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Abstract—The use of multiagent systems (MASs) in real-world
applications keeps increasing, and diffuses into new domains,
thanks to technological advances, increased acceptance, and
demanding productivity requirements. Being able to automate
the generation of mission plans for MASs is critical for man-
aging complex missions in realistic settings. In addition, finding
the right level of abstraction to represent any generic MAS mis-
sion is important for being able to provide general solution to
the automated planning problem. In this article, we show how
a mission for heterogeneous MASs can be cast as an extension
of the traveling salesperson problem (TSP), and we propose a
mixed-integer linear programming formulation. In order to solve
this problem, a genetic mission planner (GMP), with a local plan
refinement algorithm, is proposed. In addition, the comparative
evaluation of CPLEX and GMP is presented in terms of tim-
ing and optimality of the obtained solutions. The algorithms are
benchmarked on a proposed set of different problem instances.
The results show that, in the presence of timing constraints, GMP
outperforms CPLEX in the majority of test instances.

Index Terms—Extended colored traveling salesperson problem
(ECTSP), genetic algorithm (GA), multirobot mission planning,
multirobot systems.

I. INTRODUCTION

MULTIROBOT systems (MASs) have raised increasing
attention in different domains, ranging from underwa-

ter [1] to airborne [2] missions. A mission can be defined as
a specific set of tasks that a single or a group of agents1 is in
charge of performing. In addition, the tasks of a mission may
include precedence constraints (PCs), or may require heteroge-
neous capabilities, thereby limiting the selection of the agents
to be involved in the mission itself, based on the equipped sen-
sors and actuators. The mission planning problem, therefore, is
at a higher level of abstraction than the path planning problem,
and does not take into account the presence of static or
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1Terms robot and agent are used interchangeably throughout this work.

dynamic obstacles when generating the plan. It rather focuses
on the assignment of tasks to the different agents included in
the missions, and on the definition of the sequence of tasks to
be executed to complete the mission.

In most real-world applications, the mission plan is gener-
ated manually by domain experts. As a result, the feasibility
of the plan, with respect to the mission constraints, is the
primary goal, whereas its optimality—in terms of completion
time, or energy, or any other objective—is usually considered
as a secondary goal. Moreover, the problem can easily become
intractable when the number of tasks, or the number of agents,
and the mission constraints increases. This article focuses
on the development of techniques for tractable and scalable
automated mission planning. These aspects become partic-
ularly relevant when mission planning is conducted either
in the main planning phase, which typically occurs offline
and does not have stringent timing requirements, or during
the execution of the mission, when a replan request may
be triggered by unforeseeable events, for example, the agent
equipment fails, a task is no longer accessible by an agent,
and a new plan needs to be generated in a much shorter time
scale.

In the literature, different ways of modeling and represent-
ing mission planning problems have been presented. The most
common approach is to cast a mission planning problem into
a mixed-integer linear programming (MILP) [3] formulation
of a well-known problem [e.g., traveling salesman problem
(TSP), vehicle routing problem (VRP), or team orienteer-
ing problem]. If such mapping is not possible, the mission
planning problem can be formulated as a resource constraint
problem [4]–[6]. Emerging multirobot applications combine
the capabilities of different types of robots in the same mission,
introducing additional constraints that have not been consid-
ered in previous formulations. For example, robots may have
different equipment and, therefore, cannot execute all the tasks
in a mission, or there may be logical PCs among tasks. This
work presents an extended version of the colored traveling
salesperson problem (CTSP) to capture these new aspects of
multirobot mission planning.

When the model of the mission planning problem is defined,
several different choices on how to obtain the mission plan
can be made, based on the mission requirements. For example,
if the optimization time is limited, the usage of metaheuris-
tic algorithms or a combination of them is shown to be a
good choice [7], [8]. On the other hand, if the focus of the
mission planning is toward the optimality of the solution,
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exact methods are preferred (e.g., branch-and-cut). This work
proposes a genetic mission planning (GMP) approach for het-
erogeneous multirobot systems. The problem is first formalized
as a generalization of CTSP [9], which has been widely used in
several disciplines, such as robotics, communication systems,
and logistics. The generalization includes: 1) PCs, extending
the reformulated Miller–Tucker–Zemlin (RMTZ) [10] formu-
lation; 2) the possibility of having multiple depots as the source
and destination for the robot; 3) the presence of a duration
associated with the execution of the task; and 4) a new objective
function for the minimization of the total mission duration in
the presence of multiple robots. The presented formulations
define in a nonambiguous way the problem addressed in this
article, and they can be implemented in optimization tools, for
example, CPLEX, for computing the optimal solution for the
mission planning problem. Unfortunately, exact methods suffer
from the dimensionality problem and, therefore, the optimal
solution cannot be always computed in a reasonable amount
of time. The proposed GMP allows for faster computation of
a suboptimal (yet feasible) solution, which can potentially be
used even for replanning purposes. In this work, we compare
the performance of the two approaches showing that the GMP
formulation can provide significant benefits in terms of compu-
tation time, while providing either optimal or close-to-optimal
solutions.

The main contributions of this article are: 1) a new formu-
lation of the extended CTSP (ECTSP) problem as a MILP
problem, with PCs and subtour elimination expressed as an
extension of the RMTZ [10] formulation; 2) the proposal
of the genetic mission planner (GMP) algorithm, with a
local refinement method, for the solution of ECTSP; and
3) a comparative evaluation of the CPLEX implementation of
the proposed MILP formulation with a two-commodity flow
network (2CFN) formulation [11], [12], and with the GMP
approach in terms of solution quality and computational time.

