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Human Activity Recognition Process Using 3-D
Posture Data

Salvatore Gaglio, Member, IEEE, Giuseppe Lo Re, Senior Member, IEEE, and Marco Morana

Abstract—In this paper, we present a method for recognizing
human activities using information sensed by an RGB-D camera,
namely the Microsoft Kinect. Our approach is based on the es-
timation of some relevant joints of the human body by means
of the Kinect; three different machine learning techniques, i.e.,
K-means clustering, support vector machines, and hidden Markov
models, are combined to detect the postures involved while per-
forming an activity, to classify them, and to model each activity as
a spatiotemporal evolution of known postures. Experiments were
performed on Kinect Activity Recognition Dataset, a new dataset,
and on CAD-60, a public dataset. Experimental results show that
our solution outperforms four relevant works based on RGB-D im-
age fusion, hierarchical Maximum Entropy Markov Model, Markov
Random Fields, and Eigenjoints, respectively. The performance we
achieved, i.e., precision/recall of 77.3% and 76.7%, and the ability
to recognize the activities in real time show promise for applied
use.

Index Terms—Human activity recognition, kinect.

I. INTRODUCTION

H ERE, we present a novel technique to perform user activ-
ity recognition by means of an unobtrusive motion sensor

device. In particular, we adopt the Microsoft Kinect as a mo-
tion sensor mainly due to its reliability, competitive cost, and its
usage for user tracking. The output of the framework proposed
here (i.e., the probability of the recognized activity) represents
one of the inputs of a more general activity recognition sys-
tem, which reasons about different information coming from
the sensing infrastructure.

Human activities can be described as spatiotemporal evolu-
tions of different body postures. We model the human body as
a set of joints connecting some relevant body parts (e.g., arms
or legs), and then, the most significant configurations of joint
positions are used to define recurrent postures.

Our solution uses three different machine learning techniques.
First, a set of body joints is detected by means of the Kinect.
Then, such a set is clustered by applying the K-means algo-
rithm in order to discover the postures involved in each activity.
The obtained postures are validated by support vector machines
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(SVMs) and hidden Markov models (HMMs) are finally applied
to model each activity as a sequence of known postures.

For more widespread applicability, we chose to connect the
Kinect to a miniature fanless computer, which is able to process
the scene with minimum levels of obtrusiveness and low power
consumptions (about 7 W).

Our current work includes three contributions. Our first con-
tribution is to design an activity recognition method able to guar-
antee an acceptable accuracy, real-time processing, low power
consumption. The second contribution is the release of the pub-
lic Kinect Activity Recognition Dataset (KARD), which con-
tains 18 Activities, divided into ten gestures and eight actions,
each performed three times by ten different subjects. The third
contribution is the validation of the proposed method against a
well-known public dataset.

This paper is organized as follows. Related work is outlined
in Section II. The system architecture is described in Section III.
Section IV presents the experimental scenario and the results for
two different datasets. Conclusions are presented in Section V.

II. RELATED WORK

First, we review some related activity recognition works based
on RGB or RGB-D streams. Then, we provide a brief description
of existing activity datasets.

A. Activity Recognition Methods

Early techniques focused on the processing of color images
captured by traditional RGB cameras. In [1], the human body
was represented in terms of silhouettes, extracted from RGB im-
ages, which were used as input to a framework based on HMM.
Silhouettes and discrete HMMs are also used in [2], where au-
thors applied Fourier analysis to describe the human silhouettes
and SVMs [3] to classify them into different postures. The gen-
eral weakness of the methods based on RGB data is that the
complexity of the processing chain (e.g., background removal,
vector quantization, image normalization), required to obtain ad-
equate silhouette features, limits real-time use. Moreover, such
systems are not robust enough to be applied in unconstrained
situations, e.g., environments with complex backgrounds or low
lighting conditions.

Dense approaches, as those based on salient points, which
do not require segmentation, have been also proposed. The
authors of [4] addressed the problem of activity recognition
by analyzing the appearance of some points that are salient
both in space and time. Each image sequence is represented in
terms of spatiotemporal salient points and classified by means of
K-nearest neighbor and relevance vector machines classifiers.
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An efficient technique based on a dense set of scale-invariant
spatiotemporal features is proposed in [5]. The use of temporal
scale-invariant features helps to recognize actions performed at
different speeds, but also leads to errors when the speed is rele-
vant to distinguish between similar actions (i.e., running versus
walking). These approaches are useful to capture the most rel-
evant cues of moving objects; thus, they perform well if the
observed scene is made of a single subject acting in front of
static background. Such a limit can be overcome by considering
advanced devices capable of capturing both visual and depth
information.

Some works addressed the problem of activity recognition
by using intrusive sensors, i.e., wearable sensors [6], [7]. Such
sensors provide more accurate information about the movements
of the body; however, totally unobtrusive sensors, e.g., video
sensors, are generally preferable to prevent users from wearing
any electronic equipment and dealing with its maintenance.

Following these considerations, our perspective is to consider
the Kinect as the primary sensor to transparently gather obser-
vations about users’ behavior [8].

The vision system of the Microsoft Kinect is composed of
two cameras (i.e., an RGB camera and an IR camera) with
640 × 480 resolution, and an IR projector that is responsible for
shooting infrared rays toward the environment. The distortion
degree of each ray projected against the scene is used to estimate
a depth map in which each pixel value represents the distance
of a specific 3-D point from the sensor.

