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Abstract—This research presents a novel multifunctional platform fo-
cusing on the clinical diagnosis of kidneys and their pathology (tumors,
stones and cysts), using a “templates”-based technique. As a first step, spe-
cialist clinicians train the system by accurately annotating the kidneys and
their abnormalities creating “3-D golden standard models.” Then, medical
technicians experimentally adjust rules and parameters (stored as “tem-
plates”) for the integrated “automatic recognition framework” to achieve
results which are closest to those of the clinicians. These parameters can
later be used by nonexperts to achieve increased automation in the identi-
fication process. The system’s functionality was tested on 20 MRI datasets
(552 images), while the “automatic 3-D models” created were validated
against the “3-D golden standard models.” Results are promising as they
yield an average accuracy of 97.2% in successfully identifying kidneys and
96.1% of their abnormalities thus outperforming existing methods both in
accuracy and in processing time needed.

Index Terms—Abnormalities detection, automatic annotation, kidney,
kidney pathology, kidney segmentation, region of interest (ROI), stone,
tumor.

I. INTRODUCTION

The rapid evolution of advanced medical image modalities such as
the modern MRI scanners and the large amount of data provided have
brought about the need for more automatic processes in computer-
aided diagnosis. Clinicians need to examine large numbers of complex
medical images to detect abnormalities; a difficult and time consuming
task. Hence, there is a need for systems that will automatically detect
organs and their possible abnormalities and provide useful metrics.

Several algorithms detect kidney abnormalities, addressing the chal-
lenge of increased difficulty in their delineation due to their intensity
variation. Prevost et al. [1] had automatically localized the kidney with
a novel ellipsoid detector, and then applied deformation of this ellipsoid
with a model-based approach in the segmentation process. Using the
Dice Similarity Coefficient (DSC) as a metric [2], this system achieved
a DSC of 87.5%. Similar to this platform, they calculated the accuracy
of automatic segmentation outcome by comparing it with the result of
the semiautomatic segmentation method coming from the radiologist’s
work (golden standard). Lin et al.’s [3] model-based approach for kid-
ney segmentation achieved an average correlation coefficient of 88%,
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while [4] used Bayesian concepts for a probability map generation to
achieve an automatic kidney Parenchyma volumetry with a DSC of
90.3%. [5] used an automated graph-cuts segmentation technique for
dynamic contrast-enhanced 3-D MR renography achieving a DSC of
96% for the kidney and 90% for the cortex and the medulla. Their
method was very fast (approximately 20 min) compared with the time
needed for a manual segmentation of about 2.5 h, In [6], the authors
presented a combination of texture features and a statistical matching
of geometrical shapes of kidneys for an automatic segmentation in 3-D
MRI images with a mean DSC of 90.6%.

Concerning abnormality detection, [7] presented a finite-element
method based on 3-D tumor growth prediction for kidney tumors, with
an average true positive fraction of 91.4% on all tumors. Tamilselvi
and Thangaraj [8] used an improved seeded region growing method
and classification of kidney images with stones and focused on the kid-
ney image segmentation and diagnosis for stone detection. In [8] the
authors achieved a DSC of 95%. In [9] three neural network algorithms
for diagnosis of kidney stones diseases were tested. They claim that the
multilayer perception with two hidden layers and the back propagation
algorithm produced the best model for the diagnosis of kidney stone
disease with an accuracy of 92%. In [10], an automatic segmentation
algorithm for segmenting liver and tumor based on threshold and re-
gion growing techniques was used. The tumor was segmented with
an alternative FCM clustering algorithm and the DSC for liver and
tumor was 95.8% and 89.8%, respectively. The methodology of [11]
was closer to the one presented here as their automatic segmentation
method was based on association rule-mining to enhance the diagnosis
and classification of kidney images. They used conditions and criteria
to adjust their system, thus achieving results with an average accuracy
of 92%.

In [14] a survey of systems focusing on identifying pathologies in
transplanted kidneys with most of those methods suffering from low
accuracy, or the need for extended involvement of clinicians to iden-
tify organs and abnormalities was presented. In the field of transplant
kidney rejection, [12] and [13] presented a related system based on
dynamically enhancing the contrast of 2-D MRI images with achieve
organ identification. The first part of their method is related to our own
system and achieved an average accuracy of 92.31% (although our
system focuses on tumor detection as well as generic abnormalities).

