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Automatic Facial Expression Learning Method Based
on Humanoid Robot XIN-REN

Fuji Ren, Senior Member, IEEE, and Zhong Huang

Abstract—The ability of a humanoid robot to display human-
like facial expressions is crucial to the natural human–computer
interaction. To fulfill this requirement for an imitative humanoid
robot, XIN-REN, an automatic facial expression learning method
is proposed. In this method, first, a forward kinematics model,
which is designed to reflect nonlinear mapping relationships be-
tween servo displacement vectors and corresponding expression
shape vectors, is converted into a linear relationships between the
mechanical energy of servo displacements and the potential energy
of feature points, based on the energy conservation principle. Sec-
ond, an improved inverse kinematics model is established under the
constraints of instantaneous similarity and movement smoothness.
Finally, online expression learning is employed to determine the
optimal servo displacements for transferring the facial expressions
of a human performer to the robot. To illustrate the performance
of the proposed method, we conduct evaluation experiments on the
forward kinematics model and the inverse kinematics model, based
on the data collected from the robot’s random states as well as fixed
procedures by animators. Further, we evaluate the facial imitation
ability with different values of the weighting factor, according to
three sequential indicators (space-similarity, time-similarity, and
movement smoothness). Experimental results indicate that the de-
viations in mean shape and position do not exceed 6 pixels and 3
pixels, respectively, and the average servo displacement deviation
does not exceed 0.8%. Compared with other related studies, the
proposed method maintains better space–time similarity with the
performer, besides ensuring smoother trajectory for multiframe
sequential imitation.

Index Terms—Expression mapping, forward kinematics model,
humanoid robot, inverse kinematics model, movement similarity,
movement smoothness.

I. INTRODUCTION

HUMANOID robots, which are designed by using artificial
muscles, deformable skin, and motion control systems,

are widely used to assist the humans in their daily chores and
day-to-day activities, such as newscasting, teaching, and guid-
ance [1], [2]. Facial expressions, which are well recognized to be
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critical to conveying motivational states and emotional feelings
of humans, are essential for humanoid robots. Hence, generating
robot expressions similar to those of humans, under the servo
constraints and hardware limitations, is essential to promote
natural, trustworthy, human–robot interactions [2]–[4].

With the development of expression mapping technologies
in the facial animation domain [5], [6], the performance-driven
or learning-from-observation techniques, which map human ex-
pressions to 2-D or 3-D virtual avatars, provide a reference for
transferring facial expressions from humans to humanoids [7],
[8]. However, the process of generating facial expression for
mechanically operated humanoid robots is more challenging
than generating for virtual characters. And, three reasons can
be cited for this. First, humanoid robots cannot be embedded
with enough servos because of head space constraints and servo
technologies [9], [10]. Humanoid robots have fewer movement
joints and degrees of freedom (DOFs) than virtual avatars and
humans, which have 268 voluntary muscles to generate facial ex-
pressions. Second, servo system designed for humanoid robots
do not follow the facial action coding system, which defines
44 facial action units (AUs) for a facial animation of virtual
avatars. Thus, generating facial expressions for humanoids by
finding correspondences between servos and AUs is difficult
[11]. Third, the multiservo control systems lag far behind the
current graphical rendering techniques. To overcome these con-
straints, some methods, such as key-value store [12], polynomial
fitting [13], and neural network [14], have been proposed to de-
termine the optimal servo displacements needed to maximize
expression similarity, based on inverse kinematics model. How-
ever, there has not been enough research on the smoothness
of expression imitation, which is necessary for humanoids to
reproduce natural and less hardwired expressions.

To make up for this deficiency, we propose an automatic ex-
pression learning method to map facial expressions of a human
performer to a humanoid robot. First, 48 feature points, which
move with the servo displacements, are tracked by an active ap-
pearance model (AAM) algorithm [15]. The forward kinematics
model, which is built to reflect nonlinear mapping relationships
between servo displacements and feature point positions, is con-
verted into the linear relationships between the mechanical en-
ergy of servo displacements and the potential energy of feature
points, based on the energy conservation principle. Second, an
inverse kinematics model is designed under the constraints of
instantaneous similarity and movement smoothness, based on
the forward kinematics and the trajectory prediction models.
In addition, the exterior point penalty function method [16] is
employed to solve the multiconstraint nonlinear optimization.
Finally, an automatic expression learning process is established
to determine the optimal servo displacements for transferring
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Fig. 1. Outline of the automatic facial expression learning method from a human performer.

facial expressions from the human performer to the robot, as
well as maintaining a smooth trajectory under the inverse kine-
matics model. Fig. 1 shows the outline of the proposed method.

The following are the main contributions of this study.
1) The forward kinematics model, which maps the servo

displacement space into expression shape space, is
converted into the linear relationships between the me-
chanical energy of the servo displacement vectors and the
potential energy of the expression shape vectors, based on
the energy conservation principle. This strategy not only
decouples the nonlinear relationships between servo dis-
placements and feature point positions, but also provides
requisite prior knowledge for establishing an inverse
kinematics model. In addition, the feature points, tracked
by the AAM algorithm, are noncontact and nonwearing
[17]. Therefore, this nonwearable way is more conducive
to collect training data for solving the forward kinematics
model and improving human–computer interaction.

2) Different from the existing inverse kinematics solutions,
which focus only on movement similarity, an improved in-
verse kinematics model is proposed under the constraints
of instantaneous similarity and movement smoothness.
This ensures shape consistency with the target shape vec-
tor, and maintains smooth movement trajectories for curb-
ing the zigzag effect, besides protecting servo hardware
and facial silicone skin. In addition, an adjustable factor
is introduced into the inverse kinematics model to weight
instantaneous similarity and movement smoothness.

3) Compared with the time-consuming manual setting of
servo displacements, the proposed online expression
learning algorithm can better reflect the inherent charac-
teristics of human facial dynamics and reproduce natural
and less hardwired robot expressions.

4) The rest of this paper is organized as follows: Section II
summarizes the related work; Section III describes the
humanoid robot XIN-REN; Section IV analyzes the for-
ward kinematics model and the coefficient matrix solu-
tion; Section V describes the inverse kinematics solution;

Section VI provides offline forward kinematics solution
and online expression learning method; Section VII eval-
uates the forward kinematics model and the automatic
facial expression learning method and Section VIII con-
cludes the paper.