Here, we review activity recognition approaches based on
data provided by the Kinect. In [9], human bodies are mod-
eled as a set of kinematic joints, and actions are defined by
the interactions that occur between subsets of these joints. The
authors proposed a new feature, called local occupancy feature
(LOP), to describe each 3-D joint and introduced the concept
of actionlet to define a particular conjunction of LOP features.
Due to the great number of possible actionlets, a data mining
technique is used to discover the most discriminative ones and
represent an action as an Actionlet Ensemble, i.e., a combination
of actionlets.

A posture-based approach for action recognition is presented
in [10]. The authors represent salient postures as a bag of 3-D
points obtained by projecting and sampling the depth maps onto
three orthogonal planes. Each posture is then associated with
a specific node of an action graph, which is used to model the
dynamics of different actions. This method yields better results
than those based on 2-D silhouettes; however, 3-D projections
obtained from the depth maps are usually quite noisy due to
low resolution of the sensor. Thus, further interpolation steps
are generally required to repair corrupted projections, and this
compromises the overall recognition time.

A histogram-based representation of human postures is pre-
sented in [11]. In this representation, the 3-D space is partitioned
into n bins using a spherical coordinate system so that each of
the 12 considered joints belongs to a bin with a certain level of
uncertainty. Linear discriminant analysis (LDA) for C classes is
performed to reduce the dimensions of the feature space from n
to C − 1, and the obtained features are clustered into K visual
words. The activities are then represented as sequences of vi-

sual words and recognized using discrete HMM classifiers. The
features are detected in real time using a C language program,
while activity recognition is simulated in MATLAB. The main
limitations of this approach are the adoption of a complex model
for representing the joints and the consequent need for reducing
the dimensionality of the feature vectors by means of LDA. In
[8], we observed that if the feature space already contains an
optimal set of features, the attempt of further reducing such a
space by means of principal component analysis or LDA does
not increase the overall performance of the system, but may
instead prevent the achievement of real-time processing.

An improved spherical angular representation is used in [12],
where a gesture recognition for natural user interface is de-
scribed. Different poses are defined according to the position of
nine joints (six torso joints are discarded), each represented by
a pair of spherical angles. A multiclass classifier is applied to
identify relevant poses; then, gesture recognition is performed
by means of a decision tree whose nodes represent key poses
and leafs are associated with gestures. The main limitation of
this approach is the need for designing and training the set of
key poses, which is often infeasible in dynamic environments
occupied by occasional users, e.g., offices.

The authors of [13] addressed the problem of reconstructing
valid movements from incomplete, i.e., noisy, postures captured
by the Kinect. In particular, broken postures are corrected by
searching through a motion database for similar postures, which
are kinematically valid. Although the method improves wrongly
detected postures, it assumes that the motion database always
contains postures similar to the ones performed by the user,
which is not always true in practical situations.

A method to obtain silhouettes from depth information only
is presented in [14]. This solution is motivated by the fact that
depth images are intensity invariant and then more robust to
appearance variations of the human body than RGB ones. The
authors trained their system by creating a codebook of body
poses so that a new human pose can be represented by its most
similar codeword. The major issue of this approach is related
to the background removal routine, which needs background
images to be known previously, or users to be located away from
the background. Such constraints are not always applicable to
real contexts.

The authors of [15] proposed an algorithm based on hierar-
chical maximum entropy Markov model (MEMM) to represent
a single activity as a composition of a set of subactivities. Each
subactivity is initially modeled by analyzing about 700 features
extracted from RGB and depth images; then, it is associated with
a high-level activity by means of a two-layer MEMM. In [16],
the problem of understanding human activities and their associa-
tion with object affordances was addressed. Activity recognition
was performed by means of Markov random fields whose nodes
represent objects and subactivities and edges represent their mu-
tual relations. A comparison with [15], [16], and other methods
using the CAD-60 dataset is reported in Section IV-E.

The framework proposed in [17] aims to demonstrate that
using both depth and grayscale data can improve the perfor-
mance of recognizing complex activities, e.g., users interacting
with objects in the environment. Experimental results show that
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promising recognition and localization accuracies can be ob-
tained, but a computation time analysis is missing. Therefore,
suitability for real-time applications is unknown.

The effectiveness of using both color and depth information
for activity recognition is also reported in [18]. The authors
collected a dataset, called RGBD-HuDaAct, which contains 12
activities performed by 30 different subjects at a distance of
about 3 m from a Kinect device. Results obtained by applying
multimodal feature representation, i.e., combining color and
depth information, are compared to the unimodal counterparts;
however, neither an evaluation of time consumption nor a com-
parison with other approaches is provided.

B. Activity Recognition Datasets

In [19], it is shown that to achieve good recognition rates,
collected data should ideally contain both correct examples
(correctness) and the set of the natural variations of the move-
ments associated with a gesture (coverage). We next provide an
overview of some public activity datasets.

The MSRC-12 dataset [19] consists of 12 gestures performed
by 30 people. The gestures are organized into two abstract
classes: iconic gestures that have a correspondence between
the gesture and the reference (crouch or hide, put on night vi-
sion goggles, shoot a pistol, throw an object, change weapon,
kick), and metaphoric gestures that represent an abstract concept
(start system/music/raise volume, navigate to next menu/move
arm right, wind up the music, take a bow to end music session,
protest the music, and move up the tempo of the song/beat both
arms). The provided files contain the coordinates of 20 joints
captured at a sample rate of 30 frames/s; however, some se-
quences are not useful since the estimation of the joints is not
accurate.

