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Abstract—The activities of muscles in the forearm have been
widely investigated to develop human interfaces involving hand
motions, especially in the fields of prosthetic hands and teleoper-
ation. Although surface electromyography (sEMG) is considered
as an effective biological signal from which hand motions can be
recognized, the availability and quality of sEMG data can limit
the usability and intuitiveness of human interfaces. This article
introduces force myography (FMG) as a supplementary signal and
proposes a layered sEMG–FMG hybrid sensor that can measure
both sEMG and FMG at the same skin surface location. Meanwhile,
a layer fusion convolution neural network (LFC) is designed to
extract multiscale features from sEMG and FMG. To evaluate
the effectiveness of the hybrid sEMG–FMG sensor and LFC, a
22-hand motion classification experiment was conducted on nine
able-bodied subjects. The recognition results indicated a signifi-
cantly improved classification accuracy (p < 0.001) of the hybrid
sEMG–FMG modality with respect to single sEMG or FMG modal-
ity. The classification accuracies (CAs) of LFC were compared
with conventional machine learning methods, including support
vector machine, random forest classifier, xgboost, and k-nearest
neighbor. Compared with the single-modality sEMG, the CAs of
the dual-modality sEMG–FMG using conventional methods, and
LFC were improved by 21.31% and 16.71%, respectively. These
results suggest that the layered sEMG–FMG sensing approach can
effectively enhance the performance of human interfaces, which
offers great potential in the clinical applications of sophisticated
prosthetic hands and teleoperation.

Index Terms—Force myography (FMG), hybrid sensor, layer
fusion convolutional neural network (LFC), surface electromyo-
graphy (sEMG).
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I. INTRODUCTION

THE human hand plays an indispensable role in daily life as
a tool to interact with the environment and communicate

with each other. The anatomical fact that the muscles related to
the movement of the fingers are mostly located in the forearm
enables the possibility of estimating hand motions by measuring
muscle activities on the forearm. This has been widely used to
develop human interfaces, especially for prosthetic hands and
teleoperation.

To date, muscle activity has mainly been investigated by
measuring surface electromyography (sEMG) with electrodes
attached to the skin surface. Many studies have confirmed the
possibility of controlling myoelectric prosthetic hands [1] and
teleoperation [2] by identifying hand motions from sEMG sig-
nals. The use of sEMG signals has long been studied using many
effective signal processing methods proposed in the literature.
However, in daily life, the human–machine interface based on
sEMG is unstable and unreliable because of the characteristics of
sEMG signals, which are extremely susceptible to interference,
such as sweat and muscle fatigue. Hence, the development of
methods for measuring effective control signals has become a
focal issue that requires urgent attention.

Previous studies have proposed solutions to improve the ac-
quisition quality of sEMG signals, including targeted muscle
reinnervation (TMR) surgery, high-density sEMG measurement,
and the introduction of supplementary signals. Kuiken et al.
[3] showed that amputees treated with TMR surgery achieved
encouraging results in ten different forearm motion tasks. How-
ever, this method involves some clinical inconveniences, includ-
ing high invasiveness and high cost. The preliminary experimen-
tal results reported by Zhang and Zhou [4] also demonstrated
the feasibility of applying pattern-recognition technology to
high-density sEMG signals to recognize the hand motions of
stroke survivors. However, the complicated measurement sys-
tem induces both physical and mental stress in subjects, which
can lead to classification degradation.

In contrast, the introduction of supplementary signals has
been gradually attracting attention [5] in the field of human–
machine interfacing. Force myography (FMG), a structural sig-
nal of muscle activity, is generated by muscles during contraction
and relaxation. It is relatively stable and immune to sweat
conditions. Some studies on prosthesis control indicated that
FMG was more stable than sEMG when a pattern was held [6].
Therefore, the introduction of FMG could compensate for the
limitations of sEMG. Previous studies [7], [8], [9], [10], [11]
have demonstrated that the sEMG–FMG dual-modal approach
can effectively improve the performance of hand gesture recog-
nition tasks.
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The aim of this study is to develop a hybrid sensor that
can measure sEMG and FMG signals simultaneously, without
causing any extra burden to the user. Previous studies [7], [8],
[9] measured sEMG and FMG separately at different locations,
which required extra space to accommodate the sensors. It is
desirable to develop a hybrid sensor system that can record the
sEMG and FMG signals at the same location. The measurement
of sEMG and FMG at the same location has been investigated
in previous studies [10], [11]. Both studies acquired FMG by
connecting a deformable material directly to force-sensitive sen-
sors, so that the sensors can detect the deformation due to force
related to muscle contraction. When subjected to position drift
due to movement, the force sensor based FMG unit developed in
previous studies [10], [11], [12] can easily lead to errors owing
to position-drift-induced horizontal forces. In contrast to these
studies, we design an optical FMG measurement unit using
reflected infrared light to detect deformation due to pressure
changes, which has not yet been reported in the literature. In
the FMG unit structure, the phototransistor embedded in the
reflectance sensor is placed vertically on top of hollow silicone.
Therefore, the output of the reflectance sensor in the proposed
optical FMG unit is only affected by the vertical deformation
of the silicone, which makes it less susceptible to horizontal
deformation owing to position drift.