II. RELATED WORK

Dantzig et al. [13] were the first ones to introduce the TSP
modeled as an integer linear programming (ILP) problem. This
TSP formulation is symmetric, that is, the distance between
two cities is the same in both directions, consequently halving
the number of possible solutions. Since then, TSP has been
extended in many directions in order to model various prob-
lems. The original problem definition of TSP was extended to
utilize multiple salesman (mTSP) [14]. This can be seen as
a basis for modeling multirobot missions. Another important
variation of TSP is created by adding PCs among different
cities to be visited (TSPPC) [15]. The introduction of PC
meant that the graph describing TSP is now directed. This vari-
ation of the TSP is referred to as the asymmetric TSP (ATSP).
A comparative study of different ATSP problem formulations
is given by Öncan et al. [16]. An experimental comparison of
different models and algorithms for ATSP has been provided
by Roberti and Toth [17].

Recently, a CTSP formulation has been given by
Meng et al. [18] in order to model and solve multi-
bridge machine planning in the industry. A similar model

has been used to model collision-free scheduling [19]
and path-planning [20] in multibridge machining systems.
Xu et al. [21] developed the Delaunay-triangulation-based
variable neighborhood search in order to solve large-scale
CTSPs. This formulation was extended with PCs, and multiple
source/destination depots, and it is called ECTSP [22]. It
is used for modeling heterogeneous multiagent missions.
The two-commodity network flow model [11] was used and
adapted to model PCs in CTSP. A different approach to
a similar problem is taken by Karaman et al. [23] where
the process algebra is used to model the problem that is
later solved with the genetic algorithm (GA). The problem
formulation presented in this article encloses all of the men-
tioned TSP variations. A distributed approach, which runs
concurrently on all the vehicles, of multirobot task allocation
(MRTA) is presented by Zhao et al. [24]. The algorithm iter-
ates between a task inclusion, a consensus, and a task removal
phase.

The analogous group of problems includes the VRP.
Wang and Lu [25] presented a capacitated green VRP and
solved it by means of a memetic algorithm with competi-
tion. This approach proves to be efficient and effective in
solving this kind of problem. Zhang et al. [26] employed a
variation of VRP for vehicle outsourcing and profit balancing.
The problem has multiple optimization criteria, and the novel
multiobjective local search algorithm has been proposed as an
effective solution to this problem.

The previously described problems are notoriously hard to
solve, since they are extensions of TSP, which is NP-hard and,
therefore, the main research challenge is their scalability. Many
different approaches have been devised in order to address the
specific class of problems. For example, a branch-and-cut algo-
rithm was used to solve ATSP, with PCs, of size of up to 200
nodes [27]. Even though scalability remains an issue, these for-
mulations have been adopted in real-world applications. For
example, the problem of traffic management in air-transport
systems was modeled using a time-dependent ATSP with time
windows and PCs, and was solved by a modified nearest neigh-
bor heuristic with a local search [28]. Another example is the
coordinated-measuring machine inspection process [29] that
has been modeled and addressed as a generalized ATSP with
PCs, where two approaches are compared, that is: 1) CPLEX
and 2) ant-colony optimization (ACO). While the former pro-
vides solutions only for small to mid-sized problems, the latter
performs well also on larger instances.

Mixed-integer programming (MIP) formulations are com-
monly used to model different mission planning problems.
A mixed-integer nonlinear problem formulation has been
proposed and used for modeling mission planning in the
context of unmanned aerial vehicles (UAVs) [30]. This formu-
lation was then approximated as a MILP problem, and solved
with the Gurobi solver. Problem instances of 2 vehicles and 15
waypoints are routinely solved to optimality, while for larger
problem instances, only a suboptimal solution was provided. A
MILP problem formulation of the real-world routing problems
was provided and solved with different greedy algorithm vari-
ations by Yuan et al. [31]. A MIP formulation of a multirobot
mission planning problem was given by Flushing et al. [32],
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where a two-layer solution was proposed: 1) the selection of
sequences of tasks with GA and 2) the service scheduling with
iterative local search.

Multirobot mission planning can be described with an
MRTA taxonomy. Several taxonomies were proposed to
describe MRTA problems [33]–[35]. More recently, the
TAMER model [36] was proposed, which utilizes the entity-
relationship model in order to give a more comprehensive
taxonomy of mission planning problems. Following these
MRTA-related taxonomies, the ECTSP can be categorized
as single-task robots, single-robot tasks, and time-extended
assignments (ST-SR-TA) [33] with intraschedule dependencies
(ID) [34], PC [35], multiple source/destination depots, and het-
erogeneous capabilities [36]. Although these taxonomies help
identify different problem configurations, not all of them have
a mathematical problem formulation. The next section for-
mally addresses one of these problem configurations, which
we called ECTSP.

The focus in this section was mostly on areas of MRTA
and operations research. The approaches found in these areas
related to modeling of different multiagent missions that are
used as a basis for the ECTSP model proposed in this arti-
cle. Surveyed solver solutions can be devised in two groups:
1) optimal solvers (CPLEX, Gurobi, etc.) and 2) metaheuris-
tic approaches (GA, ACO, bee colony, etc.). We used the
same approach on the proposed model of ECTSP, that is, we
solved the problem using CPLEX and a GA-based solver, and
analyzed the obtained results.

III. PROBLEM FORMULATION OF THE EXTENDED

COLORED TSP

In this section, a new mathematical formulation of the
ECTSP is given. In the following, the problem is formulated
following the typical terminology of TSP, where “sales-
persons” represent robots, “cities” represent tasks, “colors”
represent the equipment, and “node weight” is an estimated
duration of a task. The main difference, compared to the for-
mulation in [22], is in the way PCs are represented. Such a
formulation increases the number of decision variables, but
it reduces the number of required constraints, leading to a
different outcome in our experiments (see Section VI).