The MSRDailyActivity3D dataset [20] contains 16 activi-
ties performed in front of the Kinect sensor: drink, eat, read
book, call cellphone, write on a paper, use laptop, use vacuum
cleaner, cheer up, sit still, toss paper, play game, lie down on
sofa, walk, play guitar, stand up, and sit down. Each activity
was performed twice, once in standing position and once in
sitting position, by ten different subjects. Three channels were
recorded: depth maps (.bin), skeleton joint positions (.txt), and
RGB video (.avi). However, the RGB and depth channels were
recorded independently; therefore, they are not strictly synchro-
nized. Another lack of this dataset is that for each action, only
two different sequences (acquired in standing/sitting positions)
are provided; therefore, it is difficult to train and test a robust
classifier having just these few examples.

The MSRAction3D dataset [10] contains 20 actions repeated
three times by ten different subjects: high arm wave, horizon-
tal arm wave, hammer, hand catch, forward punch, high throw,
draw x, draw tick, draw circle, hand clap, two hand wave, side-
boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, and pickup and throw. Its main limita-
tion is that it was recorded by means of a depth sensor (similar
to the Kinect), which was not able to capture RGB information.

The dataset presented in [21], called LIRIS, was used for the
ICPR 2012 human activities and localization competition which

focused on the problem of recognizing complex human behav-
iors involving several people. LIRIS was captured by means of
two different cameras: a Kinect device mounted on a mobile
robot mobile delivering grayscale and depth images, and a con-
sumer camcorder delivering high-resolution videos. The actions
available in the dataset are: discussion of two or several people,
a person gives an item to a second person, an item is picked up
or put down, a person enters or leaves a room, a person tries to
enter a room unsuccessfully, a person unlocks a room and then
enters it, a person leaves baggage unattended, handshaking of
two people, a person types on a keyboard, and a person talks on
a telephone.

In [22], a multimodal dataset (Multimodal Human Action
Database MHAD—MHAD) is proposed. The MHAD database
contains 11 actions, performed by 12 individuals, captured by
means of an optical motion capture system based on 43 LED
markers, 12 multiview stereo vision cameras, two Microsoft
Kinect cameras, six three-axis wireless accelerometers, and four
microphones. The method proposed in [10] has been applied to
model the action sequence captured by each modality, while
Gehler and Nowozin [23] was used to combine various modal-
ity (e.g., motion capture and Kinect, motion capture and ac-
celerometers and Kinect, motion capture and accelerometers,
and Kinect and audio). Results show that using multimodal data
increases the recognition rate because multimodal features usu-
ally compensate for each other. However, hardware costs and
the needs for continuous maintenance (i.e., preserving both ge-
ometric calibration and temporal synchronization) limit use for
real-world activity recognition purposes.

The Cornell Activity Dataset (CAD-60) [15] contains 60
RGB-D videos of four subjects performing 12 activities (rins-
ing mouth, brushing teeth, wearing contact lens, talking on
the phone, drinking water, opening pill container, cooking-
chopping, cooking-stirring, talking on couch, relaxing on couch,
writing on whiteboard, and working on computer) in five differ-
ent environments (office, kitchen, bedroom, bathroom, and living
room). The authors also maintain a website [24] with reported
results of activity recognition techniques.

In [25], an activity recognition method based on a bag-of-
words model is proposed. The authors used SVMs with dynamic
time warping (DTW) kernel functions to restore temporal rela-
tionships within time series of codeword histograms. Tests were
performed on three different datasets including ReadingAct, a
novel dataset (not yet available for download) captured by means
of two Kinect devices, which contains 19 actions performed by
20 subjects. Results show that the DTW-SVM approach slightly
improves the results on long actions sequences, while it performs
as other state-of-the-art methods in general.

III. ACTIVITY RECOGNITION SYSTEM

The system proposed here (see Fig. 1) aims at automati-
cally inferring the activity performed by the user according
to a set of known postures. The system can be decomposed
into three components addressing three different aspects. The
first is responsible for features detection, that is for the extrac-
tion of a set of points to be used for distinguishing different
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Fig. 1. Images captured by the Kinect are processed to detect a set of joints,
which are subsequently normalized with respect to scale and position. These
joints represent the features used to define a set of postures, which are detected
by applying a K-means clustering and classified by means of SVMs. HMMs are
finally used to model an activity in terms of postures and classify new sequences
coming from the Kinect.

body postures. The detection and classification of such postures
is accomplished by the posture analysis techniques, based on
K-means and SVM, and, finally, activity recognition is per-
formed by means of HMMs built on the set of known postures.

A. Features Detection

The first processing step consists in identifying the features
of interest. Since our goal is to understand what activity the
user is performing at a given time, we need to track movements
focusing on those body parts, which are mostly involved while
executing a particular activity.

The human body consists of many interacting systems,
none of which can work in isolation. In particular, we started
from the musculoskeletal system, which is responsible for sup-
porting the human body and enabling its movements in ac-
cordance with the stimuli provided by the nervous system. To
describe the user’s movements, we chose to track the human
skeleton focusing on significant parts such as head, neck, torso,
arms, legs, hands, and feet. The different parts of the human
skeleton can be modeled as segments connected to each other
by nodes, called joints, which limit the movement of each body
part in the 3-D space.

Thus, the 3-D positions of some relevant joints can be used
to describe different movements of the body. To extract these
features, we adopted the Kinect device, which has been demon-
strated to be an unobtrusive sensor to perform real-time detec-
tion (i.e., to determine the 3-D coordinates) of a number of body
joints (see Fig. 2).

