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Abstract—This work presents a topological nonlinear analysis
approach for dynamical system measurements, frequently appear-
ing in sensor-based inference tasks in human physical activity anal-
ysis. Traditional approaches to dynamical modeling included linear
and nonlinear methods with specific representational abilities and
some drawbacks. A novel approach we investigate is using topolog-
ical descriptors of the shape of the dynamical attractor to repre-
sent the nature of dynamics. The proposed framework has three
essential advantages compared to previous approaches: 1) with
nonlinear phase space reconstruction, the dynamics descriptor is
derived from the observation time series without any statistical
assumption; 2) with the topological data analysis technique, the
phase space topological properties are described in an intrinsic
multiresolution analytical way, which brings novel information
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compared to traditional phase-space modeling techniques; 3) with
different types of measurement sensing signals, the proposed ap-
proach shows stability in activities state inference. We illustrate our
idea with the physical activity recognition tasks with wearable sen-
sors, where the topological characteristics of reconstructed phase
state space show strong representational ability for activity type
inference.

Index Terms—Dynamical systems, human activity recognition
(HAR), nonlinear dynamics, persistent homology, topological data
analysis (TDA), topological machine learning.

I. INTRODUCTION

HUMAN activity recognition (HAR) has been an essential
topic in behavior monitoring, which brought a promis-

ing application in healthcare monitoring, pervasive computing,
gaming, and entertainment human–machine interaction. The
wearable sensor-based sensing systems show superiorities in
unrestrained and continuous scenarios like outdoor physical
training [1], [2] and daily activity acquiring [3] in healthcare
services or intelligent living. Recognizing human physical ac-
tivities from the on-body sensors is critical for better behavior
analysis performance and healthcare service quality improve-
ment. Wearable systems incorporate motion sensors like ac-
celerometers, magnetometers, gyroscopes, or integrated inertial
measurement units (IMUs). Modern smartphones, wristbands,
or textiles might integrate motion sensors widely available and
nonintrusive for users, containing a wealth of information with
different types of sensors to be good human activity sensing
platforms. Learning from the sensor information to reveal the
human activity variation is vital for practical applications.

The sensor signals captured with the wearable sensors can
be considered as the observations of the human locomotion
dynamical systems. With phase space reconstruction (PSR), the
time series can be converted into geometrical objects, including
trajectories and state points in the phase state space, which reveal
the system’s dynamics. Investigating the nonlinear dynamics of
sensor signals has achieved fruitful results for physical activity
analysis [4], [5], [6], [7], [8]. In dynamical system theory, a phase
state space is an abstract space in which all possible system
states are represented. Each possible state corresponds to one
unique point in the phase state space, representing the dynamics
of the nonlinear system. In early studies, the nonlinear dynamics
analysis was widely used to study gait variabilities [9], especially
in the disease impact [10], [11], injury study [12], sports train-
ing [13], and aging problems in human movement [14]. Different
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nonlinear dynamics analysis techniques have been previously
developed for HAR applications. Frank et al. [4] proposed a
geometric template matching (GTM) algorithm, which projects
the time series into phase state space. Then the projected data
were compared geometrically against their nearest neighbors.
Bao et al. [7] explore the GTM algorithm in a 6-D pseudo
space to classify actions with Bayesian voting of the k-nearest
neighbor classifiers. Saad et al. [5] constructed a nonlinear
dynamics analysis framework with the reconstructed phase state
space, capturing the dynamical and metric invariants, such as
the Lyapunov exponent, correlation integral, and correlation
dimension based on the chaos theory. Kawsar et al. [6] developed
an HAR approach using the Gaussian mixture models with
time-delay embedding and a multisensor body sensing system.
Similar work was introduced toward the lightweight smartphone
HAR platform in [8]. Tu et al. used the cooperative coevolu-
tionary method [15]. Genetic programming (GP) algorithm [16]
toward the PSR optimization. After embedding accelerometer
motion sensor data into the phase state space, a 2-D chaotic
feature matrix was created with correlation dimension. Max-
imum Lyapunov exponent of attractor trajectory in the phase
state space [17]. These nonlinear features can detect locomotion
system variations led by physical activities or disease impact.