II. RELATED WORK

Humanoid robots are required not only to have human-like ap-
pearance, but also to possess the ability of emotional interaction
[18], [19]. Some research results show that robots with physical
presence and facial expressions, similar to those of humans, can
enable humans remember more interaction details, and provide
more engaging and credible information than virtual charac-
ters generated by graphical rendering techniques [2]. Therefore,
studies on humanoid robots with facial expressions are indis-
pensable for effective interaction between humans and robots
[2], [3]. But, several of the current humanoid robots, which have
human-like appearance, such as Philip K. Dick [20], EveR series
[3], Geminoid F [14], can only perform predefined and limited
facial expressions, because they cannot replicate all human fa-
cial muscles and skeletal movements of the head [18]. These
unbalances between appearance and movement give an eerie
impression [4], [21]. A common method to generate facial ex-
pressions for humanoid robots is to perform several predefined
target servo displacements based on a key-frame technology
[17], which is used for cartoon animations. This method is sim-
ple to implement, but it can build only exaggerated expressions.
The fidelity of facial expressions depends on the skill level of
the animators; besides, the manual procedure is time consum-
ing [7]. To generate expressions similar to those of the humans,
and to maintain proper motions and timing, the straightforward
method for humanoid robots is through imitation from humans
[22], [23].

Research on a robot expression imitation is divided mainly
into the expression pattern imitation and expression detail im-
itation. Expression pattern imitation is employed to replicate
the same expression categories as those of a performer, un-
der the constraint of fewer servos [24], [25]. By subjectively
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observing the relationships between servos and AUs, Shaygan-
far et al. [11] propose a general strategy to generate expression
patterns, such as happy, surprise, and sad. As the correspond-
ing relationships between AUs and servos are not evident, the
produced expression patterns are limited; besides, their fidelity
needs further improvement. Ahn et al. [26], [27] propose a facial
muscle control method to generate all expression categories by
imitating the facial muscle mechanism of humans, and discuss
how to prevent damage to servos and outer skin. Using the same
facial muscle mechanism, Tadesse and Priya [9], [28] dissect
geometric relationships between mimetic muscles and mechan-
ical characteristics of servos, and realize facial transformation
across different expression patterns by a graphical analysis.

Unlike the expression pattern imitation, which is used mainly
for mechanical-looking robots, such as NAO [29], HanSaRam
[30], Kismet [31], and KOBIAN-R [13], the expression detail
imitation focuses on generating a similar expression intensity
and movement trajectory. It not only sets higher standards for
servo structures, DOFs, and response delay, but also demands
more stringent requirements for real time. Wilbers et al. [17]
propose an expression-learning method by transferring facial
motions of a performer to the android Repliee Q2 for TV news-
casting [32]. Employing blend-shape models, the Repliee Q2
can demonstrate realistic facial motions with a human per-
former. Jaeckel et al. [7] introduce an expression-mapping
technology into the expression detail imitation system for hu-
manoids. They establish a mapping model between facial defor-
mation of a performer and 34 servos of the robot Jules, and use
partial least squares to achieve expression imitation. The meth-
ods of Wilbers et al. [17] and Jaeckel et al. [7] are established
based on the linear relationships between facial servo displace-
ments and facial feature points. However, the linear models work
well only when the servos and feature points coincide [14]. As
the linear model does not sufficiently reflect the complexity of
servo control system, researchers have introduced some non-
linear models into the inverse kinematics solvers. Magtanong
et al. [33] use a back-propagation (BP) neural network to build
forward kinematics model and solve inverse kinematics by opti-
mization. Employing a feed-forward neural network and genetic
algorithm, Habib et al. [20] put forward a learning method to
transfer some facial features of humans to the android P. K. Dick.
Trovato et al. [13] use three power polynomials to fit the nonlin-
ear relationships between the servo displacements and the robot
facial cues designed by an animator. By selecting appropriate
combinations of facial cues, the method can produce numer-
ous natural expressions for the humanoid robot KOBIAN-R.
However, both pattern imitation and detail imitation focus more
on the similarity of imitation more than on the smoothness of
imitation.

III. HUMANOID ROBOT XIN-REN

To investigate human–computer interaction with emotions,
an imitative humanoid robot, XIN-REN, has been developed by
author Ren et al. With advanced servo control technology, XIN-
REN can replicate major facial muscle actions to display various
facial expressions. Fig. 2 shows its head structure, which is made

Fig. 2. Head structure of the robot XIN-REN. (a) XIN-REN’s head structure
and human-like appearance made of silicon jelly (b) Seven controllable head
servos of XIN-REN

of silicon jelly to impart human-like appearance. Meanwhile,
seven servos, driven by a pneumatic pump for safe and smooth
interaction, are controlled by sending target servo displacements
from a host computer at a fixed frequency. Table I presents the
functions and DOFs of the servos.

The servos of XIN-REN, which are covered with silicone
skin, act like human muscles to control robot’s facial expres-
sions. However, XIN-REN’s expressions are not as rich as the
humans because its servos and DOFs are fewer than those
in humans. Therefore, the proposed system aims at enabling
the humanoid robot to deliver expressions similar to those of
the human performer and demonstrate movement smoothness,
based on expression detail imitation. The following major issues
are addressed in this study: 1) building the forward kinematics
model for mapping a servo displacement space into an expres-
sion shape space and 2) establishing the inverse kinematics
model, with the given facial expression series of the performer,
to find the optimal servo displacements required for space–time
similarity and movement smoothness.

IV. FORWARD KINEMATICS MODELING AND COEFFICIENT

MATRIX SOLVING

Although facial expressions of a humanoid robot are directly
controlled by adjusting its servo displacements, the movements
of feature points can best embody facial expressions [1], [34].
Thus, the forward kinematics model is built between servo
displacements and their corresponding feature points, and is
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determined as an expression shape vector for a given servo dis-
placement vector.

A. Forward Kinematics Model

To extract prominent facial features more precisely, 48 facial
points, distributed on the mouth, eyebrows, eyes, and cheek, are
tracked by the AAM algorithm because of its high efficiency
and robust anti-interference [15], [35]. These points constitutes
the expression shape vector S

S = (x1 , y1 , . . . , xi , yi , . . . , xn , yn )T (n = 48)

where (xi, yi) represents the coordinates of the ith feature
point. Because humanoid robots demonstrate facial expressions
through servo displacements, the servo displacement vector C
is composed of m servos

C = (c1 , . . . , cj , . . . , cm )T (m = 7).