Unfortunately, due to the intrinsic noise of the sensor and
the peculiarities of the human body, not all joints are equally
informative; thus, a mechanism to select the most promising
ones is required. In [26], this task is accomplished by means of
an evolutionary algorithm, which determines the optimal subset
of skeleton joints according to a specific training set. Although
such an approach improves the recognition rate in the specific
case, the joint selection process is too data centric, and any
variation on the activity set causes the selection of different
subsets of joints.

Since we are interested in a more general representation suit-
able for a dynamic environment, we performed some prelimi-
nary tests to measure the relevance of the set of joints provided

Fig. 2. (a) Fifteen joints detected by means of the Kinect. Reference joints
(gray): neck, torso. Selected joints (black): head, elbows, hands, knees, feet.
Discarded joints (white): shoulders, hips. (b) Eleven joints of the feature set.

by the Kinect. In [8], due to the sensitiveness of the IR sen-
sor, some joints are misdetected if two segments overlap (e.g.,
hands touching other body parts), or not detected at all due to
the presence of objects between the sensor and the user. For this
reason, we evaluated the system by measuring the recognition
rates achieved on a limited number of selected subset of joints.

Some noisy joints that are redundant (i.e., wrists, ankles) due
to their closeness to other joints (i.e., hands, feet) or not relevant
at all for activity recognition (i.e., spine, neck, hip and shoulders)
have been discarded. The final set of joints we chose as features
is shown in black in Fig. 2(a), while the joints we discarded are
white.

Since the appearance of the skeleton depends on several fac-
tors, as, for example, the distance between the user and the
sensor, the detected features need to be normalized for scale.
For doing that, we moved the detected joints to a new coordi-
nate system fixed at the torso (considering as the x-direction the
left-right hip axis) and all features have been scaled according
to a reference distance, h, between the neck and the torso joints.
The reference joints are shown in gray in Fig. 2(a).

Thus, let Ji be one of the 11 joints detected by means of the
Kinect, the feature vector f is defined as

f = [ j1 , j2 , j3 , j4 , j5 , j6 , j7 , j8 , j9 , j10 , j11 ] (1)

where each ji is the vector containing the 3-D normalized coor-
dinates of the ith joint Ji detected by the Kinect. Thus

ji =
Ji

s
+ T, 1 ≤ i ≤ 11 (2)

being s the scale factor which normalizes the skeleton according
to the distance, h, between the neck and the torso joints of a
reference skeleton (detected offline)

s =
‖J4 − J2‖

h
(3)

and T the translation matrix needed to set the origin of the
coordinate system to the torso.

We do not normalize for rotation since some preliminary
results showed that the angle between the user and the Kinect
is an important cue for our method. This is mainly due to two
aspects. The first is that the rotation of the user with respect to
the Kinect is important for recognizing some full-body activities
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such as walk or take umbrella. In these cases, a rotation-invariant
representation would produce flat poses, which could be more
frequently misclassified. The second is that, even if it is usually
convenient to adopt a rotation invariant representation, we can
overcome this limitation by placing the Kinect within the office
so that almost frontal activities are observed.

B. Posture Analysis

As already mentioned, our idea is that each activity can be
considered as a sequence of different configurations of joints.
In order to identify those configurations that are effectively
related to meaningful users postures, a classification procedure
is needed.

SVMs [3] are supervised learning models used for binary
classification and regression, which aim to find the optimal sep-
arating hyperplane between two classes according to some la-
beled training samples. Unfortunately, building the training set
on large-scale data is a costly operation, which may also lead
to worse performance because of the presence of noise. Thus, a
more effective way of building the training set could be to se-
lect the most informative samples, that is, in our case, the most
recurrent joint configurations. We chose to perform such a se-
lection process by means of a clustering algorithm. In particular,
given the set of feature vectors (f1 , f2 , . . . , fn ), the K-means
algorithm is applied to partition the n observations into k sets,
C = (C1 , C2 , . . . , Ck ), so as to minimize the intracluster error

E =
k∑

j=1

∑

fi ∈Cj

‖fi − μj‖2 (4)

where μj is the mean value of the jth set, i.e., cluster, Cj .
The k generated clusters are representative of recurrent pos-

tures and can be used to train a multiclass SVM classifier on the
set T = {(C1 , L1) , (C2 , L2) , . . . (Ck , Lk )}, where (Ck , Lk ) is
the kth pair (cluster, cluster label) produced by K-means.

A multiclass SVM is usually implemented by combining
several binary SVMs according to three main strategies: one-
versus-all, one-versus-one, and directed acyclic graphs SVM.
Several studies addressed the issue of evaluating which is the
best multiclass SVM method, and both studies [27] and [28]
claimed that the one-versus-one approach is preferable to other
methods. For a problem with k classes, this strategy consists in
constructing k(k − 1)/2 SVMs classifiers, which are trained
to distinguish samples from two different classes. After all
k(k − 1)/2 classifiers are constructed, the classification is done
according to a “max wins” voting strategy.

The process of classifying the detected features into k classes
can be viewed as building a k-words vocabulary. Each posture
can be represented as a single word of the vocabulary, i.e.,
cluster center, and therefore, each activity can be considered as
an ordered sequence of vocabulary words.