Let s ∈ S be a salesperson, in a set S := {s1, s2, . . . , sm}
of m salespersons, which need to visit n cities in a set
V := {v1, v2, . . . , vn}. Also, let c be a color that varies in
a set C := {c1, c2, . . . , ck} of k colors, σ be a source depot
in a set � := {σ1, . . . , σq} of q source depots, and δ be a
destination depot in a set � := {δ1, . . . , δw} of w destination
depots; m, n, k, q, w ∈ N

+. Each salesperson s starts from a
source depot σ and finishes its tour at a destination depot δ.
The source and destination depots are not considered to be
cities. The superset containing all of the cities V and depots
is defined as ˜V := V ∪ {�,�}. In addition, for simplicity,
a superset containing all source depot and city elements is
defined as V� := V ∪ �. In the same way, a superset con-
taining all elements of destination depot and cities is defined
as V� := V∪�. An edge e ∈ E, connecting vertices i, j ∈ ˜V

has the cost of ωijs, where ωijs ≥ 0 represents the cost of
traversing edge e(i, j) by salesperson s.

The decision variable xijs ∈ {0, 1}, which defines if a
salesperson s ∈ S travels from city i to city j, is defined as

xijs =
{

1, if s ∈ S travels from i ∈ V� to j ∈ V�

0, otherwise.

Every vertex i ∈ V has a duration ξ(i, s) that depends on the
salesperson s ∈ S visiting it, where ξ : V �→ R

+
0 . In the case

of a source depot, that is, i ∈ �, the duration ξ(i, s) = 0 ∀s ∈
S. The duration represents the amount of time salesperson s is
required to stay in city i to complete the task. Also, every city
i ∈ V is associated with a color fc(i), with fc : V �→ C. Each
salesperson s ∈ S has a set of colors Cs ⊆ C assigned to it
(source and destination depots are colorless). A color matrix
of a salesperson s, As ∈ {0, 1}n×n, defines which cities allow
visits from a salesperson s, and is defined as As := [aijs], with

aijs =
{

1, fc(i) ∈ Cs ∧ fc(j) ∈ Cs ∧ πij = 1
0, otherwise

where 	 = [πij]n×n is the adjacency matrix indicating the
precedence relations among the cities, where πij = 1 ⇐⇒
i ≺ j, and 0 otherwise. The definition of the color matrix As

can be extended to include the depots as

aijs =
⎧

⎨

⎩

aijs, i, j ∈ V
1,

(

i ∈ �, j ∈ V�
) ∨ (

i ∈ V�, j ∈ �
)

0, (i, j ∈ �) ∨ (i, j ∈ �).

This problem can be formulated over a directed graph G =
(˜V,E), with ˜V being a set of vertices, and E : ˜V× ˜V �→ R

+
0

being a set of edges.
The (mission planning) goal is to find Hamiltonian tours

for a set of salespersons S, so that all the vertices are visited
exactly once by a salesperson that possesses the same color
of the vertex, while optimizing the objective function (1).

We define the objective function

J =
⎛

⎝w1Q+ w2

∑

s∈S

∑

i∈V�

∑

j∈V�

(

ωijs + ξ(i, s)
)

xijs

⎞

⎠ (1)

that is a weighted combination of the longest tour over all
the salespersons (Q) and the sum of all tours of all the sales-
persons. Weights w1 and w2 in the objective function are user
defined. The usefulness of this specific objective function over
alternatives, for example, the minMax function, in multirobot
mission planning problems, with durative actions, was shown
by Miloradović et al. [22].

The optimization problem includes the following constraints
involving the decision variable xijs:

xijs ≤ aijs, ∀i ∈ V� ∀j ∈ V� ∀s ∈ S (2)
∑

s∈S

∑

i∈V�

xijs = 1 ∀j ∈ V (3)

∑

s∈S

∑

j∈V�

xijs = 1 ∀i ∈ V (4)

∑

i∈V�

∑

j∈�

xijs = 1 ∀s ∈ S (5)
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∑

i∈�

∑

j∈V�

xijs = 1 ∀s ∈ S (6)

∑

s∈S

∑

j∈V�

xijs = Bi ∀i ∈ � (7)

∑

i∈V�

xijs =
∑

k∈V�

xjks∀j ∈ V ∀s ∈ S (8)

xiis = 0 ∀i ∈ ˜V ∀s ∈ S (9)
∑

i∈V�

∑

j∈V�

(

ωijs + ξ(i, s)
)

xijs ≤ Q ∀s ∈ S. (10)

In particular, visiting cities that are not in the extended color
matrix (As) of salesperson s is disallowed (2). Only one sales-
person s ∈ S can enter (3), and leave (4) each city, and it can
do it exactly once. The final destination of a salesperson s must
always be one of the destination depots (5), while the starting
location must always be at one of the source depots (6). Note
that some salespersons can go directly from a source depot to
a destination depot, that is, xijs = 1, i ∈ �, j ∈ �. This means
that the salesperson is not used in the final plan. The number
of salespersons Bσ in each source depot σ ∈ � is assumed to
be provided a priori, and it is such that

∑

i∈� Bi = |S|. The
definition of the initial deployment of the salespersons over the
source depots is given by (7). It is necessary to ensure that the
same salesperson enters and exits a certain city. This constraint
is given by (8). Finally, a salesperson s is forbidden to travel
from a city i to the same city i (9). The part of the objective
function (1) that minimizes the longest tour of a salesperson
over all the salespersons is expressed by introducing inequality
(10) in conjunction with the new variable Q.