This research presents the automatic tumor detection (ATD) plat-
form; an innovative system to support a method for increased automa-
tion of kidney detection as well as their abnormalities (tumors, stones,
and cysts). This system uses a novel approach to increase both the ac-
curacy and the automation of the process. Initially, a clinician invokes
a fast version of the region growing segmentation algorithm and a set
of advanced correction tools to semiautomatically detect and annotate
the regions of interest (RoI), and to annotate the organs and their poten-
tial abnormalities (tumors, stones and cysts) in a specific MRI dataset.
Next, a medical technician defines the rules and parameters for the au-
tomatic recognition framework and thus generates 3-D models of the
organs and their potential pathology similar to the ones defined by the
clinicians. This produces a “template” that includes all the “sensitiv-
ity” parameters that govern the dataset that come from a specifically
calibrated MRI. The final step is for any user to apply this template’s
settings to all other datasets of the same type and automatically identify
the organs and their dysfunctions.

This semiautomatic tumor detection system has a number of advan-
tages over the existing systems given as follows:

1) ATD is not only a method, but a multifunctional platform sup-
porting real-time processing;

2) it simultaneously detects organs as well as their pathology (tu-
mors, stones and cysts) with increased accuracy;
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Fig. 1. Methodology used for the evaluation of the automatic segmentation framework Clinician’s [or Golden Standard (GS)] Volume Model versus the Medical
Technician’s (MT) Volume Model.

3) processing time is faster than the existing methods, as the main
algorithms and additional controls run “on the fly.” The process-
ing time for a 24 slices MRI dataset is about 1 min;

4) a novel mechanism for the seed pixel method avoids selection of
irrelevant isolated pixels (implementing a top-down connectivity
analysis between slices);

5) the system achieves more accurate results for the recognition of
kidneys compared with the existing methods by implementing
additional controls.

The platform also supports storage of information in small anony-
mous xml-structured files (with a 500-kbytes typical file size for a
complete dataset) to ensure fast transmission via networks to other
clinicians. A typical size of a “template” file is about 2 kbytes.

II. METHODOLOGY

The method for creating and validating outputs of the ATD platform
consists of three steps (see Fig. 1).

A. Defining “Three- Dimensional Golden Standard Models”

The process calls for clinicians to annotate organs and pathologies
in an abdominal MRI dataset in order to define a “golden standard
model” for the evaluation. For this process the “manual segmentation
panel” integrates an advanced implementation of the “region-growing”
semiautomatic segmentation algorithm.

Boundary refinement can be achieved by using a custom version
of the “pencil” and “eraser” tools (keeping their neighboring points
connected) allowing for the expansion or shrinkage of the selected
areas so as to add or remove any mistakenly selected or ignored areas.

The integrated multilevel multifunctional annotation system facili-
tates the delineation of areas of interest in the selected image. Once the
delineation process has been completed, the “3-D volume rendering”
option creates and enables the manipulation of the resulting realistic
3-D model of the organ structure and its potential abnormalities.

The implementation uses “visualization toolkit” (VTK) [16], with
visualization algorithms in a 3-D interactive process (Fig. 2). Seven dif-
ferent views of the 3-D model are available along with corresponding
metrics (see Fig. 2 left side). They include MIP. (pH-sensitive Molecu-
larly Imprinted Polymer), composite ramp, composite shade ramp, skin,
bone, muscle and RGB composite. Newer volume rendering methods
are in development [17], [18].

B. Creating Templates With Rules and Parameters to Identify Specific
Areas of Interest

By experimenting with the parameters of the “automatic region-
oriented segmentation framework,” a medical technician attempts to
achieve a segmentation result closest to that of the clinician’s using a
region-oriented segmentation method [15]. A panel enables the inter-
active adjustment of the parameters of the framework in a single slide
and the checking of the corresponding result in real time.

Once the result is acceptable, the parameters and rules can be saved
in a “template” with a name that corresponds to the area identified
(e.g., right kidney) and can then be applied automatically to the entire
image dataset. For highly complex images, the clinician has the option
to define a “working area” where the Framework will be applied (see
Fig. 3).