Transforming sequences of joints configurations into se-
quences of k-words allows merging all repeated instances of
a same posture, that is, we focus only on posture transitions.
Thus, we have two advantages: the first is that a more compact
representation of the sequences is obtained; and the second is

Fig. 3. Posture sequence from one repetition of the “high arm wave” gesture.

that we overcome the problem of recognizing the same activi-
ties performed at different speeds. Moreover, the posture-based
representation does not affect the capacity of the system to dis-
tinguish among different activities with different durations. In
those cases, a greater number of postures would be involved
making longer activities intrinsically different from the shorter
ones. In Fig. 3, an example of the posture sequence extracted
from one repetition of the “high arm wave” gesture is shown.

C. Activity Recognition

In order to fully satisfy the design requirements, the system
should also correctly classify multiple instances of the same
activity, which may generally involve different sequences of
postures.

The activity recognition process is based on HMMs similarly
to what is described in [11] and [29]. We modeled each activity
using a discrete HMM, whose observed symbols are the postures
we have previously extracted.

In a system whose instantaneous condition may be repre-
sented as belonging to one of N distinct states, we denote the
different states as S = {S1 , S2 , . . . , SN }, and the state at time
t as qt .

Given the set of prior probabilities π = {πi}

πi = P [q1 = Si ] , 1 ≤ i ≤ N (5)

where πi are the probabilities, assumed equiprobable, of Si

being the first state of a state sequence; the state transition
probability A = {aij}, from the state Si to the state Sj , is

aij = P [qt+1 = Sj |qt = Si ] , 1 ≤ i, j ≤ N. (6)

Let M be the number of distinct observation symbols per
state, the individual symbols are V = {v1 , v2 , . . . , vM }, and
the observation symbol probability distribution in state j, B =
{bj (k)} is

bj (k) = P [vk at t | qt = Sj ] , 1 ≤ j ≤ N,

1 ≤ k ≤ M. (7)

The complete parameter set of the model is the triplet

λ = (A,B, π) . (8)

The idea is to encode each activity in terms of postures and
build the corresponding HMM. Once each HMM has been
trained on the posture sequences of each activity, a new (un-
known) sequence is tested against the set of HMMs and clas-
sified according to the largest posterior probability. Otherwise,
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Fig. 4. Activity recognition process. During the training, each activity is analyzed to extract a set of postures, which are used to build an HMM. A new activity
is recognized by testing the corresponding posture sequence against the set of HMMs and selecting the model with the largest posterior probability.

if such a probability is below a fixed threshold, the sequence is
marked as “unknown.”

The parameters (k,N) have been experimentally computed
by performing an exhaustive search through a subset of values.
In particular, a Grid Search [30] guided by a leave-one-out cross
validation (LOOCV) [31] has been applied.

The activity recognition process is described in Fig. 4. The
training phase consists of four steps: 1) for each activity, the fea-
tures of interest are detected; 2) the features space is organized
into k clusters, which represent the most significative postures;
3) the detected postures are refined by means of SVMs classi-
fication; and 4) an HMM which models the activity is built. To
recognize an activity, we need to 1) detect the features, 2) de-
tect and classify the postures involved in the activity, 3) test the
posture sequence against all HMMs; 4) select the model which
maximizes the posterior probability, and 5) compare such prob-
ability against a threshold to classify an activity as known or
unknown.

IV. RESULTS

A. Case Study

The activity recognition technique discussed here was devel-
oped as part of an AmI system [32] designed to perform timely
and ubiquitous monitoring of a complex of buildings to opti-
mize energy consumption [33]. From a logical point of view,
the reference model of the AmI system is composed of three

layers: the sensing layer, responsible for monitoring and con-
trolling the environment by means of heterogeneous sensors and
actuators [34]; the middleware layer, which provides a standard
interface between physical sensors and AmI algorithms; the in-
telligent layer, which implements the AmI functionalities and
produces the necessary actions to adapt the environment to the
user requirements [35]. A prototype of the system was built at
the Networking and Distributed Systems Lab of the University
of Palermo.

The office is equipped with wireless and wired sensor nodes,
which monitor the environment conditions and the status of
the actuators, respectively [32]. For example, RFID readers are
installed close to each office door providing information about
the presence of a particular user, while software sensors are
installed to detect the users’ activities on their workstations. In
this scenario, the Kinect is one among several sensors deployed
in the office, and its specific assignment is to provide information
about the activities performed by the user.

B. Data Analysis Apparatus

The activity recognition module ran on an Intel Atom Z530
1.6-GHz CPU and Linux OS with kernel 2.6.32. Such a small
device guaranteed real-time processing of the observed scene
with low levels of obtrusiveness and low power consumptions,
demonstrating both the effectiveness of the solutions and the
efficiency of the algorithms.
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The results presented have been obtained by simulating the
overall system in MATLAB on a desktop PC equipped with a
2.6-GHz dual-core microprocessor.

C. KARD—Kinect Activity Recognition Dataset

We collected a new dataset, called KARD, paying special
attention to the correctness both of the acquired data itself and
the ground truth [36]. KARD contains 18 activities, divided into
ten gestures (horizontal arm wave, high arm wave, two hand
wave, high throw, draw x, draw tick, forward kick, side kick,
bend, and hand clap) and eight actions (catch cap, toss paper,
take umbrella, walk, phone call, drink, sit down, and stand up).

The distinction between these two classes of activities is use-
ful to better evaluate the performance of the system both on
simple sequences, which separately involve specific parts of the
body, i.e., gestures, and on complex actions where different parts
of the body interact to each other.