On the other hand, the PCs are defined on the basis of the
ATSP with PCs formulation by Sarin et al. [37] and the RMTZ
formulation for the subtour elimination in ATSP by Gouveia
and Pires [10]. These formulations are further extended and
adapted to be used with the CTSP. A binary decision variable
yij ∈ {0, 1} is introduced to model PCs between the tasks

yij =
{

1, if city i ≺ j , πij = 1
0, otherwise

and to introduce subtour elimination constraints (SECs) in the
solution of the ECTSP

yij ≥ xijs ∀i, j ∈ V ∀s ∈ S (11)

yij + yji = 1 ∀i, j ∈ V (12)

yik + ykj + yji ≤ 2 ∀i, j, k ∈ V. (13)

In particular, (11) states that even though xijs is 0, there
might be a path connecting cities i and j. If yij is 0, it means
no salesperson can access city j from city i (with any possible
path). Equation (12) is introduced in order to remove possible
precedence loops, that is, if city i precedes city j, then city j
cannot precede city i. The transitive property of the graph G
is ensured by (13), that is, it ensures that there are no prece-
dence cycles. We also introduce an additional binary decision
variable zijs ∈ {0, 1}

zijs =
⎧

⎨

⎩

1, if i ≺ j, not necessarily immediately
in the tour of salesmen s

0, otherwise

Fig. 1. Example of a solution for Instance 3.

to enforce the PCs on the tour of the specific salespersons
s ∈ S

2 · zijs =
∑

k∈V

xiks +
∑

k∈V

xkjs, i ≺ j ∀i, j ∈ V ∀s ∈ S

(14)

yij =
∑

s∈S

zijs i ≺ j ∀i, j ∈ V. (15)

In particular, if city i precedes city j, (14) states that the num-
ber of edges exiting from city i and entering city j must be
equal to 2 · zijs ensuring that cities i and j are connected and
visited by the same salesperson s. In other words, cities with
mutual precedence relations must be visited by the same sales-
person. As a consequence, the final plan is dead-lock free. In
order to make sure only one salesperson makes a tour from
city i to city j, when i ≺ j, (15) is introduced.

Finally, we can formulate the optimization problem as

minimize
x,y,z,Q

J

subject to Constraints (2)–(15)

where x = {xijs}, y = {yij}, z = {zijs}, and Q ∈ R
≥0.

Since TSP, which is an NP-hard problem [38], is a special
case of ECTSP, we can conclude that ECTSP is at least as hard
as TSP, thus at least NP-hard. Scalability is, therefore, the main
issue when dealing with this kind of problems. This article
analyzes the performance evaluation of different solvers, in
terms of convergence rate and optimality.

Example of a Solution: In order to visualize and provide
more insight into the problem itself, an example of a solved
instance is shown in Fig. 1. The instance that is selected for
visualization is Instance 3 from the proposed problem set.2

This instance has a configuration that is complicated enough
to show the full potential of ECTSP, and at the same time,

2ECTSP library with ten instances is available for download at
https://github.com/mdh-planner/ECTSP.
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it is simple enough to be visualized. In the figure, the three
source depots, marked with X, with one salesperson in each of
them are shown. Each salesperson, and its tour, has a specific
color code: Salesperson 1 has both blue and red, Salesperson
2 is red, and Salesperson 3 is blue. Note that the tour of
Salesperson 1 is drawn in both blue and red, meaning that
Salesperson 1 can visit both blue and red cities. The two desti-
nation depots are marked with yellow squares. In this solution,
all salespersons end their tours at one destination depot. Cities
are shown as circles with different coloring. Circles are also
different in size, denoting the weight of the city (e.g., duration
of the task). Finally, dashed black lines with arrows at one end
show the PCs between cities.

IV. MAPPING BETWEEN ECTSP AND MULTIROBOT

MISSION PLANNING

The main objective of the ECTSP model presented herein is
to model multiagent mission planning problems. The mapping
from the problem domain to search domain is quite straightfor-
ward in this application. Cities and salespersons map into tasks
and agents, respectively, while colors correspond to either
equipment required by a task for its fulfillment, or equipment
that a salesperson has. Another difference between ECTSP and
TSP is due to the fact that in ECTSP, tasks are durative (ξ ),
and edge weights (ω) depend on the agents they are assigned
to (e.g., agents may have different speeds). In addition, some
tasks’ duration may depend on the specific agent (e.g., survey
of an area depends on the max speed of the agent) performing
that specific task. Tasks may have PCs, that is, some tasks
may need to be performed before some other tasks can be
executed.

The applicability of the proposed ECTSP model has been
verified in several scenarios belonging to two different applica-
tion domains. The first application domain assumed multiagent
underwater missions. These scenarios included the use of
AUVs, ROVs, and surface vessels. The second application
domain focuses on the multiagent missions (using drones and
ground vehicles) for precision farming scenarios in crops,
vineyards, and outdoor livestock activities. The precision farm-
ing scenarios aim primarily at data collection and monitoring.

Although the scenarios seem vastly different, also within
each application domain, the same ECTSP model has been
used in both projects, as the model itself is domain inde-
pendent. The terms task and agent are generic enough to be
applied in different domains. Nevertheless, task types, require-
ments, and the morphology and capabilities of agents have
been different in both scenarios. This neither affects the model
nor the solvers, since the proposed model is used for high-level
planning; the differences in the scenarios mainly affect some
lower levels of planning abstraction that are out of the scope
of this work.

In order to use the proposed model, the mission has to
be first defined and then translated into the ECTSP model.
To ease the process of defining and monitoring the mis-
sion progress and processing of collected data, a mission
management tool (MMT) [39] is used. This tool allows a
human operator an intuitive way of creating complex missions

involving different types of agents with different abilities, for
example, due to sensory modalities, configurations, and task
requirements.