Furthermore, we designed a deep layer fusion convolutional
neural network (LFC) to perform an end-to-end hand motion
recognition task. The layer fusion structure was first proposed
by Yang and Ramanan [13] in computer vision field [14]
transferred the raw sEMG into signal image and proposed a
2D-CNN-based multiview network to perform a late fusion
and early fusion for sEMG data. Considering the parameters
and the extra preprocessing process for using 2D-CNN, we
develop a 1D-CNN-based multi-input layer fusion network,
which reduces preprocessing and can perform an independent
convolution for every signal channel. This network structure is
developed by considering the characteristics of the multichannel
one-dimensional physiological time-series signals, and also the
feasibility for clinical applications. To the best of our knowledge,
this is the first study to introduce a layer-fusion 1D-CNN-based
network to perform end-to-end classification of sEMG or FMG
signals.

The rest of this article is organized as follows. Section II
describes the development of the layered sensor system, the ver-
ification experiments we conducted are described in Section III,
and the detailed structure of the LFC is introduced in Section IV.
Sections V and VI report and discuss the experimental results,
respectively. Finally, Section VII concludes this article.

II. SEMG–FMG HYBRID SENSOR

Muscle contraction is associated with bioelectrical activity
and changes in muscle geometry. Bioelectrical activity can be
captured using sEMG [15]. The change in muscle geometry
can be captured via FMG [16] as the pressure distribution
changes. In contrast to the sEMG signal, FMG is not susceptible
to electromagnetic interference, muscle fatigue, or unreliable
electrode–skin impedance caused by sweat. Therefore, consid-
ering the advantages of both sEMG and FMG, cost, comfort,
and the available measurement area of the user, we combine the
two measurement units into a layered sensor system and design
a sensor band to measure three-channel sEMG and FMG signals
simultaneously at the same location on the skin surface.

Fig. 1. sEMG measurement unit. (a) sEMG sensor board. (b) Amplifiers
(CMPR is 120 dB, gain is 5000 in total) and filter circuit. (c) Configuration
of double-layer electrode. (d) sEMG sensor with conductive silicon electrodes.

A. sEMG Measurement Unit

The sEMG measurement unit consists of a circuit board
[Fig. 1(a)] and two conductive electrodes. The circuit board
includes amplifier and filter function modules, as shown in
Fig. 1(b). Differential input signals are preamplified by an instru-
ment amplifier AD620 (Analog Devices, USA), with a gain of
40 in the first stage amplification. The power-line interference
is removed with a notch filter (50 Hz), and a bandpass filter
(bandwidth 1–1000 Hz) is used to limit the frequency range.
Finally, the processed sEMG signals are converted into digital
signals by the second amplifier, LM324 (Texas Instruments,
USA), with a gain of 125 in the second-stage amplification. The
output voltage ranges from 0 to 5 V.

The sEMG sensor is used to measure biopotentials by placing
electrodes on the skin. The conductive silicone electrode con-
sisted of silicone (TSG-E30, Tanac Co., Ltd., Japan) and carbon
black (EC600JD, Lion Specialty Chemicals Co., Ltd., Japan).
This dry electrode was hypoallergenic and sufficiently flexible
for long-term daily use. The electrode size was adjustable and set
to 10 mm× 20 mm× 2.5 mm [Fig. 1(c)] for the experiment. The
composite electrode was divided into two layers: the base elec-
trode and contact electrode with carbon-to-silicone weight ratios
of 4% and 2.6%, respectively. A previous study has shown that
double-layer electrodes under such concentration combinations
exhibit lower skin–electrode contact impedances and higher
signal-to-noise ratios [17]. A layer of conductive nonwoven
fabric was placed on the base electrode to prevent damage.
The sEMG circuit board was connected to the electrodes via
gold-coated copper wires and was isolated using an insulating
sheet. The total size of the sEMG measurement unit was 32 mm
× 20 mm × 6.5 mm [Fig. 1(d)].

B. FMG Measurement Unit

An optical FMG measurement unit that uses reflected infrared
light to detect pressure changes is designed, as shown in Fig. 2.
The unit is composed of a base layer, an isolation layer, an
elastic silicone structure between the base and isolation layers,
and a reflectance sensor to measure the interlayer distances. The
reflectance sensor (QTR-1A, Pololu Co., Ltd., USA) carried a
single infrared light-emitting diode and phototransistor pair in
a 12.7 mm × 7.62 mm × 2.54 mm module. The phototransistor
was connected to a pull-up resistor, which functioned as a voltage
divider, that generated an analog voltage output between 0 and
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Fig. 2. Implementation of FMG measurement unit. (a) Reflectance sensor.
(b) Base layer. (c) Isolation layer. (d) Elastic silicone. The base and isolation
layers were made by a 3D printer using PLA material.

Fig. 3. FMG sensor calibration curve. The yellow line represents the measured
data, the green line represents the approximate result and the red dot represents
the max pressure 26.63 N at the maximum displacement of 3 mm, whereas FMG
is 0.74 V.