As the shape vector S depends only on the initial shape
vector S0= (x10 , y10 , . . . , xi0 , yi0 , . . . , xn0 , yn0)T , the initial
servo displacement vector C0 = (c10 , . . . , cj0 , . . . , cm0)T and
the current servo displacement vector C, the forward kinematics
model between C and S can be expressed as Ψ(•)

S = Ψ(S0 , C0 , C). (1)

However, a servo may influence multiple feature points and a
feature point may be affected by multiple servos. The many-to-
many nonlinear relationships between servos and feature points
increase the complexity of solving Ψ(•)[14, 26]. If m servos and
n feature points are regarded as an autonomous loop system [36],
the potential energy of each feature point can be transformed
from the mechanical energy of the servos, based on the en-
ergy conservation principle [37]. According to this hypothesis,
the horizontal potential energy Ex

i = sgn(xi − xi0)(xi − xi0)2

and vertical potential energy Ey
i = sgn(yi − yi0)(yi − yi0)2 of

the feature point i can be expressed by the mechanical energy
superposition of m servos (sgn(•) is a symbolic function) as
follows:
⎧
⎪⎨

⎪⎩

Ex
i = a2i−11E

C
1 · · · + a2i−1jE

C
j · · · + a2i−1m EC

m

= α2i−1E
C

Ey
i = a2i1E

C
1 · · · + a2ijE

C
j · · · + a2imEC

m = α2iE
C

. (2)

In (2), (EC )m×1 = (EC
1 , ..., EC

j , ..., EC
m )T represents the

mechanical energy vector of m servos, EC
j = sgn(cj − cj0)

(cj − cj0)2 represents the mechanical energy of the
jth servo, α2i−1 = (a2i−11 , . . . , a2i−1j , . . . , a2i−1m ) and α2i

= (a2i1 , . . . , a2ij , . . . , a2im ) represent the weight coefficients of
m servos on Ex

i and Ey
i , respectively. For the potential energy

of all feature points, the mapping relations can be expressed as

ES = (Ex
1 , Ey

1 , . . . , Ex
i , Ey

i . . . , Ex
n , Ey

n )T

= (α1 , α2 . . . , α2i−1 , α2i . . . , α2n−1 , α2n )T EC = AEC

(3)

where (ES )2n×1 and (A)2n×m represent the potential energy
of shape vector S and the coefficient matrix, respectively. As
the horizontal and vertical potential energy of each feature point

can be represented by a linear superposition of the mechanical
energy of m servos in (2), the nonlinear model between the
servo displacement vector C and its corresponding shape vector
S in (1) is converted into the linear relationships between EC

and ES in (3).

B. Coefficient Matrix Solution by Multiple Linear Regression

The weighting coefficients of each row in A reflect the
strength of the mechanical energy of each servo on the potential
energy of the corresponding feature point. However, obtaining
an accurate expression for A is difficult because of hardware
complexity. Therefore, a multiple linear regression method is
adopted to solve for an approximate expression [38]. In solving
for coefficient matrix A, K samples are collected, from which
the following training set forms:

D =
{
EC (k) = (EC

1k , . . . , EC
mk), E

S (k)

= (Ex
1k , Ey

1k , . . . , Ex
nk , E

y
nk)

}K

k=1 .

With K samples, the mechanical potential energy of m servos
and the potential energy of n feature points can be represented
by (X)K×m and (Y )K×2n , respectively,

X =

⎛

⎜
⎜
⎜
⎜
⎝

EC
11 · · ·EC

j1 · · ·EC
m1

· · · · · · · · ·
EC

1k · · ·EC
jk · · ·EC

mk
· · · · · · · · ·
EC

1K · · ·EC
jK · · ·EC

mK

⎞

⎟
⎟
⎟
⎟
⎠

Y =

⎛

⎜
⎜
⎜
⎜
⎝

Ex
11E

y
11 · · ·Ex

i1E
y
i1 · · ·Ex

n1E
y
n1

..........................................
Ex

1kEy
1k ...Ex

ikE
y
ik ...E

x
nkE

y
nk

...........................................
Ex

1K Ey
1K · · ·Ex

iKEy
iK · · ·Ex

nKEy
nK

⎞

⎟
⎟
⎟
⎟
⎠

. (4)

For the vertical weight coefficients of the ith feature point,
solving for coefficient vector α2i means minimizing the squared
errors of Ey

i on training set D, and the objective function is
formulated as follows:

min
a2 i

Q =
K∑

k=1

(Ey
ik − a2i1E

C
1k · · · − a2imEC

mk)
2

= (Y y
i − XαT

2i)
T (Y y

i − XαT
2i) (5)

where (Y y
i )K×1 = (Ey

i1 , · · · , Ey
ik , · · · , Ey

iK )T represents the
vertical potential energy of the ith feature point with K samples.
Consequently, (5) can be solved by the following equation:

∂Q

∂αT
2i

= −2XT (Y y
i − XαT

2i) = 0.

When XT X is reversible, the optimal value of a2i can be
expressed as follows:

α̂T
2i = (XT X)−1XT Y y

i . (6)

For other coefficient vectors, the similar regression analysis
is conducted on the training set D, and the optimal parameters
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of coefficient matrix A are approximated by (6):

AT = (α̂T
1 , α̂T

2 , . . . , α̂T
2i−1 , α̂

T
2i , . . . , α̂

T
2n−1 , α̂

T
2n )

= (XT X)−1XT (Y x
1 , Y y

1 , . . . , Y x
i , Y y

i , . . . , Y x
n , Y y

n )

= (XT X)−1XT Y.

Thus,

A= (AT )T = ((XT X)−1XT Y )T = Y T X(XT X)−1 . (7)

When the coefficients of A, which reflect the linear statisti-
cal relationships between the mechanical energy of the servos
and the potential energy of the feature points, are obtained, the
nonlinear forward kinematics model between C and S, can be
decoupled by

S = Ψ(S0 , C0 , C) = (Ψ1(S0 , C0 , C), . . . ,Ψ2n (S0 , C0 , C))

= S0 +
(

sgn(α1E
C )

√

|α1EC |, . . . , sgn(α2nEC )

×
√

|α2nEC |
)T

. (8)

V. INVERSE KINEMATICS SOLUTION BASED ON

INSTANTANEOUS SIMILARITY AND MOVEMENT SMOOTHNESS

The inverse kinematics model aims at solving the optimal
servo displacements C = (c1 , c2 , . . . , cm ), given a target shape
vector S∗ = (x∗

1 , y
∗
1 , ..., x

∗
n , y∗

n ), based on the forward kine-
matics model [5]. As A is not a square matrix, direct matrix
transform method is not suitable. Thus, optimization is required
to obtain the optimal solution, and the target function can be
defined as

min
C

Δ = ‖S∗ − Ψ(S0 , C0 , C)‖
∥
∥
∥S∗ − S0

(
sgnα1E

C
√

|α1EC |, . . . ,

sgn
(
α2nEC

)√

|α2EC | )
∥
∥
∥

s.t. 0 ≤ cj ≤ 255, j = 1, 2, . . . , m. (9)

In (9), shape consistency is considered without movement
smoothness. However, facial expression learning for a robot is a
dynamic process; it should maintain not only the shape consis-
tency with the target shape vector for instantaneous similarity,
but also movement smoothness to avoid zigzag effect and to pro-
tect servo hardware and facial silicone skin [18], [39], [40]. In
addition, the humans are more sensitive to movement smooth-
ness during human–computer interactions [3]. Apart from the
forward kinematics model for reflecting the nonlinear relation-
ships between the servo displacement vectors and their cor-
responding shape vectors, servo movement trajectory also is
addressed for movement smoothness. Thus, trajectory predic-
tion model is established to wrap servo displacements based on
a polynomial function.