Each activity was repeated three times by ten different indi-
viduals (nine males and one female) with ages ranging from 20
to 30 years and height from 150 to 185 cm. Instructions were
given to the users about what activity to perform, e.g., “clap
your hands,” “catch the cap,” without providing information
on how to perform it, so as to guarantee the naturalness of the
movements.

The dataset was captured by means of a Kinect device placed
about 2–3 m from the subject, in an office scene containing a
desk, a phone, a coat rack, and a waste bin.

KARD is made of 540 sequences for about a total of 1
h of videos captured at a resolution of 640 × 480 pixels at
30 frames/s. For each sequence, we provide both the RGB and
depth images, and the list of the detected joints in real world
and screen coordinates.

D. Experiments on Kinect Activity Recognition Dataset

We investigated both the ability of the system to distinguish
between similar activities and the scalability of our solution.
Two different classes of tests are described. The former, called
model test, aims to evaluate how the accuracy of our framework
depends on the complexity of the chosen model, that is, how
much the recognition rate is influenced by the model parameters
(i.e., the number of postures and the hidden states). The latter,
called data test, aims to evaluate if the accuracy is related to the
properties of the training set, that is, how much the recognition
rate is influenced by the number of the observed subjects and
the characteristics of the performed activities.

1) Model Test: The first test aimed to find the best pair of
values for the number of clusters k (i.e., the number of postures)
and the number of the HMM states N . A Grid Search approach
[30] was applied to search for the values of k, in the range
[15; 51], and N , in [3; 17]. The value (k, N ) of each node of
the grid was computed as the mean rate of an LOOCV [31]
repeated ten times to overcome the randomness of the clustering
algorithm.

We used 539 training sequences and one testing sequence.
The results are shown in Fig. 5. The best recognition rate is
obtained for k = 39 and N = 5, with a mean accuracy of 95%

Fig. 5. Results of grid search for k ∈ [15, 51] and N ∈ [3, 17].

TABLE I
ACCURACY ON KARD TESTED FOR k = 39 AND N = 5

Gestures Actions

Horizontal arm wave 92% Catch Cap 100%
High arm wave 96% Toss Paper 90%
Two hand wave 96% Take Umbrella 96%
High throw 80% Walk 100%
Draw x 96% Phone Call 96%
Draw tick 90% Drink 86%
Forward Kick 96% Sit down 100%
Side Kick 100% Stand up 100%
Bend 96%
Hand Clap 100%

and standard deviation of 2.45 between the different runs of the
LOOCV.

Table I shows the results obtained for the 18 activities. The
highest recognition rate is 100% (side kick, hand clap, catch
cap, walk, sit down, and stand up), while the worst is 80% (high
throw). Since the recognition rate appears to be stable, we can
conclude that there is no bias of the proposed method toward a
particular activity or subset of activities. This indicates the effec-
tiveness of both the chosen feature space and its representation,
that is, the model we used is able to capture the key points of
different kinds of activities, regardless of the parts of the body
they involve.

In Table II, the confusion matrix for this experiment is shown.
In some cases, the system failed in recognizing similar activities
that involve similar postures, e.g., a few times high throw was
recognized as drink since the performed movements are very
similar, while only a few instances of five activities (i.e., two
hand wave, forward kick, take umbrella, bend, phone call) were
classified as “unknown.”

The experiment was also repeated including all 15 joints de-
picted in Fig. 2, and we observed a reduction of the mean recog-
nition rate of about 4%. This confirms that excluding joints
that are not relevant improves the performance both in terms of
accuracy and dimension of the representation space.

2) Data Test: The second class of tests aimed to measure
the performance that the system can achieve while varying the
training set. In particular, the goals are:
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TABLE II
LOOCV CONFUSION MATRIX FOR THE KARD TESTED FOR k = 39 AND N = 5

Horizontal
arm wave

High arm
wave

Two hand
wave

Catch
Cap

High
throw

Draw X Draw
tick

Toss
Paper

Forward
Kick

Side
Kick

Take
Umbrella

Bend Hand
Clap

Walk Phone
Call

Drink Sit
down

Stand
up

Unknown

Horizontal
arm wave

.92 .04 .04

High arm
wave

.96 .02 .02

Two hand
wave

.96 .04

Catch Cap 1
High throw .80 .08 .12
Draw X .02 .96 .02
Draw tick .04 .02 .04 .90
Toss Paper .90 .10
Forward
Kick

.96 .04

Side Kick 1
Take Um-
brella

.96 .04

Bend .02 .96 .02
Hand Clap 1
Walk 1
Phone Call .96 .02 .02
Drink .06 .04 .04 .86
Sit down 1
Stand up 1

TABLE III
ACCURACY (%) FOR THE MODEL TEST CONSIDERING GESTURES

AND ACTIONS SEPARATELY

Gestures Actions

Experiment A 86.5 92.5
Experiment B 93.0 95.0
Experiment C 86.7 90.1

1) To measure the recognition rate of the system for actions
and gestures separately;

2) To measure the recognition rate when considering gestures
or actions based on very similar postures.

The dataset is divided into subsets and each subset is tested
three times similar to [10]:

1) Experiment A: One-third of the samples of each subject is
used for training and the rest for testing.

2) Experiment B: Two-third of the samples of each subject is
used for training and the rest for testing.

3) Experiment C: Half of the samples is used for training set
and the rest for testing.

Each of the above experiments was repeated ten times, ran-
domly choosing the sequences or subjects of the training and
testing sets. Results are shown in Table III .