5 V as a function of the reflected infrared light. The ideal
perception distance was 3–6 mm. The reflectance sensor was
fixed to the base layer, and a 6-mm-thick square of hollow
silicone was placed between the base and the isolation layers.
The infrared light emitted by the reflectance sensor reached the
isolation layer via the hollow silicone and was reflected by the
isolation layer. Lower output voltages indicate greater reflection
and shorter distances. The change in distance detected by the
reflectance sensor can be expressed as the pressure deformation
of the elastic silicone under the action of an external force.

The optical FMG measurement is based on the relationship
between the reflectance sensor’s output and the displacement
caused by muscle contractions. As the muscle contracts, the
elastic silicone deforms vertically due to the pressure change,
resulting in a displacement between the reflectance sensor and
the isolation layer surface. This displacement leads to a corre-
sponding change in the intensity of the reflected infrared light.
The phototransistor converts the light intensity into an electrical
signal that reflects the pressure caused by muscle contraction.

To investigate the relationship between the FMG signal
and pressure, we used a tension/compression testing machine
(IMADA SL-6002) to perform a compression test with a load
range from 0 to 30 N. Fig. 3 shows the results.

The trend line that fits the FMG amplitude pressure is a
linear approximation (approximation degree 99.5%) which can

Fig. 4. Dual-modal sensor implementation. (a) Single combined sensor.
(b) Dual-modal sensor band with three channels. (c) Diagram of sEMG and
FMG measurement.

be expressed as follows:

y = − 0.12x + 3.17. (1)

C. Layered Hybrid Sensor and Sensor Band

As shown in Fig. 4(a), the sEMG and FMG measurement
units were vertically combined. The height of the combined
sensor was ∼16.5 mm and the weight was ∼4.66 g (without
wires). This vertical combination facilitates the simultaneous
detection of sEMG and FMG signals on the same skin area.
Three hybrid sensors were attached to a strap to realize the
three-channel sEMG–FMG sensor band [Fig. 4(b)] used for
verification. Fig. 4(c) illustrates the mechanism of simultaneous
detection of sEMG and FMG. During muscle contraction, sEMG
signals are measured as the amplified potential changes on both
electrodes. FMG signals are measured via the deformation of
the silicone caused by the pressure change between the elastic
band and the skin.

III. EXPERIMENT

To investigate the effects of the FMG signals, we conducted
a 22-class hand gesture recognition experiment using a three-
channel sensor band. The experimental results were used to
compare the classification performances under three modality
settings (sEMG, FMG, and sEMG–FMG).

A. Subjects

Nine able-bodied, right-handed male subjects (age: 27.1 ±
1.9, height: 175.2 ± 4.2 cm, weight: 72.2 ± 10.5 kg, num-
bered S1–S9) participated in the experiment. None of the
participants had previously undergone similar sEMG recog-
nition experiments. All experimental procedures were con-
ducted in accordance with the Declaration of Helsinki and
approved by the Ethics Committee of The University of Electro-
Communications, Tokyo, Japan. Each participant received an



938 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 5, OCTOBER 2023

Fig. 5. Sensor placement on forearm. (a) Sectional view of the forearm and
sensor positions. (b) CH1 and CH2 are attached near the flexor carpi ulnaris
and flexor digitorum superficialis muscles, respectively, CH3 is placed near the
extensor carpi radialis longus muscle, a reference electrode is set on the elbow.
(c) Photograph of a subject wearing the sensor band.

explanation of the experimental procedure and provided their
informed consent.

B. Experimental Protocol

1) Sensor Attachment: The wearing positions of the sensors
are shown in Fig. 5. All subjects used their right hands to
perform gestures. The forearm skin was cleaned with alcohol
before each experiment. Each participant was fitted with a sensor
band on the right forearm and tightened to a comfortable but
secure level. During the experiment, we used a pinch meter
(K800, Biometrics Co., Ltd., U.K.) to monitor the skin–electrode
contact characteristics. The initial pressure between the band and
the forearm was set to 0.2 kg.

2) Hand Gestures: To meet the daily human–computer in-
teraction needs, we focused on gestures frequently used in daily
life. Bullock et al. [18] investigated the occurrence frequen-
cies of different human grasps in several daily activities and
extracted ten most-frequent grasp types that account for ∼80%
of all grasping tasks. Furthermore, inspired by a previous study
[19], we included eight hand gestures and four finger gestures.
Detailed descriptions of the 22 hand gestures are shown in
Fig. 6.

3) Experimental Paradigm: The participants were seated
with their elbows resting on the table and their right forearm
perpendicular to the table. To compensate for the difference in
the initial states of each participant, ten seconds of relaxed-state
signals were recorded as a baseline. Each measurement period
lasted for ten seconds, including two, 3 s of action and two, 2 s
of relaxation. Each subject repeated the trial five times. The par-
ticipants were allowed to rest for several minutes between trials
to prevent muscle fatigue. The sEMG sampling rate was set to
1000 Hz using a 16-bit-precision professional analog-to-digital
converter (AIO-160802AY-USB, Contec Co., Ltd., Japan) The
hybrid sEMG–FMG signal waveform during wrist flexion was
demonstrated as in Fig. 7.