When the operator had completed preparing a mission
through the MMT’s graphical user interface (GUI), the
mission-related data are translated into the formal model (see
Section III), which is forwarded to the solvers (see Section V).
The operator manually chooses the target solver for the mis-
sion to be sent to. Consequently, the solver is invoked and the
optimization process begins. After its completion, the result of
the planning process is presented to the operator on the map,
in addition to a Gantt chart (Fig. 2). When the final plan has
been inspected and verified by the operator, it is forwarded to
the dedicated robotic agents for the execution.

The mission shown in Fig. 2 consists of two robots, and
five Inspect (point) tasks and five Survey (area) tasks. From
the ECTSP model perspective, it makes no difference if the
task is represented as a point or an area, since an area can
be approximated to a point with the duration that it would
take to survey an area. The Gantt chart shows the dura-
tion of each task. The tasks require two different capabilities
to take pictures or to use a thermal camera for surveying.
These capabilities correlate to colors in the ECTSP model.
Finally, each robot finishes its tour at the predefined destination
depot.

V. SOLVERS

There are two approaches for solving the MILP formulation.
The first approach makes use of an exact method to obtain
an optimal solution or suboptimal with a guaranteed distance
from the optimal solution, that is, the gap. The gap usually
represents the difference between the best lower bound found
with a continuous relaxation of the MILP problem and the
current solution. The second approach is based on metaheuris-
tics. While exact methods can guarantee finding the optimal
solution (if such exists), metaheuristics solve problems differ-
ently, which sometimes leads to suboptimal solutions without
guaranteeing optimality. A common approach used in exact
methods is to map the problem into a tree, or a graph, and
search through the nodes, prune unfeasible branches, and back-
track from dead ends [40], [41]. However, as the search space
increases, exact methods may fail to find even a suboptimal
plan, within a reasonable time, and suffer from scalability.
On the other hand, population-based metaheuristics methods
work by seeding candidate solutions across the search space
and iteratively improving them with variation operators.

In this work, the objective is to compare the performance,
as well as the behavior, of the two approaches on the presented
MILP formulation.

A. Genetic Mission Planner

One of the most popular approaches in solving TSP and
its variants is by employing metaheuristics, for example,
GAs. GA and its variations have been used to solve sim-
ilar optimization problems, such as VRP [42], job shop
scheduling [43], and resource-constrained problems [44].
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Fig. 2. Screenshot of the GUI with a generated mission plan and a plan outline in a form of a Gantt chart.

The structure of the solver in this article extends the
approach presented in [22], by introducing greedy search (GS)
as a local search method. The immediate consequence of the
addition of a local search method reduced the need of mutation
to occur within an agent’s plan. More specifically, swap muta-
tion has been changed to only swap tasks between agents,
and not tasks within the same agent as it was the case in
the previous version of the solver. In addition, the new solver
[GMP(GA+GS)]3 was implemented as a multithreaded appli-
cation, thus reducing the overall running time. In order to have
a valid comparison, the old solver [GMP(GA)] was redone
work as a multithreaded application, too. The GMP works as
described in the following.

1) Initial Population: The initial population is created at
random with respect to given constraints. In the beginning, the
minimum number of salespersons with an appropriate color is
determined. This is done by creating a unique list of all colors
cities have, and finding the minimum number of agents that
together possess all the colors from that list. In the next stage,
a number of salespersons in the chromosome are randomly
picked in the range of the necessary minimum and the abso-
lute maximum number of available salespersons. For example,
if all the salespersons possess the same color, then the number
of salespersons in a chromosome would be in the range of 1
to m. After this step, for each salesperson, a list of accessible
cities is created from the values of aijs. The number of tasks per
salesperson is randomly determined based on the previously
created list. Two or more salespersons may be able to visit the
same city. If this is the case, a city is randomly assigned to
one of the valid salespersons. The city assignment procedure
is repeated until there are no more cities left to assign, and the

3Referred as GMP in the following for simplicity.

whole process is repeated for every individual in the popula-
tion. After the initial population is created, it undergoes the
process of PC checking and reparation (see Section V-A4). In
this way, it is ensured that all of the candidate solutions in the
initial population represent feasible solutions to the problem.

2) Local Greedy Search: The GS is implemented, as a local
refinement method, in order to try and improve the candidate
solutions produced by GA. While the GA performs allocation
of cities to salespersons, the GS only reorders cities within
the salesperson’s plan based on the nearest neighbor heuris-
tic. In other words, GS performs exploitation of the candidate
solution, by reordering the list of cities, governed by nearest-
neighbor heuristics. There are no guarantees that GS will be
able to improve the candidate solution. Moreover, GS might
even produce infeasible solutions, since during the refinement
process, PCs are not taken into account. For this reason, refined
candidate solutions are evaluated first and if the newly pro-
duced candidate solution is better than the original one, it is
inserted into the population; otherwise, it is discarded.

3) GMP Workflow: The workflow of GMP is shown
in Fig. 3. After the creation of the initial popula-
tion (Section V-A1), individuals, which are candidate solu-
tions, are evaluated. The cost of each individual is calculated
as described in (1), and individuals are then sorted in ascend-
ing order based on the costs. After the evaluation and sorting
of the initial population, the inner loop of the algorithm starts.
The thick arrows in Fig. 3 show the flow within the loop,
and blue shaded boxes show the operations done in the inner
loop. The algorithm leaves the inner loop when the stopping
condition is reached. The number of the generations is fixed
and is defined during the initiation phase of the GMP algo-
rithm. Consequently, if the stop condition is not met, the inner
loop will execute until the end generation is reached. In each
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Fig. 3. Flowchart of the GMP algorithm.

generation, the rank selection algorithm is used to select pairs
of individuals for mating through the two variation operators:
1) crossover and 2) mutation. Edge recombination crossover
(ERX) is used to generate two new offspring from their two
parents. The rank selection is used to select parents. The
offspring are later subject to mutation, which is the second
variation operator. Mutation operators have been specifically
tailored for ECTSP [22]. The newly modified population is
evaluated again and a local search (GS) is applied (as described
in Section V-A2). Finally, the elitism is applied by replacing
5% of the worst performing solutions with the best 5% from
the previous generation. When all updates on the population
are done, the stopping condition is re-evaluated.