The movement trajectories for the servo displacements
C(t) = (c1(t), . . . , cj (t), . . . , cm (t))T at moment t can be

expressed by a set of orthogonal polynomial time functions

C(t)= Φ(t) = (
P∑

p=0

b1
p t

p , . . . ,

P∑

p=0

bj
p t

p , . . . ,

P∑

p=0

bm
p tp)T (10)

where P is the highest power of the polynomial function
and bj = (bj

0 , . . . , b
j
p . . . , bj

P )T (1 ≤ j ≤ m) represents the co-
efficient of polynomial function for the jth servo displace-
ment. In solving for these coefficients, the history series
C(tk ) = (c1(tk ), . . . , cj (tk ), . . . , cm (tk ))T (k = 1, 2, . . . , d) of
d moments before moment t, are collected, and the least squared
error [41] is defined as

min
bj

Qj =
d∑

k=1

(

cj (tk ) −
P∑

p=0

bj
p tk

p

)2

, 1 ≤ j ≤ m.

By solving m objective functions, the estimate values of
{bj}m

j=1 can be obtained as follows:

B = (b1 , . . . , bj , . . . , bm ) = (RT R)−1RT U (11)

where

R =

⎛

⎜
⎜
⎜
⎜
⎝

1t1 · · · tP −1
1 tP1

· · · · · · · · · · · · · · ·
1tk · · · tP −1

k tPk
· · · · · · · · · · · · · · ·
1td · · · tP −1

d tPd

⎞

⎟
⎟
⎟
⎟
⎠

U =

⎛

⎜
⎜
⎜
⎜
⎝

c1(t1) · · · cj (t1) · · · cm (t1)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1(tk ) · · · cj (tk ) · · · cm (tk )
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1(td) · · · cj (td) · · · cm (td)

⎞

⎟
⎟
⎟
⎟
⎠

. (12)

In (12), tk = t − k • T (1 ≤ k ≤ d) and T is the interval
between adjacent frames. With the obtained coefficient values,
the servo displacements at moment t can be predicted as

C(t) =

(
P∑

p=0

b1
p t

p , . . . ,

P∑

p=0

bj
p t

p , . . . ,

P∑

p=0

bm
p tp

)T

= (uB)T =
((

RT R
)−1

RT U
)T

uT = UT R
(
RT R

)−1
uT

(13)

where u = (1, t, . . . ,tP −1 ,tP ). Given the target shape vector
S∗(t) and the servo trajectory prediction Φ∗(t) at moment t, and
by combining the forward kinematics model and the trajectory
prediction model, the target function (9) can be improved, and
the optimal servo displacement vector C(t) can be obtained by
using

min
C (t)

J (C(t)) = g ‖S∗(t) − Ψ (S0 , C0 , C(t))‖

+ (1 − g) ‖C(t) − Φ∗(t)‖
s.t. 0 ≤ cj (t) ≤ 255, j = 1, 2, . . . ,m. (14)

In (14), the first item allows for the least shape deviation for
instantaneous similarity, and the second item ensures movement
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smoothness under the constraints of the predicted servo trajec-
tory. The factor g ∈ [0, 1] is used for weighting instantaneous
similarity and movement smoothness. The higher the g value is,
the more weight should be given to the instantaneous similarity;
conversely, the smaller the g value is, more weight should be
given to movement smoothness.

For solving the nonlinear optimization problem with multiple
constraints in (14), the exterior point penalty function method
[16] is used. The new penalty function can be expressed as

min ϕ (C (t) , rk )

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J (C (t)) (in the feasible domain)

J (C (t)) + rk

(
(C (t) − 255)T (C (t) − 255)

+C(t)T C (t) )

(outside the feasible domain)

(15)

where rk (k ∈ [1,+∞)) is the penalty factor meeting the incre-
mental sequences 1, 2, . . . , 2k , . . .. Thus, the multiconstraint op-
timization problem J(C(t)), with 2m conditions, is converted
into unconstrained optimization problem ϕ(C(t), rk ), which
can be solved by a gradient descent algorithm, and its iterative
formula is expressed as follows:

Cq+1
k (t) = Cq

k (t) − γ∇ϕ (Cq
k (t), rk ) (16)

where γ is the constant learning rate, Cq
k (t) represents the

servo displacements of the qth step iteration when rk = 2k ,
and ∇ϕ(C(t), rk ) represents the gradient information of C(t),
which can be expressed as

∇ϕ (C(t), rk ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dJ (C(t))
dC(t)

(in the feasible domain)

dJ (C(t))
dC(t)

+ rk (2C(t) − 255)

(outside the feasible domain)
(17)

where

dJ (C(t))
dC(t)

= − 2g
dΨ (S0 , C0 , C(t))

dC(t)

× (S∗(t) − Ψ (S0 , C0 , C(t)))

− (1 − g) (C(t) − Φ∗(t))

and

dΨ (S0 , C0 , C(t))
dC(t)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dΨ1(•)
dc1(t)

· · · dΨl(•)
dc1(t)

· · · dΨ2n (•)
dc1(t)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
dΨ1(•)
dcj (t)

· · · dΨl(•)
dcj (t)

· · · dΨ2n (•)
dcj (t)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
dΨ1(•)
dcm (t)

· · · dΨl(•)
dcm (t)

· · · dΨ2n (•)
dcm (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Fig. 3. Experimental setup used for data collection for solving forward kine-
matics model.

where

dΨl(•)
dcj (t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sgn(α2i−1E
C )sgn (cj (t) − cj0) a2i−1j (cj (t) − cj0)

2
√
|α2i−1EC |

(l = 2i − 1)

sgn(α2iE
C )sgn (cj (t) − cj0) a2ij (cj (t) − cj0)

2
√

|α2iEC |
(l = 2i)

.

The final optimal servo displacements C∗(t) with movement
similarity and smoothness at moment t are calculated as

C∗(t) = arg min
C (t)

J (C(t)) = arg min
C (t)

ϕ (C(t), rk+1) . (18)

VI. AUTOMATIC FACIAL EXPRESSION LEARNING METHOD

Human imitation is a straightforward method for humanoid
robots to achieve human-like facial expressions [1], [7]. If the
target shape vector S∗(t) originates from a human performer,
the optimal servo displacements C∗(t) can be calculated based
on the inverse kinematics model so that the facial expressions
of the robot are similar to those of the performer. Thus, an
automatic expression learning method is proposed, which is
divided into two stages: 1) the offline solution of the forward
kinematics model and 2) the online facial expression learning
from humans.