Fig. 6. In total, 22 hand motions used in the experiment. (1) Hand open. (2)
Hand close. (3) Wrist flexion. (4) Wrist extension. (5) Wrist supination. (6)
Wrist pronation. (7) Ulnar flexion. (8) Radial flexion. (9) Tripod. (10) Lateral
tripod. (11) Coin pinch. (12) Precision disk. (13) Pen pinch. (14) Thumb finger
extension. (15) Index finger extension. (16) Medium wrap. (17) Power sphere.
(18) Lateral pinch.

Fig. 7. Time-domain waveform of sEMG and FMG signals during wrist
flexion. The signals are from CH1 in Fig. 5.

IV. LAYER FUSION CONVOLUTION NEURAL NETWORK

A. Multiscale Representation

The output of each layer in the CNN can be regarded as a
scale representation of the input data. As the layers deepen, the
model can extract higher-level features. The shallow layers of
the CNN are good at extracting low-level features, and the deep
layers of the CNN are good at extracting high-level features. The
general CNN structures used to process physiological signals
only consider high-level features, which can be competent for
some simple tasks. However, when the category difference of the
input data is small and contains noise signals, high-level features
cannot fully represent the full information of the input data [12].

B. Layer Fusion CNN

Recent studies [20], [21] have demonstrated that deep learning
methods outperform conventional machine learning (ML) meth-
ods in gesture recognition tasks; however, their low generaliza-
tion ability makes them rarely used in real life. Compared with
picture and video data, the acquisition of physiological signals
is difficult, costly, and limited by the collection equipment and
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Fig. 8. Proposed LFC for 22-class gesture recognition.

environment. The formats of physiological signals are usually
different, making it difficult to collect enough data to train a
model with a strong generalization ability. Most deep learning
models have been proposed in the fields of computer vision and
natural language processing, and are optimized to process image
data and text data. When processing time-series signals with
noise, some models cannot converge easily [22]. To improve the
generalization ability of the CNN model, we took advantage of
the multiscale input data and adopted LFC (Fig. 8) to process
the sEMG and FMG signals.

The entire gesture-recognition network can be represented by
the following decision function:

ypred = Fw (x) (2)

where x represents the data input to the deep learning
model, Fw(x) is the decision function, w is the parameter to be
learned for the entire network, and ypred represents the output
gesture category. The network consists of feature extraction and
classification layers.

The feature extraction layers contained multiple convolution
blocks and a layer fusion structure. The convolutional block
primarily consists of two 1d convolution layers with strides 1
and 2, respectively. The convolutional block can be defined as
follows:

δn+1 = Hλn
(On) (3)

where On is the output result of the nth convolution block, δn+1

is the input of the subsequent convolution block, Hλn
(On) is

the calculation performed in the nth convolution block, and λn

are the parameters to be learned.

The fusion layer is defined as follows:

F = Concat (f1 + f2 + · · ·+ fn) (4)

where fn denotes the results of the nth convolution block,
F denotes the fusion results of all layers, andConcat(x) denotes
the concatenation operation. This structure offers two advan-
tages. First, during forward propagation, information from each
layer is directly input to the decision layer, which makes the data
propagation more efficient than structures only using the final
layer’s results. Second, during backpropagation, gradients are
directly propagated to each layer through the structure of layer
fusion, which enables the parameters of each layer to be updated
effectively. Both advantages contribute to the improvement of
the generalization ability [13], [23].

C. Model Complexity

A good trade-off between improved performance and in-
creased model complexity is required to make a model of prac-
tical use. Our designed LFC (sEMG/FMG) and LFC (sEMG–
FMG) require almost the same FLOPs in a single forward for
a 3×1000 and 6×1000 input signal, respectively. For params,
the sEMG–FMG LFC model only increases the number of
parameters by 0.3% compared with the single-modality LFC.
And about the training time and testing time, we will discuss
in Section VI. The detailed structural codes are available in our
Github.1

1[Online]. Available: https://github.com/peijichen0324/a-layered-sensor-
unit

https://github.com/peijichen0324/a-layered-sensor-unit
https://github.com/peijichen0324/a-layered-sensor-unit
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TABLE I
CLASSIFICATION RESULTS OF EVERY SUBJECTS

D. Comparison With Conventional ML

Several conventional ML methods (support vector machine
(SVM), random forest classifier, K-nearest neighbors (KNN),
and XGBoost) were used as baseline for comparison. To perform
data preprocessing for these methods, the sEMG and FMG
signals were divided into a series of nonoverlapping 500 ms
shift-analysis windows, and features were extracted from each
window. Five sEMG time-domain (TD) features were extracted,
including the root mean square, mean absolute value, waveform
length, zero crossings, and slope sign changes, all of which have
been confirmed to be effective in previous studies [15], [24].
There are also many effective sEMG features [25] that have been
proven to be capable of representing complex self-regulatory
systems. However, they are not used in this study, only five
common sEMG features were used. In addition, 12 FMG TD
features were extracted, including the maximum (Max), mini-
mum (Min), average value (Avg), standard deviation (SD), and
degree of deformation in various states (1, 5, 10, 25, 50, 75, 90,
and 99%) [26].

