takes ad-
vantage of human’s perception and intelligence in generating
better data and transforming them into knowledge. This shows
how human—machine symbiosis can be established with mutual
benefit to both sides. Humans can offer intelligence in taking
the best decisions, while the machines can uncover underlying
patterns and extract more optimal policies.

Despite the promising results of this work, some more re-
search is required for an in-depth understanding of the symbiotic
human-machine learning during the ramping up of automated
systems. Future work should include additional experiments in
this direction, including inferential analysis, to further evaluate
the differences amongst the approaches presented. It is clear
from the present and previous works that this approach has
the potential to significantly reduce ramp-up and changeover

times. This reduction in ramp-up time is very important to al-
low faster new product introductions and smaller economic lot
sizes. Besides, the development of formal models and pattern-
recognition algorithms for ramp-up can help in communication
of knowledge and wider utilization of the outcome from learning
algorithms. This should lead to proposing new frameworks that
can prove more effective for closer human—machine symbiosis.

While this work has demonstrated the potential of reinforce-
ment learning, using an industry-like system, it is necessary to
further test the proposed algorithm in full scale industrial appli-
cations. Also, further work is required to validate the feasibility
of the proposed approach in actual production systems, in the
context of more complex industrial environment, and to ensure
its more generic applicability.
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