Recently, various works have been proposed utilizing topo-
logical data analysis (TDA) techniques to infer the human state
analysis. For example, Ltindis et al. performed topological EEG
analysis to investigate the difference for different motor activity
tasks [18] and further explored a comprehensive parameter vari-
ation study in EEG applications [18]. Wang et al. [19] validated
that the topological features could identify the left temporal
region variations and developed a seizure state detection ap-
proach. Tlachac et al. explored the audio topological features of
depression screening with audio clips from open-ended clinical
interviews and scripted crowd-sourced recordings [20]. Saba
et al. [21] used the topological barcodes lifetime as a feature to-
ward wheeze detection, similar works performed for preliminary
action recognition were introduced in [22] and [23]. The previ-
ous illustrated that the different states could be distinguished by
exploring the nonlinear dynamics of sensor data with topological
analysis.

In this work, we explore the effectiveness and ability of topo-
logical nonlinear dynamic descriptors to distinguish between
physical activity by acquiring body motion information based
on IMU sensors. The topological description approach involves
the recently developed TDA tools proposed in the algebra
topology area as the state point features in the reconstructed
phase state space to discriminate different human activities. The
physical activity representative ability validations are performed
on sensor-based HAR datasets with a variety of excellences as
follows.

1) Better representational ability than other nonlinear/chaotic
descriptors.

2) Robustness of sensors both in placement location and
sensor types.

3) Small sample learning ability with the topological non-
linear representations. The present work provides an
alternative feature set for the sensor-based HAR research
community besides the current widely applied time do-
main, frequency domain, and nonlinear characteristic sets.

Fig. 1. Homology objects variation illustration with different radius: the
touched disks are considered as connected components H0 while the green
and purple circles are the holes H1.

The rest of this article is organized as follows. We first
give preliminary intuition understanding and core notations of
TDA in Section II. Then we illustrate the proposed topological
inference model by demonstrating sensor-based HAR tasks in
Section III. The data materials and experimental settings are
allocated in Section IV, and then we present the results and
discussion in Section V. Finally, Section VI concludes this
article.

II. PRELIMINARIES

A. Overview of Topological Data Analysis

Consider a point cloud set with M points. The TDA technique
investigates the underlying space via the following operation and
process.

1) First, replace the M points in the point set X with spheres
(disks in the 2-D case) with a radius parameter ε, i.e.,
B(X, ε).

2) Then, gradually increase the radius parameter ε from 0 to
∞. As the parameter of εgradually increases, the ε-spheres
collide and merge.

3) Finally, when the radius of the spheres ε increases to∞, all
the individual objects of B(X, ε) merged into one single
sphere.

As shown in Fig. 1, in the 2-D case, the radius gradually
increases from (1) to (9). We can see that the number of topo-
logical objects, including connected components and holes, are
different with a different parameter of ε. First, we consider the
instance of (2) to (3) in Fig. 1 to show the connected component
variations. As ε increases, four spheres merge, meaning the
number of connected components changed from 13 to 11 by
two objects disappear. Then consider the hole that exists during
(3) to (4) (green circle) in Fig. 1. The variation is also led by the
increase of the sphere parameter of ε. In the TDA literature, the
connected components are denoted as 0-homology, and holes as
1-homology. Though higher dimensional homology objects are
not provided in Fig. 1 due to the 2-D plane limitation, there are
higher dimensional homology objects in much higher space. In
3-D space, the 2-homology objects denote loops. In this work,
we mainly focus on the information of connected components,
holes, and loops denoted as H0, H1, and H2, respectively. The
TDA technique investigates the point cloud structure by record-
ing the appear and disappear parameters for each topological
object by utilizing persistent homology as mentioned in later
sections.
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Fig. 2. Topological nonlinear dynamics analysis with sensor signals.

B. Simplicial Complex

The above process can be further described by using the
simplex and simplicial complex objects. For point set X in a
space, any subset of a point cloud with cardinality k + 1 is
called a k-simplex [24]. As shown in Fig. 2, the 0-simplices
are points, 1-simplices are edges, 2-simplices are triangular
faces, and 3-simplices are tetrahedrons. One simplicial complex
includes all the lower dimensional simplices and their highest
dimension ones. Mathematically, it can be defined as follows.

Definition 1: A simplicial complex K is a finite collection of
simplices, for each simplex σ,

1) any face of σ ∈ K is also in K, and
2) if σ1, σ2 ∈ K, then σ1 ∩ σ2 is a face for both σ1 and σ2.
Thus, with different ε parameters, the sphere structure devel-

oped from the point cloud can be described with the simplicial
complex language.

Then for a certain point cloudX , it can be naturally converted
into a simplicial complex form with the following.