Because LFC does not rely on prior knowledge, the raw
signals are fed directly to the model after being extracted by
a fixed-length window and normalized. The dataset was divided
into training and testing sets of 80% and 20%, respectively. A
five-fold cross-validation was conducted. We implemented our
model based on the PyTorch framework. The proposed model
was trained by an Adam optimizer with learning rate of 0.001.
The learning rate was halved every 20% of the total epochs.

V. RESULTS

A. Classification Results of Individual Subject

A comparison of the classification accuracies (CAs) of the
nine subjects is presented in Table I. The highest CAs among
the ML methods are shown in red, and the highest CAs among
all methods are in blue. Compared with the sEMG modality,
the CAs in every subject of the hybrid sEMG–FMG modality
using conventional ML and LFC both showed a significant
improvement (t-test, RFC: p = 2.8E-05 < 0.01, XGBoost:
p = 1.2E-05 < 0.01, KNN: p = 3.5E-05 < 0.01, SVM: p =

7.2E-08 < 0.01, LFC: p = 8.9E-06 < 0.01). Specifically, SVM
was the best-performing conventional ML, whose average CAs
of the sEMG and hybrid sEMG–FMG modality settings across
all subjects were 65.34% ± 4.75% and 86.4% ± 4.83%, re-
spectively. The average CAs of LFC were 78.41% ± 5.39% and
93.06% ± 3.26%. Notably, no significant difference (two-way
analysis of variance (ANOVA), SVM: p = 0.93 > 0.05, LFC: p
= 0.13> 0.05) was observed in the CAs of the nine subjects with
respect to the classifier, which suggests that the proposed sensor
does not cause significant differences between individuals and
offers high generalization ability. Meanwhile, the difference
between the three modality settings was significant (two-way
ANOVA, SVM: p = 1.17E-08 < 0.001, LFC: p = 4.58E-07 <
0.001).

B. Classification Results of All Subjects

To verify the generalization ability of the methods, we used
different subjects for training and testing (e.g., S1–S7 for train-
ing, and S8 and S9 for testing). Considering the domain differ-
ence from the intra and interindividual, the following baseline
subtraction and normalization were performed before training.
1) Baseline subtraction: For each subject, the baseline of sEMG
and FMG signals for each channel was calculated by averag-
ing the values during a period of relaxation without muscle
contraction. These baseline values were then subtracted from
the corresponding channel signals to focus on the relative in
signal changes resulting from muscle contractions. 2) Normal-
ization: To account for the domain difference from intra and
interindividual variations, a normalization step was performed
before training. The mean and standard deviation of the sEMG
and FMG signals for each channel on the training datasets (i.e.,
S1-S7) were calculated. During the training and testing phases,
the sEMG and FMG data for each channel were standardized
based on the mean and standard deviation calculated from the
training datasets. Results are shown in Fig. 9, where the hybrid
sEMG–FMG outperformed the sEMG and FMG. Same as the
results for the individual subject, SVM performed the best
among the conventional ML methods. The CAs of the hybrid
sEMG–FMG, sEMG, and FMG using SVM were 82.32% ±
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Fig. 9. CAs (left) and F1 scores (right) of conventional ML and our proposed LFC under three modality settings.

0.75%, 62.01% ± 1.14%, 47.72% ± 4.25%, and the f1-score
were 0.82 ± 0.05, 0.61 ± 0.02, 0.44 ± 0.14. Meanwhile,
the CAs and f1-score of the hybrid sEMG–FMG, sEMG, and
FMG using the proposed LFC were 90.81% ± 0.8%, 74.1% ±
0.95%, 65.13% ± 0.86% and 0.91 ± 0.02, 0.73 ± 0.03, 0.64
± 0.08. Compared with the sEMG modality, the CAs of the
hybrid sEMG–FMG modality improved by 21.31% with SVM
and 16.71% with LFC. There was no significant difference (p
= 0.27 > 0.05) between the random training method and the
group training method, implying that the trained LFC has a
strong generalization ability and potential to be used for new
subject.

The confusion matrix for the LFC is illustrated in Fig. 10. The
average recall was 90.93% ± 5.3%, and the average precision
of the 22 hand motions was 90.74% ± 4.54%, which suggests
that the LFC achieved a strong classification performance for
each gesture. Combining precision and recall, the classification
performance for wrist flexion was the highest (F1 score = 0.97),
whereas that for pen pinches was the lowest (F1 score = 0.82).
The ten grasp gestures (from tripod to lateral pinch) suffered
more misclassifications than the other gestures, as shown by
the blue dotted region in Fig. 10. The correlation between these
gestures is relatively high, because they require a strong force
to hold the object, which may lead to similar FMG.