VII. EXPERIMENT AND ANALYSIS

A. Evaluation of the Proposed Automatic Expression Learning
Method

1) Evaluation of the Forward Kinematics Model: We con-
duct experiments to assess the effectiveness and performance
of the forward kinematics model, based on the energy conser-
vation principle. Fig. 3 shows the experimental setup used for
data collection. In the experiment setup, a Logitech camera with
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Algorithm 1: Offline Solution of the Forward Kinematics
Model.

Input: Initial servo displacement vector
C0 = (c10 , . . . , cj0 . . . , cm0) and its corresponding initial
shape vector S0 = (x10 , y10 , . . . , xi0 , yi0 , . . . , xn0 , yn0) of
the robot, and size K of the training set
D = {EC (k) , ES (k)}K

k=1 .
Output: Coefficient matrix A.
1: k ← 1.
2: while k ≤ K do
3: j ← 1.
4: while j ≤ m do
5: cj ← 255 × rand().
6: EC

j ← sgn(cj − cj0) × (cj − cj0)2 .
7: j ← j + 1.
8: end while
9: C ← (c1 , . . . ,cj , . . . ,cm ).

10: Drive the robot with the current servo displacements
C.

11: Gain current shape vector S ← (x1 , y1 , . . . , xn , yn ).
12: i ← 1.
13: while i ≤ n do
14: Ex

i ← sgn(xi − xi0) × (xi − xi0)2 .
15: Ey

i ← sgn(yi − yi0) × (yi − yi0)2 .
16: i ← i + 1.
17: end while
18: EC (k) ← (EC

1 , . . . , EC
j , . . . , EC

m ),
ES (k) ← (Ex

1 , Ey
1 , . . . , Ex

i , Ey
i , . . . , Ex

n , Ey
n ).

19: k ← k + 1.
20: end while
21: X ← (EC (1) · · ·EC (k) · · ·EC (K ))T ,

Y ←
(
ES (1) · · ·ES (k) · · ·ES (K )

)T
.

22: A ← Y T X(XT X)−1 .

HD1080P, installed at an optimum distance (40–50 cm) from the
robot, is oriented directly toward the head of the robot and used
for capturing facial expression images at 10 frames/s. To main-
tain a constant ambient light and best tracking performance, two
LED light sources are placed at the side of the robot. To collect
training data, m(m= 7) servo displacements, which constitute
the servo displacement vector, are randomly generated and sent
to XIN-REN’s servo controller for corresponding facial expres-
sions at the same frequency as that of the HD camera. Within
every interval (100 ms), the servo displacements remain sta-
tionary, and the open source AAMlibrary-2.5 is applied to track
its corresponding n (n= 48) feature points for the expression
shape vector S (48×2 dimensions). To eliminate rigid head and
shoulder motions, S is scaled and rotated to match the initial
shape S0 . Synchronously, the pairs of C and its corresponding
S, which is regarded as the ground truth for actual feature points
positions, are recorded for solving the coefficient matrix A.

Using the experimental setup shown in Fig. 3, 15 000 facial
images {(C(k), S(k))}15 000

k=1 are collected and used for veri-
fying the rationality and reliability of the forward kinematics
model. To ensure that the test samples will not be used during

Algorithm 2: Online Facial Expression Learning From Hu-
mans.

Input: Initial servo displacement vector C0 and its
corresponding initial shape vector S0 of the robot,
coefficient matrix A, polynomial power P , frame rate T ,
history movement window size d, weighting factor g, and
termination threshold ε.
Output: Servo displacement series for the robot to generate
facial expressions similar to those of the human performer.
1: t ← 0.
2: while true do
3: Obtain the shape vector S∗(t) of human performer

from a camera at moment t.
4: Align S∗(t) with S0 by singular value

decomposition method [42].
5: if t <= d then

C∗(t) ← arg min
C (t)

‖S∗(t) − Ψ(S0 , C0 , C(t))‖.

6: else
7: k ← 1.
8: while k ≤ d do
9: tk ← t − k × T .

10: Rk ← (1tk · · · tP −1
k tPk ).

11: Uk ← (c1(tk ) · · · cj (tk ) · · · cm (tk )).
12: k ← k + 1.
13: end while
14: Set

R ← (R1 · · ·Rk · · ·Rd)T ,U ← (U1 · · ·Uk · · ·Ud)T ,
u ← (1, t, . . . ,tP −1 ,tP ).

15: Φ∗(t) ← UT R(RT R)−1uT .

16: C∗(t) ← arg min
C (t)

(
g‖S∗(t) − Ψ(S0 , C0 , C(t))‖
+(1 − g)‖C(t) − Φ∗(t)‖ ).

17: end if
18: Send the optimal servo displacements C∗(t) to the

robot through built-in RS232C interface.
19: t ← t+T
20: end while

training, 15 000 normalized samples are randomly divided into
two groups. The first group comprises the K samples, which
are grouped as the training set D = {(EC (k) , ES (k))}K =10 000

k=1
and used for training the forward kinematics model and ob-
taining coefficient matrix A. The second group, comprising
the remainder of the samples, functions as the testing set
T = {(EC (k) , ES (k))}q=500

k=1 . The root mean squared error [7],
[27] is used to evaluate the shape deviation RMSES (k) of the
test sample k, and the position deviation RMSEi of feature
point i

RMSES (k) =
1
n

n∑

i=1

√

(xik − x̂ik)
2 + (yik − ŷik)

2

RMSEi =
1
q

q∑

k=1

√

(xik − x̂ik)
2 + (yik − ŷik)

2 (19)
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TABLE I
FUNCTIONS AND DOFS OF SEVEN HEAD SERVOS

Servos Function DOFs

CH1 Eyebrow up/down 2
CH2 Cheek upward 1
CH3 Eyelid opening/closing 2
CH4 Eyeball right/left 2
CH5 Eyeball up/down 2
CH6 Mouth opening/closing 2
CH7 Mouth corner contraction 1

TABLE II
RESULTS FROM THREE FORWARD KINEMATICS MODEL METHODS

Method Shape deviation(pixels) Position deviation(pixels)

linear model 9.12 ± 2.34 6.71 ± 1.13
BP model[33] 5.31 ± 1.23 3.25 ± 0.43
Our proposed model 3.56 ± 1.43 2.09 ± 0.95

where (xik ,yik) and (x̂ik ,ŷik) represent the actual position
tracked by the AAM algorithm and the output position estimated
by the forward kinematics model of feature point i, respectively.
To further explain the advantages of the proposed model, the pro-
posed nonlinear forward kinematics model is compared with a
linear model, in which the mapping relation is only fitted by a
one-order linear equation, and a BP model [33]. Meanwhile, to
further test the robustness of different models and reduce ran-
domness, the average predictable deviations of ten experiments,
which involve different and random partitioning of samples into
the training and testing sets, are counted through ten-fold cross
validation. The mean shape deviation and the mean position
deviation of the three models are shown in ?? Table II. The
results in Table II show that the mean shape deviation and the
mean position deviation of the proposed model does not exceed
6 pixels and 3 pixels (with the face region w = 100, h = 150),
respectively. Compared with other models, the shape and posi-
tion deviations of the proposed model are smaller, whereas its
variance is not as good as that of the BP model.