Definition 2: Given a scale parameter ε and a point cloud X ,
the Vietoris–Rips complex K(X, ε) is defined as a simplicial
complex contains all subsets with maximum diameter ε

V(ε) := {σ ⊆ X|diamσ ≤ r}. (1)

C. Persistent Homology

Then we reconsider the growing process of ε, as shown in
Fig. 1. The scale parameter ε is a variable ranging from 0 to
∞. With the Vietoris–Rips notation, we denote the origin point
cloud as K(X, 0), and denote the final state when all points
merge, as in K(X,∞). The persistent homology is proposed by
recording the Vietoris–Rips complex while gradually increasing
the scale parameter.

Mathematically, consider the growing process with increasing
radius parameters {ε0, ε1, ε2, . . .} ∈ ε

B(X, ε0),B(X, ε1),B(X, ε2),B(X, ε3), . . . (2)

is represented as a sequence of complexes

K(X, ε0),K(X, ε1),K(X, ε2),K(X, ε3), . . . (3)

Meanwhile, the subsequent Rips complex in the sequence is
larger than its previous ones, as nested. The nested Rips complex
sequence is called a filtration, which has the property that

K(X, ε0) ⊆ K(X, ε1) ⊆ K(X, ε2) ⊆ . . . ⊆ K(X, εn) (4)

when ε0 ≤ ε1 ≤ . . . εn. Thus, for each point cloud embedded
from the time series, we have a Vietoris–Rips complex se-
quence with the varying ε, i.e., Vietoris–Rips filtration. The the-
oretical introduction and implementation algorithm of building
the Vietoris–Rips complex from the point cloud is described
detailedly in [25]. Through tracking the growing process, the
homology objects’ birth–death ordered pairs are recorded as
homology’s persistence.

Further, the persistence and birth–death ordered pairs can be
visualized using barcodes, which track the filtration values of
the birth time and death time for the connected components,
holes, and loops object in the sequence. As shown examples in
Fig. 2, considering the growing process with a 2-D point cloud.
The bars in blue color denote the connected components, and
the bars in red indicate the holes.

D. Topological Summaries

With the above persistent homology analysis, we can acquire
the homology classes and objects with dimensions of 0, 1, and
2, namely, H0, H1, and H2. Consider the number of homology
objects in the three dimensions is M , N , P for H0, H1, and H2,
respectively. Thus we have three sets to represent the topological
features. For H0, the topological summaries are

{{
b10, d

1
0

}
, · · · {bm0 , dm0 } , · · ·{bM0 , dM0

}}
(5)

while for H1 we have
{{

b11, d
1
1

}
, · · · {bn1 , dn1} , · · ·

{
bN1 , dN1

}}
(6)

and for H2 the summaries are represented with
{{

b12, d
1
2

}
, . . . , {bp2, dp2} , · · ·

{
bP2 , d

P
2

}}
. (7)

Thus, the structure information of a specific point cloud is
converted into the three ordered pairs with filtration parameters.
In this work, we use topological summaries to show the nonlinear
dynamics of the human locomotion system when performing
different physical activities. Various features built upon the
topological summaries have been proposed, including statistical
properties, distance analysis, rule-based features, and kernels. In
this work, we use the Betti cure (BC) as our topological nonlinear
features based on the persistence of H0, H1, and H2, we put the
details of BC in the following methodology section.

III. METHODOLOGY

A. Overview of the Topological Inference Model in
Sensor-Based HAR

In sensor-based HAR tasks, wearable devices capture the
inertial information at different human body positions. This
work proposes a physical activity recognition framework by
characterizing the nonlinear dynamics by topological state point
cloud analysis. The collected activity signals are first used to
reconstruct the phase state space through time delay embed-
ding. The topological analysis utilizing persistent homology is
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Fig. 3. Topological inference framework with PSR and TDA technique: (up)
the preprocessed sensor signals are segmented into multivariate time series, PSR
is performed on each channel of signals in the slice; (bottom left) persistent ho-
mology analysis of point cloud, with topological summaries extracted; (bottom
right) the Betti curves are extracted as the feature vector for one slice with activity
category.

performed on each point cloud in the phase state space generated
from individual sensor channels. The Betti curve developed from
different homology classes is extracted and combined as the fea-
ture vector as the activity patterns with the extracted topological
summaries. The recognition models are then built with such
signal patterns for sensor-based HAR tasks. As shown in Fig. 3,
the signals of multisensor channels are first segmented into time
series slices with sliding windows. Phase state reconstruction is
first individually on each signal in different channels. With the
acquired point clouds on each channel, the topological features
from all the channels are extracted and combined for further
activity type inference.