VI. DISCUSSION

The advantages of combining sEMG and FMG signals at the
same location on the skin surface are reflected not only in the
significant improvement in CAs, but also in the classification
stability. The SD of the average LFC-obtained dual-modality
CAs for all subjects was smaller than that of either single signal
(hybrid:3.26%; sEMG:5.39%; FMG:6.22%). Because the CAs
of the LFC exceeded those of conventional ML methods, we
further discuss the performance and characteristics of the dual-
modal approach based on the LFC.

The loss and classification accuracy curves of the three
modality settings using LFC are shown in Fig. 11. The hybrid
sEMG–FMG modality achieved the highest performance in
terms of loss and CA. In the hybrid sEMG–FMG modality,
the loss converged to the lowest value of the three modality
settings (training:0.22 ± 0.01 and test:0.4 ± 0.01), with a
generalization gap at 0.18. Furthermore, it achieved a faster
convergence speed during the first 100 epochs for both training
and testing sets. The performance of FMG was poorest, and its
final loss converged to 0.98 ± 0.01 (training set) and 1.27 ±

0.02 (test set), with a generalization gap at 0.29. Compared with
sEMG, FMG had a smaller generalization gap between the final
convergence stabilities for the training and testing sets, which
indicates that, although sEMG achieved a higher CA, FMG
might offer superior robustness in the dual-modal approach,
Thus, the dual-modal approach can further improve hand gesture
classification performance by combining sEMG and FMG.

To elucidate the effect of layer fusion, we trained multiple
classifiers using multiscale representations of the input signals
in the conventional CNN. The results of the different scales of
the CNN are shown in Fig. 12 and compared with the LFC that
uses all scales. The heatmap shows that not all gestures obtain
the best classification performance in the scale representation of
the last layer scale (scale8), which means that the optimal scale
representation of the signals of different gestures is different.
When all the layer results from the CNN with layer fusion
are used, almost all gestures can achieve the best classification
performance. The traditional CNN structure can only extract
the same-scale representation of the last layer for the input
signals. And the addition of the layer-fusion structure allows
the extraction of different-scale representation from the input
signals.

A comparison of our research with previous studies that
measured sEMG and FMG at the same location is shown in
Table II. Jiang et al. [10], who used an armband consisting
of eight colocated EMG-FMG sensing units, achieved a CA
of 91.6% on a ten-hand gesture recognition task. Ke et al.
[11] presented a modular EMG-FMG sensor unit, with four of
them on an elastic belt to obtain a CA of up to 99.42% on a
six-hand gesture recognition task. In our research, we developed
a layered sEMG–FMG hybrid sensor and a layer-fusion convo-
lution neural network. An equivalent level of CA (93.06%) was
obtained with fewer sensors for a more challenging hand gesture
recognition task. The effectiveness of both the hybrid sensor and
layer-fusion convolution neural network was indicated by the
experiment and comparison.

The computation time of the proposed LFCNN (sEMG–
FMG) was investigated on a GPU (GeForce RTX 3090,
NVIDIA, USA). Table III displays the recognition accuracy and
computation time using different window lengths on different
subjects. In the forward propagation stage, the time of a short
window sample was significantly reduced compared with a long
window sample. However, due to the loss of some low-frequency
information, the recognition accuracy was also reduced. The
longest time required for the training stage using datasets of
different window lengths was about 20 min for one subject,
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Fig. 10. Confusion n matrix of proposed LFC using sEMG–FMG signals. The rightmost column and the bottom row of the matrix represent the recall and
precision of each gesture, respectively. The diagonal of the matrix represents the number of correct classifications under both conditions of precision and recall. The
black numbers on the edges denote the total number of samples for each gesture, the red numbers denote the number of misclassifications, and the green numbers
denote the percentage of correct classification.

TABLE II
COMPARISON WITH PREVIOUS STUDIES

which is acceptable in clinical applications to train a specified
model for a new subject.

VII. CONCLUSION

In this article, we present a layered hybrid sEMG–FMG sensor
that can measure sEMG and FMG at the same location of the

skin surface. The unique layered structure of the sensor enables
the measurement of an additional signal without requiring ad-
ditional space. An LFC was designed to process sEMG and
FMG signals. The results of a 22-hand motion classification
experiment on nine subjects showed that the hybrid sEMG–FMG
approach can achieve high performance with good generaliza-
tion ability. The introduction of FMG improved the robustness
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Fig. 11. CAs (left) and loss (right) curves for the three modality settings.

Fig. 12. Heatmap of results (f1-score) for gesture recognition using different scale representation from CNN and LFC. The vertical axis represents different scale
representation (scale1 ∼ scale8) from different layers’ results of CNN. Results of all scales using LFC are shown in the bottom for comparison.

TABLE III
RECOGNITION ACCURACY AND COMPUTATION TIME WITH DIFFERENT WINDOW LENGTH

of the classification performance. The hybrid sensor and the
LFC have promising potential applications in fields such as
teleoperation and human–robot interfaces.

The limitations of this study include the small sample size
and potential variations in muscle activation depending on de-
mographics. Future studies will focus on increasing the sample
size and involving a wider range of participant demographics.
Additionally, the design of the layered sensor system will be
improved to reduce its thickness by shortening the effective
range of the reflectance sensor and to develop deep learning
models better suited for processing multimodal physiological
signals.