To further illustrate the significant differences between dif-
ferent models, the Student’s t test method is applied to mul-
tiple pairwise comparison tests. Meanwhile, to counteract the
problem of multiple comparisons, Bonferroni’s multiple com-
parisons correction [43], which is regarded as the simplest and
most conservative method to control the family-wise Type I er-
ror, is applied. Instead of following the procedure of adjusting
the statistical significance level by dividing it with the num-
ber of comparisons, the equivalent procedure of adjusting the
p-value of each hypothesis by multiplying it with the number
of comparisons is adopted [44]. Specifically, the two indepen-
dent hypotheses (linear model versus our proposed model, and
BP model versus our proposed model) are tested for each de-
viation index (shape deviation or position deviation) with the
same data at 0.05 significance level; thus, the adjusted p-value
holds twice the p-value. Both these values, as well as 95%
confidence intervals, are reported in Table III, which shows sig-
nificant differences at the adjusted p-value < 0.01 between the

TABLE III
DIFFERENCES FORM MULTIPLE PAIRWISE COMPARISON TESTS

Method Our proposed model

Deviation p-value Adjusted 95% Confidence
p-value Interval for Mean

linear model Shape deviation <0.0001 <0.0001 [3.70 7.38]
Position deviation <0.0001 <0.0001 [3.68 5.57]

BP model[33] Shape deviation 0.0114 0.0228 [0.50 3.00]
Position deviation 0.0013 0.0026 [0.59 1.74]

scores for our proposed model and the linear model. Moreover,
our proposed model is still superior to the BP model because of
the adjusted p-value < 0.05, although the differences between
the two models are not significant at the adjusted p-value>0.01.
Considering the smaller deviations in the mean shape and the
mean position of our proposed model (see Table II), as well
as the adjusted p-values of the pairwise comparison tests (see
Table III), we conclude that our proposed model has better reli-
ability in shape deviation and position deviation than the linear
model and the BP model.

The position deviation RMSEi in (19) reflects the holistic
displacement deviation of feature point i; however, our for-
ward kinematics model is built based on horizontal potential
energy and vertical potential energy. Hence, the normalized hor-
izontal deviation RMSEx

i and the normalized vertical deviation
RMSEy

i for feature point i are calculated as follows:

RMSEx
i =

1
q

q∑

k=1

√

(
xik − x̂ik

w
)
2

,

RMSEy
i =

1
q

q∑

k=1

√

(
yik − ŷik

h
)
2

.

Fig. 4 shows the statistical results, which indicate certain dif-
ferences between the predicted deviations of 48 feature points.
For instance, the deviations (RMSEx

3 and RMSEy
3 ) of feature

point 3 (the tip of nose) are zero because this point is used as
the alignment reference point for each test sample. These are the
greatest normalized horizontal deviations at RMSEx

7 = 2.3%
(just as 2.3 pixels with the width of face region w = 100), and
the greatest normalized vertical deviations RMSEy

12 = 2.4%
(just as 3.6 pixels with the height of face region h = 150).

As the feature points are distributed mainly in the facial re-
gions, such as eyebrow, eyes, and mouth, the deviations of these
facial regions can very well reflect the prediction ability of for-
ward kinematics model. From the deviations statistics of six
facial regions, presented in Table IV, it can be seen that lower
horizontal deviations are in the mouth and eyeball regions, and
better prediction performance for vertical deviations in the cheek
and eyes regions, whereas larger horizontal and vertical devia-
tions are in the jaw region. A reasonable explanation for these
observations is that the facial regions (such as eyes, mouth,
cheek) are influenced by only a single servo, whereas the jaw
region is codetermined by multiple servos owing to kinematic
constraints.
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Fig. 4. Horizontal and vertical deviations for feature points 1-48.

TABLE IV
COMPARISON OF DEVIATIONS FOR DIFFERENT FACIAL REGIONS

Facial Serial of Number of Horizontal Vertical
regions feature points feature points deviations(%) deviations(%)

Eyebrow 13– 22 10 1.12 ± 0.45 1.33 ± 0.07
Eyes 23–38 16 1.00 ± 0.27 0.90 ± 0.08
Eyeball 1-2 2 0.97 ± 0.11 0.94 ± 0.03
Mouth 4, 5, 39–44 8 0.46 ± 0.30 0.97 ± 0.25
Cheek 45–48 4 1.05 ± 0.14 0.55 ± 0.12
Jaw 6–12 7 1.33 ± 0.71 1.81 ± 0.44

The foregoing evaluation results show that our proposed for-
ward kinematics model, which is built based on the energy
conservation principle, not only has littler shape deviations and
position deviations, but also retains smaller deviation in key
facial regions, such as the mouth and the eyes, which play a
critical role in characterizing different expressions.

2) Evaluation of the Inverse Kinematics Solution Based
on Movement Similarity and Movement Smoothness: Inverse
kinematics solution is the process of finding the optimal servo
displacements to maintain movement similarity with a human
performer and movement smoothness with servo trajectory.
Differing from the experiment setup for the forward kinematics
model evaluation in which the data is recorded when the robot
is in random state, the data for the inverse kinematics solution
evaluation is collected by driving the robot to follow fixed
sequences designed by animators in advance.

First, six expression categories (happy, anger, disgust, sad,
surprise, fear) of the robot are arranged by animators, and five
facial sequences with neutral-peak-neutral facial expression in-
tensity variations are collected for each category. For each se-
quence, the shape vector S(t) at moment t, and the d(d = 10)
history servo displacement vectors {C(ti)}d

i=1 before moment t,
are used as inputs, and the servo displacement vector C(t) is
regarded as the output. Then, M (M = 500) testing vectors at
different moments tk are randomly collected and grouped as

Fig. 5. Statistics from servo displacement deviations with g= 0.6.

T1 = {((S(tk ),Φ(tk )), C(tk ))}M
k=1 for the inverse kinematics

solution (ε= 10−4); the average servo deviation RMSEC
j for

servo j can be defined as

RMSEC
j =

1
M

M∑

k=1

√

(
ĉjk − cjk

255
)
2

, j = 1, 2, . . . , 7

where cjk and ĉjk represent the actual displacement designed
by animators and the output displacement estimated by inverse
kinematics solution of servo j, respectively. The performance
of inverse kinematics solution based on movement similarity
is tested by using a ten-fold cross-validation. Fig. 5 shows the
servo displacement deviations for M test samples with g= 0.6,
which will be discussed in the forthcoming section on influence
of parameter setting.