B. Time Delay Embedding

The state of a deterministic dynamical system is the infor-
mation required to determine the entire future evolution of the
system. The phase state space includes the state points as the
set of all possible states of the nonlinear system. The system
dynamics are revealed in the phase state space with PSR. The
drawn trajectories in the phase state space represent the time
evolution, while the points denote the state vector which is
undergoing over time [26]. Thus, the phase state space can be
used for description of the rules that govern the evolution of the
dynamical system.

In this work, we use the delay-coordinate embedding [27],
[28] to reconstruct the phase state space. Mathematically, con-
sider the time series of {t0, t1, · · · }, the delay-coordinate em-
bedding can be denoted as

xk = (tk, tk+τ , . . . , tk+(d−1)τ ) (8)

with which the time series is embedded into the points, each
denoted as one state vector x ∈ Rd. Thus we have a state point
set of X = {x0,x1,x2, · · · } as the state point cloud which

Fig. 4. Betti curves developed from the barcodes as the topological features
of sensor signals: the color of blue, red, and green denotes H0, H1, and H2,
respectively.

reveals the dynamics of the locomotion system. A demonstration
of time delay embedding is shown in Fig. 3, in which the time
series is embedded into a 3-D phase state space with the τ as
the delay parameter. Two crucial factors in the PSR stage are the
time delay parameter denoted as τ and the dimension indicated
as d used to unfold the dynamics in the phase state space. We
suggest [29] for further discussions on the PSR in nonlinear time
series analysis.

C. Topological Feature Extraction

With each point cloud generated by time delay embedding, the
persistent homology analysis is performed to extract the topolog-
ical summaries. In this work, we consider three low-dimensional
homology classes of H0, H1, and H2, which denoted the
connected components, holes, and loops. The corresponding
instances of the topological summaries are illustrated in (5), (6),
and (7), respectively. The three sets illustrated all the persistence
information in each cloud as the descriptor of the nonlinear
dynamics. However, such persistence information cannot be
directly used to build models toward further classification and
inference problems.

In this work, we use the Betti curve features in the TNDA
approach. After achieving the barcodes or persistence diagram
of the point cloud, we can map the barcode plot into an integer-
valued curve. The process is termed a persistent Betti number
(PBN) or Betti curve (BC), which is defined as the summation
of all the kth dimensional barcodes

f(x,Hk) =
∑

i

κ
(
bik, d

i
k

)
(x) (9)

in which k denotes the dimension of homology, and i denotes the
specific barcode. Thus, for H0, H1, and H2 the corresponding i
is ranging in {1, 2, . . . ,M}, {1, 2, . . . , N}, and {1, 2, . . . , P},
as the settings in (5), (6), and (7), respectively. The function of
κ is a step function, which equals to one in the region {bik, dik}
and zero otherwise. For instance, as illustrated in Fig. 4, the blue
bars of the Barcodes plot are the H0 objects, where the number
decreases from 14 to 10 at the first stage, and finally, only one
0-D exists, as the Betti curve shows. A similar extraction process
can be found in H1 and H2 cases, denoted in red and green,
respectively. We use the mean value of the BC count number
of H0, H1, and H2 as our topological feature, which is used as
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the classifier’s input to build the machine-learning models in our
sensor-based HAR applications.

D. Activity Recognition With Different Classifiers

The proposed topological inference approach provides an al-
ternative descriptor for the feature learning tasks in sensor-based
HAR. To illustrate the representative ability of the extracted BC
features vector, we perform the feature learning experiments
developed with several classical classifiers. The Gaussian naive
Bayesian (GNB), support vector machine (SVM) classifier with
radial basis function (RBF) kernel, k nearest neighbor (kNN),
random forests (RF), and multilayer perceptron (MLP) classi-
fiers are used for classification. We evaluate the topological fea-
ture learning models on discriminate activity types with several
sensor-based HAR datasets. Details of the implementation and
experimental settings are provided in the following sections.

IV. EXPERIMENTS

A. Data Materials

In this work, we mainly consider the activity recognition
tasks with the dynamical variation of the human body. Thus,
we developed a wearable sensor-based HAR dataset named the
TNDA-HAR [30] dataset, in which 50 subjects ranging from
20 to 35, with 25 females and 25 males, are involved in data
collection. Five IMU sensors were located at the body’s left
ankle, left knee, back, right wrist, and right arm. Each IMU
sensor contains three types of measurement: the accelerometer,
gyroscope, and magnetometer. The sampling rate of the sig-
nals was set as 50 Hz. Each subject was required to perform
periodic dynamic activities including static, walking, running,
walking up stairs, walking down stairs, and cycling (static state
includes sitting, laying, and standing still are ignored, but are
still provided in the original dataset), each with an acquiring
time of 120 s. The dataset is publicly accessible from https:
//dx.doi.org/10.21227/4epb-pg26 with detailed explanations.