REFERENCES

[1] A. Dwivedi, Y. Kwon, A. J. McDaid, and M. Liarokapis, “A learning
scheme for EMG based decoding of dexterous, in-hand manipulation
motions,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 10,
pp. 2205–2215, Oct. 2019.

[2] A. Hagengruber, U. Leipscher, B. M. Eskofier, and J. Vogel, “Electromyo-
graphy for teleoperated tasks in weightlessness,” IEEE Trans. Human-
Mach. Syst., vol. 51, no. 2, pp. 130–140, Apr. 2021.

[3] T. A. Kuiken et al., “Targeted muscle reinnervation for real-time myo-
electric control of multifunction artificial arms,” JAMA, vol. 301, no. 6,
pp. 619–628, Feb. 2009.

[4] X. Zhang and P. Zhou, “Classification of upper limb motions in stroke
using high density surface EMG,” in Proc. IEEE Annu. Int. Conf. Eng.
Med. Biol. Soc., 2011, pp. 3367–3370.

[5] W. Guo, X. Sheng, H. Liu, and X. Zhu, “Development of a multi-
channel compact-size wireless hybrid sEMG/NIRS sensor system for
prosthetic manipulation,” IEEE Sensors J., vol. 16, no. 2, pp. 447–456, Jan.
2016.

[6] M. Connan, E. R. Ramírez, B. Vodermayer, and C. Castellini, “Assessment
of a wearable force- and electromyography device and comparison of the
related signals for myocontrol,” Front. Neurorobot., vol. 10, vol. 10, no. 17,
pp. 1–13, 2016.

[7] C. Ahmadizadeh, L.-K. Merhi, B. Pousett, S. Sangha, and C. Menon,
“Toward intuitive prosthetic control: Solving common issues using force
myography, surface electromyography, and pattern recognition in a pilot
case study,” IEEE Robot. Automat. Mag., vol. 24, no. 4, pp. 102–111,
Dec. 2017.

[8] J. McIntosh, C. McNeill, M. Fraser, F. Kerber, M. Löchte-
feld, and A. Krüger, “EMPress: Practical hand gesture clas-
sification with wrist-mounted EMG and pressure sensing,”
in Proc. CHI Conf. Hum. Factors Comput. Syst., 2016,
pp. 2332–2342.



944 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 53, NO. 5, OCTOBER 2023

[9] M. Nowak, T. Eiband, and C. Castellini, “Multi-modal myocontrol: Testing
combined force- and electromyography,” in Proc. Int. Conf. Rehabil.
Robot., 2017, pp. 1364–1368.

[10] S. Jiang, Q. Gao, H. Liu, and P. B. Shull, “A novel, co-located EMGFMG-
sensing wearable armband for hand gesture recognition,” Sensors Actua-
tors A, Phys., vol. 301, 2020, Art. no. 111738.

[11] A. Ke, J. Huang, L. Chen, Z. Gao, and J. He, “An ultra-sensitive modular
hybrid EMG–FMG sensor with floating electrodes,” Sensors, vol. 20,
no. 17, Jan. 2020, Art. no. 4775.

[12] P. Fang et al., “Fabrication, structure characterization, and perfor-
mance testing of piezoelectret-film sensors for recording body mo-
tion,” IEEE Sensors J., vol. 18, no. 1, pp. 401–412, Jan. 2018,
doi: 10.1109/JSEN.2017.2766663.

[13] S. Yang and D. Ramanan, “Multi-scale recognition with DAG-CNNs,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1215–1223.

[14] W. Wei, Q. Dai, Y. Wong, Y. Hu, M. Kankanhalli, and W. Geng, “Surface-
electromyography-based gesture recognition by multi-view deep learn-
ing,” IEEE Trans. Biomed. Eng., vol. 66, no. 10, pp. 2964–2973, Oct. 2019,
doi: 10.1109/TBME.2019.2899222.

[15] N. Nazmi, M. A. A. Rahman, S. I. Yamamoto, S. A. Ahmad, H. Zamzuri,
and S. A. Mazlan, “A review of classification techniques of EMG sig-
nals during isotonic and isometric contractions,” Sensors, vol. 16, no. 8,
Aug. 2016, Art. no. 1304.

[16] E. Cho, R. Chen, L. K. Merhi, Z. Xiao, B. Pousett, and C. Menon, “Force
myography to control robotic upper extremity prostheses: A feasibility
study,” Front. Bioeng. Biotechnol., vol. 4, pp. 1–12, 2016.

[17] S. Togo, Y. Murai, Y. Jiang, and H. Yokoi, “Development of an sEMG
sensor composed of two-layered conductive silicone with different carbon
concentrations,” Sci. Rep., vol. 9, no. 1, Dec. 2019, Art. no. 13996.

[18] I. M. Bullock, J. Z. Zheng, S. D. L. Rosa, C. Guertler, and A. M. Dollar,
“Grasp frequency and usage in daily household and machine shop tasks,”
IEEE Trans. Haptics, vol. 6, no. 3, pp. 296–308, Jul.–Sep. 2013.