Our second goal was to measure the performance of the sys-
tem in analyzing similar activities. Thus, we divided the data into
three subsets with different levels of difficulty (see Table IV). In
particular, the Activity Set 1 is made up of very different activ-
ities, the Activity Set 2 contains more similar activities than the
previous one, and the Activity Set 3 is composed of very similar
activities. The system performed as we expected, that is, better
results are obtained on Activity Set 1, as shown in Table V. Test B
showed better results over the three activity sets, while worst

TABLE IV
KARD ACTIVITIES ORGANIZED INTO THREE ACTIVITY SETS WITH DIFFERENT

LEVELS OF DIFFICULTY

Activity Set 1 Activity Set 2 Activity Set 3

Horizontal arm wave High arm wave Draw Tick
Two hand wave Side Kick Drink
Bend Catch Cap Sit Down
Phone Call Draw tick Phone Call
Stand Up Hand Clap Take Umbrella
Forward Kick Forward Kick Toss Paper
Draw x Bend High throw
Walk Sit Down Horizontal arm wave

TABLE V
ACCURACY (%) FOR THE MODEL TEST USING THREE DIFFERENT

ACTIVITY SETS

Activity Set 1 Activity Set 2 Activity Set 3

Test A 95.1 89.9 84.2
Test B 99.1 94.9 89.5
Test C 93.0 90.1 81.7

performances are obtained with Test C. Test A showed that the
system performs well when it uses only one repetition of each
activity per subject, that is, the system is able to capture a gen-
eral model of the activity regardless to the user that performed
it. This is also confirmed by the results of Test C, where it is
shown that once the system has been trained, it can recognize
activities performed by new subjects.

E. Experiments on CAD-60

The Cornell Activity Dataset, CAD-60, as described in
Section II, contains data collected from four different people.
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TABLE VI
STATE-OF-THE-ART PRECISION AND RECALL VALUES (%) ON CORNELL

ACTIVITY DATASET CAD-60

Precision Recall

Sung et al. [15] 67.9 55.5
Koppula et al. [16] 80.8 71.4
Yang and Tian [37] 71.9 66.6
Ni et al. [17] 75.9 69.5
Gupta et al. [14] 78.1 75.4
Our method 77.3 76.7

TABLE VII
PRECISION (%) AND RECALL (%) OF OUR METHOD IN THE FIVE

ENVIRONMENTS OF CAD-60

“new person”

Location Activity Precision Recall

bathroom rinsing mouth 98.3 97.8
brushing teeth 97.0 96.4
wearing contact lens 78.1 77.6
Average 91.1 90.6

bedroom talking on phone 72.7 73.5
drinking water 63.4 61.3
opening container 76.0 73.2
Average 69.7 69.3

kitchen cooking (chopping) 72.6 75.3 \
cooking (stirring) 59.3 58.0
drinking water 74.3 72.7
opening container 78.1 75.8
Average 71.1 70.5

living room talking on phone 69.0 66.4
drinking water 73.4 71.1
talking on couch 78.2 76.9
relaxing on couch 73.4 77.2
Average 73.5 72.9

office talking on phone 72.3 73.4
writing on whiteboard 84.3 87.4
drinking water 78.4 75.3
working on computer 90.0 85.6
Average 81.3 80.4

Overall Average 77.3 76.7

Results are expressed in terms of precision and recall measured
according to the “new person” scenario, that is, by training the
system on three of the four people from whom data were col-
lected, and testing on the fourth. We selected five works whose
precision and recall values are summarized in Table VI. The
results are shown in Table VII. This test is useful to evaluate the
performance of the system in analyzing activities which involve
similar postures. The results of the overall system evaluation on
CAD-60 are reported in Table VIII.

Some activities, characterized by postures which involve very
similar subsets of joints, e.g., brushing teeth and drinking water,
or cooking (chopping) and cooking (stirring), are more difficult
to be recognized, while others are correctly classified. The over-
all precision and recall of our method are 77.3% and 76.7%,
respectively. Comparing such values with the works listed in
Table VI, we outperform four out of five, while we achieve
comparable results with [14].

Fig. 6. Average processing time for each activity recognition step.

Fig. 7. Performance variations (%) measured by altering the joint estimation
process with a Gaussian noise, centered on the joint with σ ∈ [0, 20] pixels.

In order to make a comparison with the results obtained on
CAD-60, we repeated the evaluation of our method on KARD,
according to the “new person” scenario. The corresponding con-
fusion matrix is reported in Table IX. The overall precision and
recall we achieved are 84.8% and 84.5%, respectively. When
comparing these results with the ones obtained on CAD-60, we
noticed that the proposed system performs better with KARD
data. The main reason is that the 12 activities of CAD-60 are
more complex in terms of the involved postures than those con-
tained in KARD. Thus, the single pose estimation errors accu-
mulate making the recognition process less reliable.

F. Performance

The JAVA implementation of the system allows us to capture
the Kinect stream at 30 frames/s and perform the recognition
of a sequence (i.e., posture analysis and activity recognition) in
about 1 s, with a power consumption of about 7 W, that is just
1 W more than the 6 W consumed during idle time.

Fig. 6 shows the average processing time measured for each
step involved in the activity recognition module. The most time
consuming algorithms are those responsible for detecting the
joints and modeling the activity by means of HMMs, while
posture detection and classification take less than half of the
overall processing time.