Besides, we also use two other widely used benchmark
datasets of the mHealth HAR dataset [31], [32], and the
PAMAP2 HAR dataset [33], [34]. These two datasets are also
wearable sensor-based and include complete activity annota-
tions. We consider the seven nonstatic activity types of walking,
running, cycling, Nordic walking, walking up stairs, walking
down stairs, and roping in the PAMAP2-HAR dataset, which in-
cludes data acquired from nine participants of 24 to 30 years old.
The participants wore IMUs on their dominant-side wrist, ankle,
and chest, while each IMU contained two 3-D-acceleration
sensors, a gyroscope sensor, and a magnetometer sensor, with a
sampling frequency of 100 Hz. More details of the dataset can
be seen in [31] and [32]. While in the mHealth-HAR dataset,
nine nonstatic activities including walking, climbing stairs, waist
bends forward, frontal elevation of arms, knees bending, cycling,
jogging, running, and jumping front back are used in the experi-
ments, which was collected from ten participants in an out-of-lab
environment. Each subject wore wearable sensors attached to the
chest, right wrist, and left ankle with a sampling rate of 50 Hz.
Further details on the experimental data collection can be found
in [33] and [34]. In this work, the signals from the PAMAP2

dataset are first downsampled from 100 to 50 Hz for consistency
consideration.

B. Experimental Settings and Model Assessments

For each evaluation, we perform a fivefold cross-validation in
this work to perform the model assessment. We use the recog-
nition accuracies, recalls, F1-scores, and confusion matrix for
the multiclass classification task to illustrate the accomplished
results. For each activity class in the datasets, the predictions of
the model were compared to the ground truth labels to calculate
the numbers of true-positives (TP), true-negatives (TN), false-
positives (FP), and false-negatives (FN). The overall accuracy
equals

Accuracy =
TN + TP

TN + TP + FN + FP
(10)

and the precision and recall of one typical class can be calculated
by

Precision =
TP

TP + FP
Recall =

TP
TP + FN

. (11)

The F1-score is a balanced metric combination of both precision
and recall

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
∗ 100%. (12)

The average values are used for each experiment’s assessment.
In addition, several critical confusion matrices are also involved
in visualizing the performance of models.

C. Implementation Details

For each dataset, we first perform preprocessing, including
signal filtering and normalization, similar to the previous works
of literature in dealing with sensor-based HAR datasets. Thus,
the continuous time series is then segmented into slices with a
temporal size of 128 with an overlapping of 50%, namely, 64
sampling points. Then the multivariate time slices are used for
time delay embedding and converted into point clouds. The em-
bedding parameters are set fixed empirically with d = 5, τ = 5
in TNDA, d = 5, τ = 10 in mHealth, and d = 5, τ = 10 in
PAMAP2. For the topological feature extraction, we use giotto-
tda package to perform the building of the Vietoris–Rips com-
plex and the Betti curve feature vector. For the classifiers used in
this work,the scikit-learn package is used for GNB, SVM-RBF,
kNN, RF, and MLP classifier building. Specifically, for kNN
classifier, the neighbor parameter is set as 2. For RF classifiers,
the estimator’s number is set as 46 with bootstrap. For the MLP
classifier, the Adam optimization is used with a learning rate of
0.001, the regularization term is L2, and the maximum iteration
is 200. The training/testing dataset is divided as 80%/20% for the
standard analysis, while the fivefold cross-validation strategy is
used for the evaluations. Several more discussion experiments
were performed beyond the standard evaluation, and we put the
details case by case in the discussion part.

https://dx.doi.org/10.21227/4epb-pg26
https://dx.doi.org/10.21227/4epb-pg26
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TABLE I
STANDARD TOPOLOGICAL INFERENCE MODEL WITH DIFFERENT CLASSIFIERS IN THREE INVOLVED DATASETS

Fig. 5. Confusion matrices of the topological inference model developed with MLP classifier using HAR datasets.

V. RESULTS AND DISCUSSION

A. Sensor-Based HAR With Topological Inference Models

In this work, we consider the recognition problem of some
typical physical activities in the sensor-based HAR literature
based on three datasets. We use five classical classifiers to
implement the topological feature learning models to show the
feasibilities and efficiencies.