Fig. 5 shows that the servo displacement deviations, CH4
(Eyeball right/left) and CH5 (Eyeball up/down), with relatively
fewer feature points, are small. Ideally, the smaller the servo
displacement deviations, the better the instantaneous similarity
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with target servo displacements. In practice, the displacement
deviations for servos, associated with mouth (CH6), eyelids
(CH3), and eyebrows (CH1), are relatively large. This can be
attributed to the large number of feature points influenced by
these servos, which results in the inaccuracy of the reverse solu-
tion of the servo displacements. But, viewed against the average
servo displacement deviations, which do not exceed 0.8% (just
as 2 with the maximum of servo displacement 255), the inverse
kinematics solution can still be considered as having good pre-
dictive ability for finding the optimal servo displacements to
maintain movement similarity.

Although Fig. 5 reflects the performance of the inverse kine-
matics solution with an instantaneous similarity, it measures
neither the movement similarity nor smoothness of the imitation
trajectory. Since these sequential indicators are more important
for the subjective experience of humans [8], we further evaluate
the performance of an online expression learning from a human
performer, who performs all kinds of facial expressions with
neutral-peak-neutral variations. The expression shape vectors
of the performer are captured at the rate of 30 frames/s and
regarded as the robot’s target expression shape vectors. The se-
quential indicators of space-similarity GS , time-similarity GT ,
and movement smoothness GD , measured by servo hopping
during t1 to tL , following the method proposed by Zhu et al.
[45], are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GS = 1
n

n∑

i=1

(
1
L

L∑

k=1
F

(
dH

i (tk ) − dR
i (tk ), bS

)
)

GT = 1
n

n∑

i=1

(
1
L

L∑

k=1
F

(
dH

i (tk ) − dH
i (tk−1)

−
(
dR

i (tk ) − dR
i (tk−1)

)
, bT

))

GD = 1 − 1
L

L∑

k=1

1
m

m∑

j=1
G (cj (tk ))

where L = T = 30 is the frame rate of camera;(xH
i (t), yH

i (t))
and (xR

i (t), yR
i (t)) represent the ith feature point posi-

tions of the performer and robot at moment t, respec-
tively; (xH

i0 , yH
i0 ) and (xR

i0 , y
R
i0) represent the ith feature

point initial positions of the performer and robot, re-

spectively; dH
i (t) =

√

(xH
i (t) − xH

i0 )2 + (yH
i (tk ) − yH

i0 )2 ,

dR
i (t) =

√

(xR
i (t) − xR

i0)
2 + (yR

i (tk ) − yR
i0)

2 are the ith fea-
ture point displacement of the performer and robot at moment t,

respectively; F (x, b) = e
−x2

/b is a fitting function that
converts the deviation parameter x to 0–1 similarity, and b
is the parameter used to control the mapping performance.
G(cj (tk )) indicates whether the displacement of jth servo
exists unsmoothed hopping at moment tk , and is measured as

G(cj (tk )) =

{
1, ||cj (tk ) − cj (tk−1)| − |cj (tk−1) − cj (tk−2)|| > TD

0, other.

Eventually, through ten-fold cross-validation, bS is set to 0.3
for space similarity, bT is set to 0.5 for time similarity, and TD

Fig. 6. Statistics of servo displacements with different g values.

Fig. 7. Statistics of three sequential indicators with different g values.

is set to 10. The statistical results, based on 20 expression se-
ries learned from the performer, illustrate that the average space
similarity, time similarity, and movement smoothness are 93.1,
90.5, and 86.8, respectively. The values of average space simi-
larity and time similarity reflect the similarity of the imitation
trajectory with the performer’s facial actions, whereas the value
of the average movement smoothness reflects the smoothness of
continuous servo motions.

3) Influence of Parameter g Setting: The effects of param-
eter setting of weighting factor g are discussed in this section.
The parameter g is introduced in (14) to weight instantaneous
similarity and movement smoothness. To investigate its effect on
servo displacements and three sequential indicators, we change
g from 0 to 1 by a step of 0.2, and the experimental results
are shown in Figs. 6 and 7. Fig. 6 illustrates that the servos have
large displacement deviations when g is zero ((14) considers
only movement smoothness, but not movement similarity), and
the displacement deviations gradually drop with increase in g.
However, Fig. 7 shows, with increase in g, the space similarity
and time similarity increase, whereas the movement smooth-
ness descends. Hence, g is set to 0.6 for balancing movement
similarity and movement smoothness.

4) Evaluation of the Different Methods: The purpose of this
experiment is to evaluate the robot expressions generated using
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Fig. 8. Comparison of servo displacement deviations versus 4 methods.

TABLE V
COMPARISON OF SEQUENTIAL INDICATORS VERSUS FOUR METHODS

Sequential indicators Space-similarity Time-similarity Movement smoothness

Jaeckel method [7] 85.4 85.2 83.3
Trovato method [13] 84.4 83.9 87.6
Habib method [14] 87.8 86.1 84.3
Our proposed method 93.9 91.5 86.1

different methods. To this end, the XIN-REN servo displacement
deviations are compared with three sequential indicators us-
ing the state-of-the-art humanoid expression generation systems
(Jaeckel method [7], Trovato method [13], and Habib method
[14]). Based on the same testing set T1, the prediction devia-
tions of different methods are compared. Fig. 8 indicates that
the four methods present small prediction deviations for eyeball
movement (CH4, CH5) and the opening/closing of the mouth
(CH6), but large prediction deviations for the upward/downward
movement of the eyebrows (CH1) and upward movement of the
cheek (CH2). However, our proposed method presents smaller
prediction deviations than other methods, thus establishing the
validity of the inverse kinematics solution, based on the con-
straints of movement similarity and movement smoothness.

Meanwhile, 20 expression series from the performer are cap-
tured for the robot for online imitation. The performances of
the methods in terms of three sequential indicators are shown in
Table V. The results show that the Trovato method [13], which
employs a facial cue model and polynomial classifier to solve the
robotic cue variables from a prepared facial cue table, presents
lower movement similarity but higher movement smoothness,
because the facial cues are checked by animators. The move-
ment similarity and the smoothness of the linear Jaeckel method
[7], which is based on position information, are inferior to the
proposed nonlinear method and the Habib method [14], which
builds the mapping relations based on a neural network. Com-
pared with the Habib method [14], the proposed method not
only exhibits accurate servo displacements for a single-frame
instantaneous similarity but also retains smooth motion for the
multiframe expression imitation under the constraints of pre-
dicted servo trajectory.

B. Limitation of Our Method

The evaluations conducted prove that the proposed system
can reproduce a natural and less hardwired robot expression.
However, the proposed method has some limitations.