G. Limitations

Most recognition issues are mainly due to the intrinsic limita-
tions of the tracking algorithm [38]. In particular, when a body
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TABLE VIII
CONFUSION MATRIX FOR THE “NEW PERSON” TESTS ON CAD-60, IRRESPECTIVE OF DIFFERENT ENVIRONMENTS

Brushing
teeth

Rinsing
mouth

Wearing
contact lens

Working on
computer

Cooking
(chopping)

Cooking
(stirring)

Talking on
the phone

Drinking
water

Opening pill
container

Talking on
couch

Relaxing on
couch

Writing on
whiteboard

Brushing teeth .48 .33 .19
Rinsing mouth .04 .96
Wearing contact
lens

1

Working on
computer

1

Cooking
(chopping)

.79 .17 .04

Cooking
(stirring)

.43 .55 .02

Talking on the
phone

.22 .10 .43 .25

Drinking water .20 .04 .13 .63
Opening pill
container

.02 .20 .78

Talking on couch .73 .27
Relaxing on
couch

.15 .85

Writing on
whiteboard

1

TABLE IX
CONFUSION MATRIX FOR THE “NEW PERSON” TESTS ON KARD

Horizontal
arm wave

High arm
wave

Two
hand
wave

Catch
Cap

High
throw

Draw X Draw
tick

Toss
Paper

Forward
Kick

Side Kick Take
Um-
brella

Bend Hand
Clap

Walk Phone
Call

Drink Sit
down

Stand up

Horizontal
arm wave

.83 .08 .07 .02

High arm
wave

.81 .05 .07 .07

Two hand
wave

.02 .83 .03 .05 .07

Catch Cap .05 .85 .10
High throw .75 .05 .07 .13
Draw X .10 .80 .10
Draw tick .12 .10 .76 .02
Toss Paper .84 .16
Forward
Kick

.90 .02 .08

Side Kick .02 .98
Take
Umbrella

.02 .92 .06

Bend .02 .06 .92
Hand Clap .06 .10 .84
Walk .05 .05 .90
Phone Call .05 .02 .83 .10
Drink .08 .10 .04 .04 .74
Sit down .87 .13
Stand up .15 .85

part is misdetected (e.g., due to partial occlusions), the skeleton
tracker tries anyway to estimate its position according to a global
body model. However, such a compensation process produces a
domino effect, which makes the detection of the whole skeleton
unreliable.

In order to evaluate how much the system performance is
dependent on noisy joints, some experiments were performed
by adding a Gaussian noise to each joint and measuring the
system accuracy for different noise levels.

The results obtained both on the proposed dataset and on
CAD-60 (see Fig. 7) show that when the noise is character-

ized by a standard deviation less than 10 pixels, slight accuracy
variations can be observed, while the performance drops signifi-
cantly for greater noise levels. This trend is not surprising given
that the Kinect sensor is affected by an intrinsic noise; thus,
slow variations on the left side of the curves suggest that our
model is quite robust as long as the combination of intrinsic and
additive noise is below a certain critical value. Greater values
of sigma correspond to what happens when partial occlusions
occur; for example, if σ = 20, the position of a joint is estimated
with a precision of about ±60 pixels, that is, similar to what we
observed when legs are hidden behind a desk.
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Finally, Fig. 7 also shows that accuracy variations on
CAD-60 are greater than those observed on KARD. Our dataset
appears to be more reliable being characterized by a lower noise
level.

V. CONCLUSION

In this study, we presented a framework for human activity
recognition using 3-D posture data. In particular, we referred
to a scenario where the whole environment is equipped with
a number of sensory nodes capable of unobtrusive monitoring
of some raw measures such as temperature, humidity, and light
level. In this context, the Kinect is responsible for gathering
high-level information about what the user is doing.

In order to obtain a suitable representation of the human
body, we detected 11 relevant joints and encoded a relevant set
of joints into postures. Thus, since each posture represents a
recurrent pattern of joints positions, an activity can be described
as a sequence of known postures.

To support a real office environment, we mainly focused on a
solution made of simple processing blocks, which are functional
in the scenario we considered. Other approaches could perform
better on single tasks, e.g., providing more reliable posture rep-
resentation mechanisms or more complex activity models, but
we aimed to develop a framework which can be easily integrated
in a more general AmI system.

To this end, we evaluated the effectiveness of our technique
using two different datasets. The first is KARD, a new public
dataset we collected to overcome the unreliability of some other
existing data collections. The second is CAD-60, which allowed
comparison with some state-of-the-art techniques.

The experiments showed that our method is able to capture a
general model of the activity regardless of the user. In particular,
the activity models we built are independent of who performs
the action, independent of the speed at which the actions are
performed, scalable to large number of actions, and expandable
with new actions. Moreover, since repeated sequences of the
same posture are merged, the proposed method is able to recog-
nize the same class of activities performed with different time
durations.

Using the public Cornell Activity Dataset, we obtained an
overall precision and recall of 77.3% and 76.7%, respectively,
demonstrating that our framework outperforms four of the tech-
niques we considered as reference.

Due to the requirements of the overall AmI system, we im-
plemented a real prototype of the activity recognition module
by connecting the Kinect to a miniature computer getting a real-
time processing of the observed scene with minimum levels of
obtrusiveness and low power consumptions.

Analogously to other approaches, the main limitations or our
system are primarily related to the capacity of the Kinect of pro-
viding a stable video stream and, consequently, a reliable joint
detection mechanism. In this regard, future work can concern
the improvement of the pose estimation process in order to deal
with frame loss and body occlusions, which are the main causes
of misclassification.
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