The results achieved with the topological feature-based learn-
ing models are presented in Table I, which include the results
classified by the SVM classifier with RBF kernel, Gaussian naive
Bayesian, kNN classifier, RF classifier, and MLP classifier. In the
mHealth dataset, the best overall accuracy is 97.58% by RF and
MLP classifiers; the best recall is 97.11% with MLP classifier;
and the best mean-F1 score of 0.9712 by RF-based model. In
PAMAP2, the best overall accuracy is 93.96%, the mean recall is
92.93%, and the mean F1-score is 0.9313, achieved by the MLP-
based model. In the TNDA dataset with three nine-axis sensors,
the best results are 95.85%, 95.79%, and 0.9576 for overage
accuracy, average recall, and mean F1-score, respectively.

We can see that the MLP classifier-based model shows best
in the multiclass physical activity recognition tasks, with which
we illustrate the confusion matrices in Fig. 5. The corresponding
details are shown in Table II. However, since the training expense
of the MLP classifier is high, we consider using RF classifier in
some of the following comparison experiments.

With the presented results above, we can see that the topo-
logical inference approach successfully distinguished different
physical activities by representing the characteristic of the phase
state space. With persistent homology, the structures of the state
point clouds are represented and converted into features for
classification in sensor-based HAR tasks. The effectiveness is
based on two factors: 1) the characteristic ability of PSR; and 2)
the representative ability of the TDA. In the following part, we
develop validation experiments with corresponding discussions
to show how PSR impacts performance and the superiorities of
topological inference compared to previous nonlinear descrip-
tors. In addition, the limitations and potential improvements of
this work are also provided in the end.

B. Discussion of Topological Inference With Different Number
of Sensors

The nonlinear analysis of the dynamical systems utilizing PSR
has been widely used in various works of literature. Each time se-
ries of the sensor signals can be considered an observation of the
nonlinear system, which means that more sensors could provide
much more information on the observation of the dynamical
system. In this work, we established the TNDA dataset with
two different settings of sensor allocation strategy. We consider
three experiments from the TNDA dataset denoted as 3S-TNDA,
4S-TNDA, and 5S-TNDA settings, representing physical activ-
ity recognition with 3, 4, and 5 wearable sensors, respectively.
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TABLE II
TOPOLOGICAL INFERENCE MODEL PERFORMANCE IN SENSOR-BASED HUMAN ACTIVITY RECOGNITION WITH MLP CLASSIFIER

TABLE III
PERFORMANCE OF HAR MODEL WITH TOPOLOGICAL INFERENCE DIFFERENT

SENSOR ALLOCATION STRATEGIES

The 3S-TNDA experiments include the wrist, ankle, and back
IMU sensors; the 4S-TNDA utilize the wrist, ankle, back, and
leg IMU sensors; and in the 5S-TNDA case, the wrist, ankle,
back, leg, and arm sensors are all included. Here we consider
using the RF classifier-based models to perform the comparison,
with the overall accuracy value as the multiclass classification
performance evaluation. Since most whole-body activity classes
are better tracked with multiple sensors (at least three), we ignore
the case of a single sensor and two sensors.

As illustrated in Table III, three comparison experiments
are proposed, including multiclass activity classification tasks.
We can see that with more sensors, the recognition slightly
increased with more gathered information from the wearable
system. However, in nonlinear dynamical system theory, each
of the sensor channels tracks an observation of the human
locomotion system. More observations of the system provide
more information, which makes a better recognition model. The
reason is that the features developed with the characterization of
reconstructed space are expanded lead by more sensor signals.
Nevertheless, since the sensors had information redundancies
when sensors were located too close, the human locomotion
system has already been well described by the wrist, ankle,
and back sensors. Thus, the improvements are light. Despite
the difference led by the difference in the setting of sensor
numbers (which are usually located at different positions of the

TABLE IV
PERFORMANCE OF HAR MODEL WITH TOPOLOGICAL INFERENCE DIFFERENT

SENSING MODALITIES

body tracking different kinematics information from the body),
the sensor modality is another critical factor, as shown in the
following.