1) A person-specific AAM [46] instead of a generic AAM
is used to fit the face model to improve the precision
of 48 feature points [47]. However, the person-specific
AAM is designed to model the appearance variation of a
single person only. Thus, the online expression learning
method demonstrates that the imitation performance of
performers, whose images are not used for training AAM
model, is poor.

2) The solution of the nonlinear forward kinematics model,
which is converted into the linear relationships based on
the energy conservation principle, weakens the many-to-
many relationships between the servos and the feature
point positions to some degree, as a result of which the
deviations of servos, associated with more feature points,
become larger.

3) During the experiment, some subtle facial features, such
as squint, mouth contraction, frown, and upward cheek
movement, demonstrate small shape deviations with re-
spect to the target shape vectors of the performer, even
when no actual mapping quality is maintained, in terms
of human visual characteristics.

VIII. CONCLUSION

Subject to the complex kinematic constraints of the humanoid
robot XIN-REN, an automatic facial expression learning method
has been proposed by extending its facial expressions through
learning from a human performer. The evaluation results es-
tablish the rationality and reliability of the forward kinematics
model and the validity of the inverse kinematics solution un-
der the constraints of instantaneous similarity and movement
smoothness. In addition, the influence of g on the sequential
indicators is discussed. Compared with other state-of-the-art
humanoid expression generation systems, the proposed system
not only keeps lower servo displacement deviations for a single
frame instantaneous similarity, but also retains better movement
smoothness for multiple frames expression imitation.

ACKNOWLEDGMENT

The authors would like to thank T. Cootes for providing cali-
bration tools and Y. Wei for providing AAMlibrary-2.5.

REFERENCES

[1] V. Manohar and J. W. Crandall, “Programming robots to express emotions:
Interaction paradigms, communication modalities, and context,” IEEE
Trans. Human-Mach. Syst, vol. 44, no. 3, pp. 362–373, Jun. 2014.

[2] J. W. Park, H. S. Lee, and M. J. Chung, “Generation of realistic robot facial
expressions for human robot interaction,” J. Intell. Robot. Syst., vol. 78,
no. 3, pp. 443–462, Jun. 2015.

[3] H. S. Ahn, D. W. Lee, D. Choi, D. Y. Lee, H. G. Lee, and M. H. Baeg,
“Development of an incarnate announcing robot system using emotional
interaction with humans,” Int. J. Humanoid Robot., vol. 10, no. 2, pp. 1–24,
Jun. 2013.



REN AND HUANG: AUTOMATIC FACIAL EXPRESSION LEARNING METHOD BASED ON HUMANOID ROBOT XIN-REN 821

[4] D. C. Lin, D. Godbout, and A. N. Vasavada, “Assessing the perception
of human-like mechanical impedance for robotic systems,” IEEE Trans.
Human-Mach. Syst, vol. 43, no. 5, pp. 479–486, Sep. 2013.

[5] A. Dhall and R. Goecke, “Facial performance transfer via deformable
models and parametric correspondence,” IEEE Trans. Vis. Comput.
Graphics, vol. 18, no. 9, pp. 1511–1519, Sep. 2012.

[6] G. Gibert, Y. Leung, and C. J. Stevens, “Control of speech-related facial
movements of an avatar from video,” Speech Commun., vol. 55, no. 1,
pp. 135–146, Jan. 2013.

[7] P. Jaeckel, N. Campbell, and C. Melhuish, “Facial behavior mapping-
From video footage to a robot head,” Robot. Auton. Syst., vol. 56, no. 12,
pp. 1042–1049, Dec. 2008.

[8] H. Yu and H. H. Liu, “Regression-based facial expression optimization,”
IEEE Trans. Human-Mach. Syst, vol. 44, no. 3, pp. 386–394, Jun. 2014.

[9] Y. Tadesse and S. Priya, “Graphical facial expression analysis and design
method: An approach to determine humanoid skin deformation,” J. Mech.
Robot., vol. 4, pp. 021010-1–021010-16, May 2012.

[10] H. Kamide, Y. Mae, T. Takubo, K. Ohara, and T. Arai, “Direct comparison
of psychological evaluation between virtual and real humanoids: Personal
space and subjective impressions,” Int. J. Human-Comput. Stud., vol. 72,
no. 5, pp. 451–459, May 2014.

[11] M. Shayganfar, C. Rich, and C. Sidner, “A design methodology for ex-
pressing emotion on robot faces,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots. Syst., Oct. 2012, pp. 4577–4583.

[12] Y. Kondo, K. Takemura, J. Takamatsu, and T. Ogassawara, “A gesture-
centric android system for multi-Party human-robot interaction,” J.
Human–Robot Interact., vol. 2, no. 1, pp. 133–151, Mar. 2013.

[13] G. Trovato, M. Zecca, T. Kishi, and N. Endo, “Generation of humanoid
robot’s facial expressions for context-aware communication,” Int. J. Hu-
manoid Robot., vol. 10, no. 1, pp. 1350013-1–1350013-22, Apr. 2013.

[14] C. Becker-Asano and H. Ishiguro, “Evaluating facial displays of emotion
for the android robot Geminoid F,” in Proc. IEEE Workshop Affective
Comput. Intell., Apr. 2011, pp. 1–8.

[15] N. Smolyanskiy, C. Huitema, L. Liang, and S. E. Anderson, “Real-time
3D face tracking based on active appearance model constrained by depth
data,” Image Vis. Comput., vol. 32, no. 11, pp. 860–869, Nov. 2014.

[16] M. H. Farag, W. A. Hashem, and H. H. Saleh, “A penalty function approach
for solving inequality constrained optimization problems,” Int. J. Math.
Archive, vol. 5, no. 7, pp. 33–40, Jul. 2014.

[17] F. Wilbers, C. Ishi, and H. Ishiguro, “A blendshape model for mapping
facial motions to an android,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2007, pp. 542–547.

[18] N. Mavridis, “A review of verbal and non-verbal human-robot interactive
communication,” Robot. Auton. Syst., vol. 63, no. 1, pp. 22–35, Jan. 2015.

[19] F. REN and K. Matsumoto, “Semi-automatic creation of youth slang
corpus and its application to affective computing,” IEEE Trans. Affective
Comput., vol. 7, no. 2, pp. 176–189, Jul. 2015, doi: 10.1109/TAFFC.2015.
2457915.

[20] A. Habib, S. K. Das, I. C. Bogdan, D. Hanson, and D. O. Popa, “Learning
human-like facial expressions for android Phillip K. Dick,” in Proc. IEEE
Int. Conf. Autom. Sci. Eng., Aug. 2014, pp. 1159–1162.

[21] L. Canamero and J. Fredslund, “I show you how I like you—Can you read
it in my face?” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 31,
no. 5, pp. 454–459, Sep. 2001.
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