4) Precedence Reparation Process: This operation is
applied in every generation, after the variation operators. Since
neither mutation nor crossover respect given PCs, it is neces-
sary to perform this step. Two different PC violation cases
can be identified here. The first case where the ordering of
tasks is reverse, but tasks are still assigned to the same agent.
In the second case, tasks are not assigned to the same agent.
The second case is in violation of PCs, no matter the actual
start time of the tasks involved, since the presented problem
formulation supports only intraschedule ordering constraints.
The algorithm starts by iterating through each of the candidate
solutions. When a task with PC is identified, the corresponding
constraints are checked. In case of PC violation, it is neces-
sary to categorize the conflict. If it belongs to the first case, the
violation is fixed by randomly determining which task should
be removed and inserted into a new valid position in the plan.
The new position of insertion is also determined randomly. In
the second case, tasks are first reallocated to the correct agent
and then the procedure from the first case is performed.

B. CPLEX

CPLEX is a state-of-the-art optimization tool capable of
solving various MIP problems. As a tool that has been in

development for decades, it incorporates a vast selection of
algorithms with tunable parameters.

1) Parameter Settings: In order to perform a fair com-
parison in this work, nonstandard parameters for CPLEX to
speed-up the convergence time have been selected. For the
tests presented in this work, the probing parameter was
set to zero, which means that CPLEX would automatically
decide an appropriate level of probing. Presolve is performed
at the beginning of the optimization (during preprocessing) and
applied a second time to the root relaxation. Heuristic options
in CPLEX are used unchanged from the default settings, that
is, it was up to CPLEX to decide when and how to use heuris-
tics. The parallel mode was set to opportunistic, using up to 36
threads. The search method was set to default, that is, it was
up to CPLEX to determine whether to use traditional branch-
and-cut or dynamic search. The rest of the settings is also used
with their default values unless otherwise specified.

2) Model Implementation: For convenience, we will call
the original ECTSP formulation 2CFN. The ECTSP formula-
tion presented in this article will be referred to as RMTZ. With
respect to the implementation aspects, there is a difference
between the two MILP formulations. RMTZ is implemented
as a two-step lazy constraint callback. Note, however, that (13)
is not directly implemented in the model, since the number
of constraints depends on the number of cities [as O(n3)],
direct implementation of this constraint would lead to a sig-
nificant increase in the overall number of constraints. Thus,
this constraint is implemented as a lazy constraint in a call-
back function. However, (13) in conjunction with (11) and (12)
forms the SECs. Hence, when (13) is removed from the model,
there is nothing to prevent CPLEX from obtaining a solution
with subtours. This is why the Dantzig–Fulkerson–Johnson
(DFJ) [13] subtour elimination formulation has been extended
and adapted to be applied to multiple salespersons as

∑

i∈M

∑

j∈M
xijs ≤ |M| − 1 ∀M ⊆ V,M �= ∅ ∀s ∈ S. (16)

Thus, to eliminate the subtours, it is required that for each
nonempty subset M ⊆ V, the number of edges between
the nodes of M must be at most |M| − 1. Equation (16)
is implemented as a lazy constraint. More specifically, it is
implemented in the first step of the lazy callback in order
to remove subtours. For this reason, the lazy constraint has
two steps, which are further explained in Section V-B3. As
a consequence of a lazy constraint callback, the dynamic
search had to be disabled. On the other hand, the 2CFN
model was implemented without any lazy callback func-
tion.

3) CPLEX Workflow: The workflow of the CPLEX algo-
rithm is shown in Fig. 4. The green boxes represent operations
done before the search process starts. These operations include
parsing of mission data and the creation of the CPLEX model
according to the MILP formulation proposed in this article.
When the search process finds a candidate solution, that is, a
solution that satisfies the given constraints, a lazy constraint
callback function is invoked. This function consists of two
steps. The first step is to check whether the SECs (16) have
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TABLE I
BENCHMARK RESULTS OF GMP(GA) AND GMP ON TEN INSTANCES

Fig. 4. Flowchart of the CPLEX algorithm.

been violated. In case they have been violated, a set of con-
straints is added to the model that should eliminate detected
subtours. The second step is only reached if there are no
subtours in the candidate solution, and this step is used to
check for PCs violation. If violations of PCs do exist, con-
straints following from (13) are added to the model. Otherwise,
the candidate solution is considered to be feasible. Finally, it
is checked whether the stopping criterion is reached. In this
article, the algorithm is stopped if one of two events occur:
1) the optimal solution is reached or 2) the given time limit is
exceeded. In the absence of these events, the search process
continues.

VI. EXPERIMENTAL RESULTS

This section presents the evaluation of the proposed for-
mulation. After describing the used experimental setup, we
present a benchmark of different problem instances used for
the evaluation of the proposed method. The evaluation is orga-
nized in three parts. The first part compares the GMP(GA)
and the GMP solvers developed (Section VI-C), showing the
advantages of the introduction of the local search. Second,
the implementation in CPLEX of the proposed MILP for-
mulations (2CFN and RMTZ) are compared (Section VI-D)
to analyze which one has the best performance in terms of
quality of the computed solution, when a timeout to the com-
putation is set. Finally, the GMP formulation is compared with

the two MILP formulations, showing its advantages over the
considered benchmark (Section VI-E).