C. Discussion of Topological Inference With Different Sensing
Modalities

Since the 9-axis IMU sensors usually integrated three different
categories of measurements, we set the experiments to show the
single modality sensor-based HAR tasks. There are a variety of
applications with three-axis accelerometer-based. As illustrated
in Table IV, we compare the topological inference models with
different sensor modality signals. The nine-axis models signif-
icantly outperform the accelerometer-based, gyroscope-based,
and magnetometer-based models by the overall accuracy metric.
The PSR-based nonlinear dynamics characterization difference
also leads to the differences, and the sensor modalities contain
independent information by different sensing approaches. Based
on the PSR from different sensor modalities, the proposed topo-
logical inference approach shows robustness in discriminating
the nonlinear dynamics of human activities. Thus, the proposed
method provides a flexible feature-learning solution in the ap-
plications with only limited modality information available.
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TABLE V
PERFORMANCE OF HAR MODEL WITH TOPOLOGICAL INFERENCE WITH

SMALL SAMPLE SIZES

TABLE VI
AVERAGE ACCURACIES OF TOPOLOGICAL INFERENCE MODEL WITH

EXPERIMENTS WITH DIFFERENT SLIDING WINDOW LENGTHS

D. Evaluation of Activity Recognition Models With Small
Training Sample Set

In this section, we want to validate the effectiveness of the
proposed topological inference approach with limited labeled
training samples. Based on the experiments of 8:2 of the samples
as the portion of training/testing, we further consider the case
that uses part of the training set to train the model while keeping
the testing set fixed. As illustrated in Table V, we consider the
percentages of 5%, 10%, 25%, 50%, and 100% of the training
set to show the small sample learning ability. The validation
experiments performed on the mHealth, PAMAP2, and TNDA
show that the HAR models have insignificant differences in
recognition ability with only a small number of training samples.
For example, in the first column, when using only 5% of the
training set in mHealth, PAMAP2, 3S-TNDA, and 4S-TNDA,
the models developed with RF classifier achieved overall accu-
racies of 97.73%, 92.63%, 95.09%, and 95.33%, respectively.
The results have no significant decreasing trend from 97.45%,
92.61%, 95.18%, and 95.43% compared to the last column,
which uses 100% of training samples in the 8:2 setting. The
robustness of topological features can be integrated into the
hybrid, fusion, or deep models in HAR application to improve
the representational ability.

E. Robustness Validation With Different Window Length

The PSR process has been performed in a fixed window length
of the time slice. It is meaningful to validate the approach’s per-
formance in different window lengths. We consider five different
window lengths denoted with the number of sampling points of
76, 102, 128, 154, and 180, which denotes a period of 1.52, 2.04,
2.56, 3.08, and 3.6 s, respectively. As shown in Table VI, the
results with different window lengths do not significantly reduce
average accuracy. The reason is that a longer time series might
contain multiple action repetitions with more reconstructed state
points, enriching the system’s dynamics. Unless the time slice
contains less than one cycle of the activity, the topological
approach would be able to give a complete description of the
locomotion system.

F. Comparison of Activity Recognition Model Performance
With Other Nonlinear Descriptors

The robustness of topological features can be integrated
into the hybrid, fusion, or deep models in HAR application
to improve the representational ability. The proposed approach
investigated the topological description of the phase state space
as the feature of the human locomotion dynamical system.
Various nonlinear features are developed with entropy analysis
or geometrical description of phase state space. In this work,
the topological point cloud (state point) analysis is proposed
as an alternative way to describe the nonlinear dynamics of
human locomotion systems in sensor-based HAR problems. A
comparison with the previous typical nonlinear descriptors is
illustrated in Table VII, including the approximate entropy, sam-
ple entropy, phase state space description of the recurrence plot,
and Lyapunov exponents. We extract the nonlinear parameters
from each signal channel to build the corresponding activity
feature vector. Then, we use the RF classifier to perform the HAR
tasks with the same settings as in topological inference models.
Generally, the topological descriptors of the state point cloud
provide better descriptions of the nonlinear dynamics compared
to the other involved methods.

The topological approach uses the persistent homology tech-
nique to analyze the structure of the state point cloud with mul-
tiple space resolutions, which is quite different from the previ-
ous geometrical analysis approach. However, such an approach
ignores some of the temporal information of the state points re-
constructed from the time series. This approach is brought from
the geometrical structure description motivation topologically.
An improvement in describing the nonlinear system dynamics
is to combine the proposed topological structure descriptor with
meaningful temporal-related features as one future direction,
which is meaningful for the sensor-based HAR tasks because of
the inherent temporal properties.