The “validation” panel allows an evaluation by comparing the results
for the two models for every slide. This panel shows the “true positives”
pixels which are the common pixels in the two methods (orange), the
“false negatives” pixels which are presented only in the clinician’s work
(blue) and the “false positives” pixels which are presented only in the
second image produced by the automatic method (green).

C. Using Existing Templates for Fully Automatic Identification of
Specific Areas of Interest

An end user can employ the existing “templates” to find a specific
organ (e.g., left Kidney) and its potential abnormalities. The location
of the organs can vary from one dataset to another; to identify the
initial position of the organ, the engineer loads the “template” in any
of the images including that organ and then clicks to verify the already
selected organ from a list of objects.

The system’s functionality was tested on a dataset of 20 MRIs (522
images) acquired at a local regional hospital and with the following
parameters: the MRI machine was a GE Medical Systems, running
a scanning sequence of SE and a variant of SK. The slice thickness
was 8 mm with a repetition time of 2000 ms. Image frequency was
63.830539 MHz, magnetic field strength was 1.5 T, and spacing be-
tween slices was 10 mm.

A video displaying the segmentation techniques along with a demon-
stration of the user interface and a working copy of the platform is
available at: www.creteportal.gr/ATDSegmentation.zip
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Fig. 2. 3-D model of the body integrating the previously delineated areas. Green represents the kidneys, while red identifies the tumor.

Fig. 3. Defining parameters and rules (“Templates”) for the automatic segmentation process.

III. SEGMENTATION ALGORITHMS

The “segmentation framework” is responsible for the training of the
systems as well as the creation of the “templates.” The basic steps of
this framework are as follows.

1) A clinician opens an MRI dataset (i.e., abdominal).
2) An edge-preserving anisotropic diffusion filter (Perona-Malik)

removes the noise of the images [20].
3) The clinician selects the RoI, the organ, and the abnormalities

and saves these choices.
4) Later, a medical technician defines the working area thus reduc-

ing the amount of data to be processed.
5) A modified version of a region-oriented segmentation algorithm

is introduced to recognize the organs [15]. The histogram val-

ues are normalized to get better results: the user interactively
defines the parameters to smooth the histogram (the up/down
values to recognize more or less compact internal areas and the
area parameter to avoid selecting tiny objects during the organ’s
recognition process).

6) The value of the seed pixel and the sensitivity are defined and
used for the recognition of abnormalities.

7) The medical technician records the best results and then stores
the generated values into a “template.”

8) Another user can now get a dataset of the same type (e.g., ab-
dominal) and select a template to identify specific organs (e.g.,
kidneys). The framework will automatically define the organ in
the dataset and detect the potential abnormalities.
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9) Next, the key processes of the above steps are detailed.

A. Region Growing Semiautomatic Segmentation Algorithm

Starting from a seed pixel, the algorithm finds and demarcates struc-
tures as a mass of neighboring pixels in image areas. It examines the
intensity levels of the neighboring pixels and recruits them as belong-
ing to the structure being grown by spreading the selection outward
starting from a predefined seed pixel whose gray-level intensity value,
plus/minus a so-called “tolerance value,” forms the reference value for
such recruitment of similar pixels [19].

The ATD platform integrates an enhanced version of this algorithm,
to speed up the segmentation task:

1) a slider allows the adjustment of the tolerance value interactively
for the selection of the desired area in the image, just after the
“start point” selection;

2) an image mask (matrix) speeds up the segmentation process by
ensuring that pixels already examined will not be checked again.

To solve the problem with the fuzzy transition zones at the bound-
aries of the designated areas of interest (e.g., kidney), advanced versions
of the pencil and eraser correction tools are integrated in the platform
(working with areas and not with pixels), to automatically keep the sim-
ilar neighboring points connected, providing clinicians with the option
to swiftly refine their delineations.

B. Region Oriented Segmentation Framework

In order to support automation of the diagnosis process, the proposed
segmentation framework has 5 steps as follows.

1) Preprocessing: The segmentation process starts with a prepro-
cessing procedure using an edge-preserving anisotropic diffusion fil-
ter [20], so that small image artifacts are smoothed (intraregional
smoothing), while objects of interest such as edges are enhanced (in-
hibiting inter-regional smoothing).