A. Experimental Setup

The experimental platform is an i9-9980XE @3.8 GHz
(18 cores) CPU with 128 GB of DDR4 RAM. The focus is on
the creation of the initial mission plan, and not on the replan-
ning. The assumption is that the time is limited, although, not
as critical as in the case of the replanning, which is done during
the mission. For this reason, an upper limit for the algorithm to
find the initial plan of 24 h has been set. User-defined weights
in the objective function (1) are set to w1 = 1 and w2 = 0.1
to make both parts of the objective function comparable. The
results consist of three different comparisons.

B. Benchmark

The benchmark for the experimental evaluation of the
proposed approaches consists of ten problem instances with
a gradually increasing complexity in terms of the number of
tasks to be completed, agents involved, and the number of
PCs. The cities can have one of three different colors. The
salespersons are randomly created having up to three different
colors. The problem instances assume from 10 to 500 cities,
and from 1 to 10 salespersons. The amount of PCs per instance
is randomly generated, and is in the range of 5%–20% of the
number of cities in that instance.

C. GMP Versus GMP(GA)

The improvements done in the GMP reflect on its over-
all performance on the tested benchmark. Both solvers are
implemented in C++, as a multithreaded application. The
performance comparison between the improved GMP and
GMP(GA) is shown below (Table I, better values are in bold).
Every instance is run 30 times. The results show that in almost
every instance, GMP outperforms GMP(GA) in terms of the
best solution found and the median value. Naturally, the time
per run and total time are in favor of GMP(GA) since GMP
also performs a local search. The local search is done at the
end of every generation on every candidate solution. The over-
all runtime of GMP might be reduced if instead of running
a local search on every candidate solution in every gener-
ation, a smarter mechanism is used to select solutions for
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Fig. 5. Empirical CDF for Instances 2–10. The target value is within the 10% of the best known solution for each instance.

the local refinement. The median value of the solution dis-
tribution of GMP is as good as GMP(GA) for the first two
instances, and the gap widens in favor of GMP toward more
complex instances. On the contrary, the standard deviation
seems to increase in GMP in Instances 8–10 compared with
that of GMP(GA). However, GMP is clearly able to over-
come some of the local minima where GMP(GA) gets stuck.
Consequently, GMP found equal or better solutions in each
instance. In order to provide a better understanding of the
underlying performance of the two compared algorithms, an
empirical cumulative distribution function (eCDF) is shown in
Fig. 5. Instance 1 is omitted from Fig. 5, since it is too trivial
to be solved, and the initial population generator was able to
find the optimal solution immediately, making the rest of the
search process obsolete.

For the target value of eCDF, the best-known solution for
that instance is selected. The progress of both algorithms in
closing the gap to less than 10% between each of the runs
and the target value is shown in Fig. 5. GMP’s cumulative
probability is represented with a densely dotted blue line. It
can be noted that for every instance, it has the cumulative
probability higher than that of GMP(GA) (loosely dotted red
line, Fig. 5). In addition, GMP converges, within the 10%
of the best solution, with high cumulative probability (higher
than 60%), except in Instance 9, where it is a little above 50%.
GMP(GA), on the other hand, failed to find a solution within
10% from the best one for Instances 9 and 10. This figure also
shows how some instances are harder than others, and that it
is not strictly related to the number of cities/salespersons. For
example, Instance 4 [Fig. 5(c)] is solved easier than Instance
3, judging from the number of function evaluations to reach
the value of 100% as cumulative probability.

D. Comparison of the MILP Models

The first comparison is done between the two different
ECTSP MILP formulations. Both of these formulations are
implemented in CPLEX Concert Technology 12.8 and are
tested in four different cases. In all cases, the search process
is stopped after 24 h (or before if the optimal solution was
found).

In case 1, both ECTSP formulations started without any
warm start feature, that is, no initial solution was provided.
The search emphasis was put on balancing between feasi-
bility and optimality. In case 2, the warm start option was
used. The initial solution provided was generated by the same
algorithm that generates an initial population for the GMP
(Section V-A1). It is important to emphasize that all of the
provided warm start solutions were feasible. In case 3, the
warm start was provided; however, this time it was the best
solution found by GMP (Table I). In cases 2 and 3, the search
emphasis was the same as in case 1, that is, balancing optimal-
ity and feasibility. In case 4, however, the search emphasis was
changed to moving the best bound. Since in case 3, CPLEX
failed to improve any of the initially provided solutions, the
idea being to see if the bound can be further moved in order
to minimize the gap. The gap is defined as

gap = (bs − bb)
(

bs · 10−2
) (17)

where bs is the best solution found, and bb is the best bound.
The tests are done on the first six instances of the previously

described benchmark (Section VI-B) and the results can be
seen in Fig. 6. The blue colored bars represent the best bound,
whereas the green bars illustrate the gap (17) between best
bound and feasible solution found. The yellow bars show the
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Fig. 6. Visualization of the comparison of 2CFN (left bar) and RMTZ (right bar) formulations, on four cases, implemented in CPLEX and tested on six
instances.

improvement done by CPLEX on the provided initial solution.
Finally, the red bars represent the best bound for the instances
where no feasible solution is found. While the x-axis shows
each of the four cases, the y-axis represents normalized cost
value (Fig. 6). All the cost values are normalized with respect
to the best solution obtained for each instance.

Instance 1 seems to be easily solvable by CPLEX, regardless
of the formulation or the test case, and the optimal solution
was reached within a second. Instance 2 is also solved to opti-
mality in every case; however, the time taken varies between
the MILP formulations. Instance 3 is not solved to optimality
in a given time span as it can be noted in Fig. 6. The MILP
formulation proposed in this article gives a better bound, while
2CFN found a slightly better solution.