G. Related Work in Sensor-Based Human Physical Activity
Recognition

In recent sensor-based HAR studies, the deep learning ap-
proaches accomplished significant success in almost every as-
pect. The proposed approach seeks a novel sensor signal analysis
feature that might help improve current frameworks without the
ambition to overcome the current state-of-the-art methodolo-
gies. However, it is necessary to illustrate how this work differs
from modern architecture. Since the activity classes are limited
in the proposed TNDA dataset, we here involve the models
performed on PAMAP2 and mHealth datasets. We consider the
recognition performance with the results of only the used activity
types for fair comparisons by reviewing and further calculating
based on literature.

For PAMAP2, Wan et al. [35] developed the deep archi-
tectures, including convolutional neural networks (CNN), long
short-term memory (LSTM) networks, and bidirectional LSTM
(BiLSTM) networks, performed on the PAMAP2 dataset, which
achieved mean recognition accuracies of 92.01%, 83.89%, and
89.46% for the activity types recognition, respectively. Gochoo
et al. [36] performed a feature selection and optimization frame-
work with six groups of features for real-time use, achieving an
overall accuracy of 93.77% in the seven activities recognition
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TABLE VII
COMPARISON WITH OTHER NONLINEAR DYNAMICS DESCRIPTORS

task. Ma et al. [37] proposed AttnSense as a multilevel attention
mechanism to recognize human activities, with an average recall
of 90.14% in HAR with our similar activities. Challa1 et al. [38]
developed a CNN–BiLSTM structure for the HAR tasks with the
corresponding recognition mean recall of 93.29%. Gao et al. [39]
proposed DanHAR with dual attention network as a deep model,
achieving an average recall value of 89.43%.

For the mHealth dataset, Khatun et al. [40] used a deep
CNN-LSTM with the self-attention model to distinguish the
activities, with a corresponding average recall value of 82.23%.
Aljarrah et al. [41] developed a PCA and Bi-LSTM RNN
framework for sensor-based HAR with an average accuracy
of 96.59% with similar settings. Sarkar et al. [42] proposed
spatial attention CNN with a genetic algorithm to perform HAR
recognition and achieved an average recall of 99.65%. Zebhi [43]
proposed a signal 2-D fast Fourier transform and Wigner–Ville
transform-based CNN framework to distinguish different ac-
tivities, achieving 98.54%, 98.82%, and 98.67% in mean pre-
cision, mean recall, and average recognition accuracy, respec-
tively. In this work, the proposed approach achieves comparable
performance compared to some of the classical deep learning
feature extractors or feature fusion models in distinguishing
the nonstatic activity class. However, modern deep learning
approaches provide a much more powerful representation than
handcraft features. The superiority of the proposed topological
features lies in the capability to represent the higher order orga-
nization in nonlinear systems, such as the locomotion system in
HAR tasks, without heavy training and complex structure.

H. Limitations and Potential Improvements

The main drawback of the proposed framework is the igno-
rance of the three typical static activity types in most sensor-
based HAR studies, including sitting, standing, and laying. The
main concern in this work is to investigate human activities from
a nonlinear dynamics analysis angle, which shows advantages in

describing the geometric structure of the state points. The intrin-
sic properties of the static activities lack periodic movements,
which shows remarkable similarities in their phase state space
structure. Such reality brought obstacles for our topological
inference approach to distinguish the three statical activities. As
shown in Table II and Fig. 5, a similar case happens in the upstairs
and downstairs activities that are easily misclassified. They share
similar movement patterns, making the state trajectories and
point clouds similar in most sensor measurements. However,
the proposed topological features are suitable for distinguishing
the activity type with significant movements, which expands
the modern feature set in sensor-based HAR analysis. Thus, the
topological feature set can be incorporated into feature fusion
models and deep learning structures to improve the representa-
tional ability further.

VI. CONCLUSION

In this work, we proposed a topological scheme for dynamical
systems analysis in sensor information inference for human
physical activity analysis. In sensor-based HAR applications,
human locomotion dynamics are revealed with wearable sen-
sor signals as measurements of nonlinear dynamical systems.
Different activities bring different dynamics characteristics de-
scribed with the topological properties of the state point clouds
developed by PSR. The experimental results illustrated that
the topological nonlinear analysis approach performs well in
distinguishing the state variations in sensor-based HAR tasks
proposed in three datasets. Compared to some of the classical
nonlinear dynamics descriptors, the topological nonlinear analy-
sis approach shows better representational ability in the sensor-
based inference tasks. In addition, the feature-based approach
shows robustness in location and modality variation or training
sample shortage cases. The topological inference method brings
an alternative feature analysis tool toward the inertia signals and
activity dynamics analysis.
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