2) Rules Definition: Using a modified region-oriented segmenta-
tion algorithm [15], the user can define a region of interest to minimize
the image information to be processed. Where there is no such def-
inition of a working area where the organ is located, the automatic
process would typically result in a larger number of areas being recog-
nized as objects of interest. Defined “working areas” are also stored in
“templates.”

3) Parameters Definition: In (1), the key parameters of the image
are defined: h(gv) is the histogram value for a specific gray-scale value
gv, Max is the maximum value of the histogram, and NormMax is the
normalized maximum value defined by the user.

h(gv) = int((float)h(gv) ∗ NormMax/Max). (1)

To identify the abnormalities located in a designated area, the his-
togram entries have to be compressed in such a way that the lower
entries of the histogram are emphasized. This is achieved by using (2).

h(gv) = 10
√

h(gv). (2)

In this way, small peaks in the histogram corresponding to small
areas in the image are emphasized, allowing the algorithm to detect
them more accurately.

A process of smoothing the histogram must also be applied to ho-
mogenize and successfully detect relatively large areas (organs) avoid-
ing the insignificant local peaks (i.e., variations in luminance inside
the organ’s image area). The histogram is smoothed by applying the
computational method whereby all the intensity values of the pixels
in the image are recalculated by determining the average of a prede-
fined number of neighboring pixels of the histogram. This interpolation

Fig. 4. Automatic identification of objects using L-shaped masks (3 Objects
a, b, and c are identified).

“width” parameter is defined experimentally and interactively by the
user. Higher “width” values are associated with larger areas being des-
ignated as part of the organ structure of interest, while low width values
help the user pick out the smaller structures thus attempting to avoid
missing any important parts of the image. The detection of the falling
and rising histogram edges determines the number of valleys in the
histogram, thus inferring the threshold values (Lm):

Lm = a + down + [b − (a + down)]/2. (3)

In this equation, a represents a local maximum value, and b is the
point where the histogram starts to rise again (ignoring any small peaks
under a predefined limit value). These local minimum values (Lm) are
used to segment objects and to create a “label image.” The closer the
peak of this curve is to Lm, the more the delineated boundary moves
inwards toward the center of the kidney.

The platform provides the clinician with the option to define the
“up” and “down” parameters which are also stored in the “templates”
in order to achieve the desired Lm values in complex images.

Finally, applying any filter to an image introduces a certain amount
of noise. This noise is removed with 3 × 3 erosion-dilation linear
morphological filters.

4) Connectivity Analysis: In order to create the final “mark image”
which depicts the regions of interest, L-shape masks (based on a six-
connected neighborhood technique) are used [21] to compare the label
value of every pixel with the values of the neighboring pixels (see
Fig. 4). The pixels with the same values in the “label image” but
different values in the “initial image” are included in the list of pixels
to be considered later when identifying the number of the different
objects in the image.

In this example, the “mark image” contains four identified regions.
This is based on the work of Bassmann and Besslich [15] which sets
out this method in detail.

The modifications applied to the “fully automatic region-oriented
segmentation framework” include the addition of a preprocessing fil-
tering procedure [20], (2) to emphasize the details of the current type of
images (e.g. abdominal), an implementation of an L-shape mask based
on the six-connected neighborhood pixels in the connectivity analysis
(CA) process, and a top-down connectivity analysis of the detected
regions. The CA method requires the calculation of the average inten-
sity of the gray-level values of the selected region and the definition of
a tolerance value as well as at least ten common points between one
image slide and the next so as to verify the region boundary and detect
the desired region successfully.

5) Features: The proposed segmentation framework applied to an
abdominal MRI dataset can delineate RoIs which can be categorized
based on features such as the compactness, the center of gravity (the
central point of a defined area), total area (number of the pixels), and
the perimeter of a specific region. The compactness and the center of
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Fig. 5. Automatic identification of objects (e.g. “Left Kidney,” “Right Kidney,” “Right Kidney Tumor” (No 22 slide), and “Left Kidney Stone” (No 12 and
No 13 slides) – SE00004 MRI dataset).

gravity are features that are independent of the exact position, rota-
tion and scaling of the object; therefore, they are very useful in the
identification process.