[19] S. Jiang et al., “Feasibility of wrist-worn, real-time hand, and surface ges-
ture recognition via sEMG and IMU Sensing,” IEEE Trans. Ind. Inform.,
vol. 14, no. 8, pp. 3376–3385, Aug. 2018.

[20] W. Yang, D. Yang, Y. Liu, and H. Liu, “Decoding simultaneous multi-DOF
wrist movements from raw EMG signals using a convolutional neural
network,” IEEE Trans. Hum. Mach. Syst., vol. 49, no. 5, pp. 411–420,
Oct. 2019.

[21] T. Triwiyanto, I. P. A. Pawana, and M. H. Purnomo, “An improved
performance of deep learning based on convolution neural network to
classify the hand motion by evaluating hyper parameter,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 28, no. 7, pp. 1678–1688, Jul. 2020.

[22] M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep residual shrinkage
networks for fault diagnosis,” IEEE Trans. Ind. Inform., vol. 16, no. 7,
pp. 4681–4690, Jul. 2020.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778, doi: 10.1109/CVPR.2016.90.

[24] S. M. Khan, A. A. Khan, and O. Farooq, “Selection of features and
classifiers for EMG-EEG-based upper limb assistive devices—A review,”
IEEE Rev. Biomed. Eng., vol. 13, pp. 248–260, 2020.

[25] Y. Xue, X. Ji, D. Zhou, J. Li, and Z. Ju, “SEMG-based human in-hand mo-
tion recognition using nonlinear time series analysis and random forest,”
IEEE Access, vol. 7, pp. 176448–176457, 2019.

[26] Z. G. Xiao and C. Menon, “Does force myography recorded at the wrist
correlate to resistance load levels during bicep curls?,” J. Biomech., vol. 83,
pp. 310–314, Jan. 2019.

Peiji Chen received the B.S. and M.S. degrees in
electrical and electronic engineering from Tianjin
University of Technology, Tianjin, China, in 2018 and
2021, respectively. He is currently working toward the
Ph.D. degree in engineering with The University of
Electro-Communications, Tokyo, Japan.

His research interests include affective computing,
brain-computer interface, deep learning, and com-
puter vision.

Ziye Li received the B.S. degrees from Xuhai
College, China University of Mining and Tech-
nology, Xuzhou, China and The University of
Electro-Communications, Tokyo, Japan, in 2015, and
the M.S. degree from The University of Electro-
Communications, in 2021.

His research interests include multimodal sensor
fusion and myoelectric prosthetic hand.

Shunta Togo (Member, IEEE) received the B.E.,
M.E., and Ph.D. degrees from Nagoya University,
Nagoya, Japan, in 2009, 2011, and 2014, respectively.

From 2012 to 2014, he was a Japan Society for the
Promotion of Science (JSPS) Research Fellow (DC2)
with the Graduate School of Engineering, Nagoya
University. From 2012 to 2016, he was a JSPS Re-
search Fellow (PD) with Cognitive Mechanisms Lab-
oratories, Advanced Telecommunications Research
Institute International (ATR). Since 2016, he has been
an Assistant Professor with the Graduate School of In-

formatics and Engineering, The University of Electro-Communications, Tokyo,
Japan. His current interests are human motor control, motor coordination, and
myoelectric control device. His research interests include control mechanisms
of human multijoints and multimuscles.

Hiroshi Yokoi (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in precision engineering
from Hokkaido University, Sapporo, Japan, in 1986,
1990, and 1993, respectively.

From 1986 to 1987, he was an Engineer with
Toyota Motor Cooperation, and from 1993 to 1995,
he was a Researcher with the Institute of Bioscience
and Human Technology, AIST. From 1995 to 2004,
he was an Associate Professor with the Department
of Complex System Engineering, Faculty of Engi-
neering, Graduate School of Hokkaido University,

and from 2004 to 2009, he was with the Department of Precision Engineer-
ing, Faculty of Engineering, University of Tokyo. He is currently a Professor
with the Graduate School of Informatics and Engineering, The University of
Electro-Communications, Tokyo, Japan. His current research interests include
computational intelligence in robotics, artificial life, and medical engineering.

Yinlai Jiang (Member, IEEE) received the B.S. and
M.S. degrees in computer science and technology
from Northeastern University, Shenyang, China, in
2002 and 2005, respectively, and the Ph.D. degree
in engineering from Kochi University of Technology,
Kami, Japan, in 2008.

From 2008 to 2012, he was a Research Associate,
and from 2013 to 2014, he was an Assistant Professor
with Kochi University of Technology. He is currently
an Associate Professor with the Center for Neuro-
science and Biomedical Engineering, The University

of Electro-Communications, Tokyo, Japan. His current research interests include
biological engineering, robotics, and human–robot interface.

https://dx.doi.org/10.1109/JSEN.2017.2766663
https://dx.doi.org/10.1109/TBME.2019.2899222
https://dx.doi.org/10.1109/CVPR.2016.90


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