For 2CFN, CPLEX is unable to find a feasible solution for
Instance 4. However, it produced a better bound than RMTZ,
although RMTZ managed to find a feasible solution. 2CFN
produced a better bound in case 4 as well. These are the
only two cases throughout these tests for which CPLEX found
better bound for 2CFN than RMTZ formulation.

Similar to the previous instance, in Instance 5, 2CFN failed
to produce a feasible solution; however, this time it founds
worse bound as well. However, when CPLEX was provided
with a warm start solution, 2CFN produced a better solution.

The RMTZ formulation outperforms 2CFN in instance 6 in
all categories (Fig. 6). In case 1, both models failed to find
a feasible solution; however, the RMTZ formulation provided
better lower bound. In case 2, the provided initial solution was
marginally improved; however, RMTZ provided better lower
bound and improved initial solution. In case 3, neither of the
formulations was able to improve the given initial solution.
Case 4 was similar to case 3, with lower bound marginally
improved; however, the difference between lower bounds was
smaller, although still in favor of RMTZ formulation.

Since CPLEX failed to find a feasible solution for
Instance 6, with either formulation, we decided not to con-
tinue the benchmark on the remaining four instances in the

Fig. 7. (a) Comparison between the runtimes of 2CFN, RMTZ, (for case 1)
and GMP on six test instances. (b) Cost of the best found solution for each
of the approaches (lower is better). If no solution is found, no bar is plotted.

ECTSP library. Based on the presented results, it can be con-
cluded that RMTZ formulation, on average, provides better
lower bound and was even able to provide a feasible solution
for instances where 2CFN failed to do so. On the other hand,
2CFN was more successful in improving bad initial solutions.

E. CPLEX Versus GMP

Finally, we compare results generated by both GMP and
CPLEX. Fig. 7 shows a comparison of the two MILP for-
mulations, and the GMP approach, for the different instances
in terms of computation time [Fig. 7(a)] and of best com-
puted cost [Fig. 7(b)]. Notice that in Fig. 7(a), the y axis is
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logarithmic, and that the timeout of 24 h set for finding the
best solution is indicated with a red solid line. The total run-
ning time of GMP is significantly lower than the running time
of CPLEX, except in Instance 1 [Fig. 7(a)]. However, GMP
settings are excessive for this instance, since the runs were
fixed to the same values for all instances. More specifically,
to 10 000 generations and a population size of 500, with 70%
crossover, 10% mutation, and 5% elitism. This is also notable
in the standard deviation, which is zero. In the case of the
remaining five instances, not only does GMP produce equal
(Instance 2) or better results (Instances 3–5) but also does it in
a significantly shorter time (15–40 times faster). In the case
of Instance 6, both formulations are unable to find a feasible
solution, and therefore are no bar is plotted in Fig. 7(b). In
addition, it failed to improve on the provided solution from
GMP and only managed to prove that the provided solution
is, in the worst case, 33.26% away from the optimal one. It
can be concluded that for instances smaller than Instance 2,
CPLEX can be a viable solution. For even smaller instances,
CPLEX can be used not only for initial planning but online
replanning as well. On the other hand, GMP is obviously more
suitable for larger problems if there is no need for a guaran-
teed optimal solution, and the time is somewhat limited. It is
also worth noticing that GMP is an anytime algorithm that
always produces feasible solutions.

In addition, GMP could be further improved with the
use of more sophisticated local search than GS. On the
other hand, CPLEX has 76 tunable parameters as stated by
Hutter et al. [45] in their paper on automated configurations
for MIP solvers. They managed to improve proving optimal-
ity by the speedup factor of up to 52, and to improve gap
minimization with a factor of up to 42, on some MIP prob-
lems. However, parameter tuning is a time-consuming process
on its own, so it should be used only when there is a clear
benefit.

VII. CONCLUSION

In this article, an alternative MILP formulation of ECTSP,
called RMTZ, is presented. It has been compared to the
previous ECTSP formulation (2CFN) by implementing both
models in CPLEX, and performing a benchmark on six
problem instances, which all represent problems in the domain
of mission planning with heterogeneous multiagents with a
gradually increasing complexity with respect to problem size.
The results show that the RMTZ formulation yielded better
lower bound in most cases. In addition, in some cases, the
RMTZ formulation provided a feasible solution where 2CFN
could not. On the other hand, 2CFN was more successful in
improving suboptimal initial solutions, which were also distant
from the optimal solution. However, CPLEX could not find a
solution for the sixth test instance with either of the formu-
lations. In contrast, this was not the issue for the presented
GMP based on the GA+GS for local search. First, GMP was
compared to the previous version of GMP(GA) and it was
shown that the addition of local search in the form of GS
helped the algorithm converge faster, and also produced better
solutions. Second, GMP performed at least equally good or

in some cases even outperformed CPLEX, regardless of the
used model, in every test instance in terms of cost, while only
in Instance 1 was it slower than the CPLEX. However, it can
be attributed to the fixed parameter settings of GMP, which
were overly complex for the simple problem represented in
Instance 1. To conclude, these results show that for planning
of complex missions, which include a large number of tasks
and heterogeneous robots, GMP has the upper hand compared
to other options presented in this article. However, in applica-
tion domains that require planning of less complex missions
in terms of the number of tasks and robots, or if the planning
time is not critical, the CPLEX approach may be considered.

For future work, further parameter tuning in CPLEX
in order to improve runtime and/or cost, making CPLEX
approach more practical for larger scale problems, even in the
replanning phase, is to be considered. Similarly, a heuristics-
based problem-specific local search can be incorporated in
GMP in order to improve the quality of the solution. This
would increase the GMP algorithm’s usability and improve its
scalability in real-world applications.
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