The current version of the system stores another two parameters in
the “template” file. First, the “area” which is a criterion to be con-
sidered so as to avoid detecting very small objects during the organ
identification process, and second, the “center of gravity” of an object
which must be located in the working area and must encompass all the
pixels of the object.

For the recognition of kidney abnormalities (tumors, stones and
cysts), some statistical data are additionally considered to arrive at the
threshold values for the average gray-level intensity typical of some
structures representing abnormal or pathological changes.

Cysts are relatively dark; tumors are grey, while stones have rela-
tively higher gray-level values. The “analysis” panel enables the med-
ical technician to experiment and define three parameters for the iden-
tification of any of the aforementioned pathologies consistent with the
clinician’s judgment. The first parameter refers to the gray-level “value”
that the pixels of an object are expected to have to be designated as
such, e.g., recognized as a stone, a tumor, or a cyst. Due to the nonho-
mogenous distribution of gray-level values of the pixels of such organs,
a “tolerance” value must also be defined so that “gray-level Value ±
Tolerance” corresponds to the range of intensities of pixel values typ-
ically expected to depict such abnormal structures. In this way, pixels
which meet the above criteria are obtained.

However, this methodology can also erroneously designate a num-
ber of irrelevant pixels with similar intensities scattered in the organ
image (classification noise). To identify the best candidate seeds cor-
responding to the abnormalities and thus minimize the classification
noise, a 5 × 5 erosion filter is used. During this process, the medical
technician must declare the number of neighborhood pixels (threshold)
to be taken into account (Maximum 5 × 5 = 25 – 1 = 24 neighborhood
pixels).

Finally, the best candidate seeds with intensity levels closest
to the respective thresholds are used in the filling process (region
growing) to demarcate the substructural areas which represent kidney
abnormalities.

IV. RESULTS

Evaluation of the “automatic segmentation framework,” which is
integrated in the ATD platform, is based on the following five criteria
[22].

1) Accuracy, the proportion of true results (“True Positives” and
“True Negatives”) in the total population of the results.

2) Precision, the proportion of “True Positives” against all the pos-
itive results (“True Positives” and “False Positives”).

3) Sensitivity, the ability of the system to identify positive results.
It measures the proportion of positives which are correctly iden-
tified as such.

4) Specificity, the ability of the system to identify negative results,
meaning that it measures the proportion of negatives correctly
identified as such.

5) DSC, defines the similarity measure over two 3-D volume models
(here GS which is the Clinician’s Golden Standard volume model
versus MT which is the Medical Technician’s volume model).

Although a medical technician is involved in this process, his/her
subjective opinion has very little effect on the overall process. Once
the process is finished, the automatic results are compared with the
output of the clinician’s work. Therefore, any misguided selection per-
formed by the medical technician will be cancelled out, since the
main 3-D model of the findings has been initially defined by the
clinician.

The average success rate for kidney detection is 97.2% and their
abnormalities 96.1% respectfully (see Table IV). As an example of the
method the following results were obtained (see Fig. 5 and Tables I, II
and III) from a random MRI dataset (SE00004):

V. DISCUSSION

The proposed platform can achieve a highly accurate and fast iden-
tification of the kidneys, while being able to correctly identify any
potential abnormalities (tumors, stones, and cysts) within the same
platform. Overall, this platform supports the following features:

1) a multi-functional easy-to-use annotation system;
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TABLE I
MRI DATASET EXAMPLE (SE000004), DELINEATION OF THE “LEFT KIDNEY”

TABLE II
DELINEATION OF THE “LEFT KIDNEY TUMOR” (SE000004 MRI DATASET)

TABLE III
MRI DATASET EXAMPLE (SE000004), DELINEATION OF THE “LEFT KIDNEY STONE”

TABLE IV
KIDNEYS AND THEIR POTENTIAL PATHOLOGY DETECTION ACCURACY (DSC) IN EACH OF THE 20 MRI DATASETS

TABLE V
AVERAGE TIMES TAKEN FOR SEMIAUTOMATIC AND FULLY AUTOMATIC SEGMENTATION OF KIDNEYS AND THEIR POTENTIAL DYSFUNCTIONS
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2) the ability for real-time detection of kidneys and their abnormal-
ities (tumors, stones, and cysts);

3) a multi functional 3-D visualization system providing real size
measurements;

4) evaluation of the results based on five measurement methods
including a 3-D volumetric method.

After the initial development, the system was tested by clinicians
and their feedback was used to improve the usability of the system.
Clinicians commented favorably on the speed and accuracy of the
system.

The clinicians expressed that as the system was able to recognize
kidneys and any abnormal tissue located within them, it may be able
to detect any abnormal tissue present in the surrounding areas. This is
a desirable function, particularly if there is already clinical evidence of
abnormal tissue within the organ.

The system is currently able to accurately detect “relatively com-
pact” regions such as stones, cysts, and tumors in abdominal MRI
datasets produced by well-calibrated MRI scanners. In more complex
cases where, for example, a tumor has spread into different areas with
varying intensities, the system can recognize the tumors with a de-
creased accuracy; this is currently being addressed through a set of
more advanced algorithmic approaches under development.

Concerning the applicability of the work on different patients and
in the case of using another MRI scanner for the same type of images
(e.g., abdominal), the medical technician must readjust the “template”
to achieve accurate results, as not all medical image modalities are
calibrated in the same way. This calls for calibration of the sensitiv-
ity parameters on the platform (Width, Ascending, and Descending,
Threshold and Area as explained in the text below), for more accurate
delineations.

In order to deal with the possible inhomogeneity of images used, the
platform performs the following steps.

1) The Region of Interest is defined.
2) The parameters used to accurately find the organ and its bound-

aries are defined: Width (for smoothing the histogram and get
the correct boundaries of the organ), ascending and descend-
ing (for identifying local minimums), threshold (for removing
the noise from the use of erosion—dilation morphological fil-
ters) and area (for initial identification of the organ ignoring tiny
areas).

3) The parameters to find the correct seeds for the pathology de-
tection to feed to the region growing algorithm are also defined:
Grayscale and a tolerance value for the range of values to repre-
sent a dysfunction, as well as a threshold value for the erosion
filter used to change the sensitivity governing the discard of seeds
that are not strong enough.

By doing the above, the “framework” remains highly immune
to datasets coming from different patients and even from different
pathologies.

Finally, the output files were made anonymous and were also of a
small size and thus easier to upload. This would also enable the system
to securely and efficiently transmit files, including images, to client
applications running on smartphones, so that clinicians and consultants
could view the results on the move.

VI. CONCLUSION

This research presents a new MRI diagnosis-assistive platform that,
after initial creation of a “template,” is capable of providing a more
automatic 3-D identification of kidneys and their abnormalities (tumors,
stones, and cysts).

Two methods have been integrated to create “3-D volume models”:
The first provides clinicians with support (through a user interface)
in order to rapidly identify and delineate areas of interest, with a 3-D
view and have real metrics at hand specifying actual physical sizes of
organ structures and any abnormal tissue regions. The second invokes
a method of increased automation, to identify important areas based
on “templates” that are initially created by a medical technician and
later on used by a user with no particular prior knowledge of medical
image segmentation. These “templates” allow the system to identify
organ structures based on their features and look for any abnormalities.

Clinicians who participated in the trials expressed satisfaction with
the use of the platform in that it offered better visualization of regions
of interest, as it simplified and sped up the image annotation process
even in very complex medical image datasets, enabling higher accuracy
in organ and abnormality identification.

As using the system requires no previous knowledge of autolabeling,
it is easy to support the clinical diagnosis process throughout; from
the input stage of the MRI image datasets, to the generation of 3-D
models. The fully automated part of the framework (after the creation
of “templates”) has been tested on 20 MRI datasets corresponding to
an equal number of patients (552 Images).

Benchmarking tests of the system have shown promising results.
For the recognition of kidneys and their abnormalities, the system
outperformed previously reported results with a mean DSC of 97.2%
and 96.1%, respectively, compared with other systems with a mean
DSC 95% and 91%.

Apart from being accurate, the automatic mode is notably faster
compared with any existing method to date for the automatic recogni-
tion of the kidneys, while it is also the first platform that simultaneously
identifies abnormalities in the organ’s area such as tumors, stones, and
cysts (Table V).

In the next revision of the system, the capability for the transmission
of selected compressed images to a mobile device or smartphone will
be added. This will allow clinicians to receive such clinical information
and offer opinions while they are on the move.
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