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A Two-Phase Learning-Based Swarm Optimizer
for Large-Scale Optimization

Rushi Lan , Yu Zhu, Huimin Lu , Zhenbing Liu, and Xiaonan Luo

Abstract—In this article, a simple yet effective method, called a
two-phase learning-based swarm optimizer (TPLSO), is proposed
for large-scale optimization. Inspired by the cooperative learning
behavior in human society, mass learning and elite learning are
involved in TPLSO. In the mass learning phase, TPLSO ran-
domly selects three particles to form a study group and then
adopts a competitive mechanism to update the members of the
study group. Then, we sort all of the particles in the swarm and
pick out the elite particles that have better fitness values. In the
elite learning phase, the elite particles learn from each other to
further search for more promising areas. The theoretical analy-
sis of TPLSO exploration and exploitation abilities is performed
and compared with several popular particle swarm optimizers.
Comparative experiments on two widely used large-scale bench-
mark datasets demonstrate that the proposed TPLSO achieves
better performance on diverse large-scale problems than several
state-of-the-art algorithms.

Index Terms—Competitive swarm optimizer (CSO), coopera-
tive coevolution, large-scale optimization, swarm intelligence.

I. INTRODUCTION

THE EVOLUTIONARY algorithm (EA) is a group-
oriented random search technique that simulates the

evolution of organisms in nature [1]. Compared with tra-
ditional optimization algorithms, such as the calculus-based
methods, EA can be free from the natural problems and
effectively addresses some complicated practical problems.
Therefore, an increasing number of research interests focus
on this area [2], [3], [34], [39], [42].

Various EAs have been proposed to solve a wide
range of optimization problems so far, such as resource
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allocation [10], [41]; image processing [11]; network plan-
ning [9]; and many others [8], [15], [16]. Specifically, the par-
ticle swarm optimization (PSO), first introduced by Kennedy
and Eberhart in 1995 [7], has attracted numerous attention for
decades. However, researchers found that PSO easily leads to
the premature convergence; therefore, it performs poorly when
encountering the complicated multimodal problems [25].

Inspired by the nature and human society, many researchers
have proposed diverse improvements to PSO, such as PSO
with an aging leader and challengers (ALC-PSO) [4] and
orthogonal learning PSO (OLPSO) [40], to improve the
performance of PSO in dealing with complicated optimization
problems. However, these PSO variants are only effective
in the low-dimensional space. When dealing with high-
dimensional optimization problems, the aforementioned algo-
rithms dramatically deteriorate the result. This phenomenon
is called “the curse of dimensionality” [23]. As the dimen-
sion size increases, the search spaces and the number of local
optimal traps increase exponentially [5], [6]. These phenomena
are the initiators of premature convergence. Unfortunately, in
recent years, most engineering problems indicate that the num-
ber of decision variables increases exponentially [24], such
as marine underwater signal processing [13], salient-object
detection [12], and the training of deep-learning models [17].

Enlightened by human society, some novel learning strate-
gies for PSO have been developed for large-scale optimization.
Cheng and Jin proposed a competitive swarm optimizer
(CSO) [5] and a social learning particle swarm optimizer
(SL-PSO) [6]. These two methods adopt one predominant
particle instead of pbest or gbest to update the particles.
Similar algorithms are a level-based learning swarm optimizer
(LLSO) [35] and segment-based predominant learning swarm
optimizer (SPLSO) [36]. These PSO variants largely allevi-
ate the problem of premature convergence because they can
provide higher diversity for the swarm than the earlier PSO
variants. However, the premature convergence is still the main
challenge for large-scale optimization.

To further alleviate the problem of premature convergence,
a two-phase learning-based swarm optimizer (TPLSO) is
proposed in this article. In TPLSO, inspired by the learn-
ing behavior of human society, each evolution is divided into
two phases, namely, a mass learning phase and an elite learn-
ing phase. In the mass learning phase, particles with different
potential in exploration and exploitation are randomly selected
to form a study group, and then a competition strategy is
adopted among group members to yield the winner and the
loser ones. After that, the winner is the leader to guide the
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losers. Through this learning strategy, the high diversity can
be preserved. During the elite learning phase, some elite par-
ticles with good fitness values are picked out by sorting the
particles in the population to form a new swarm, and then
the elite particles update their positions by learning two better
particles in this swarm. It is worth noting that the two bet-
ter particles mentioned above are randomly selected. In this
phase, the learning among elite particles accelerates the con-
vergence, so promising areas can be located as fast as possible.
The comparative results with some state-of-the-art algorithms
demonstrate the effectiveness of the proposed method.

The remainder of this article is organized as follows.
Section II briefly reviews some related works on large-
scale optimization. The details of TPLSO are presented in
Section III. A set of experiments is conducted in Section IV
to verify the performance of TPLSO. Finally, Section V
concludes this article.

II. RELATED WORKS

The problem studied in this article is to minimize f (X),
where X = [x1, x2, . . . , xD], D is the dimension of the
optimization problems, and xi is the value of the ith dimen-
sion. In recent years, researchers have proposed many methods
to solve the high-dimensionality problems, and these methods
can be roughly divided into two categories, that is, cooper-
atively coevolutionary algorithms (CCEAs) and novel update
strategies for classic PSOs [33], [40].

A. Cooperative Coevolutionary Algorithms

The first CCEA, the cooperative coevolutionary genetic
algorithm (CCGA), which decomposes a high-dimensional
problem into several lower dimensional subproblems, was
proposed by Potter [27]. The performance of CCEA heav-
ily depends on its grouping strategy; thus, researchers focus
on designing the grouping methods. Yang et al. [37] proposed
a random grouping strategy, which randomly decomposes a
D-dimensional problem into m S-dimensional subproblems
in each iteration. It is worth noting that S represents the
dimension of subproblems and S � D. Combining the differ-
ential evolution (DE) [30] algorithm with this method, namely,
DECC-G [37], performs well on some 1000-D problems.
Yang et al. [38] dynamically changed the value of S during
each evolutionary cycle and proposed a multilevel CC algo-
rithm, namely, multilevel cooperative coevolution (MLCC).
On this basis, the cooperatively coevolving particle swarm
optimizer (CCPSO2) [19] was proposed.

A new grouping strategy that detects the interdependent
decision variables, called differential grouping (DG), was
proposed by Omidvar et al. [23]. DG achieves satisfactory
performance when detecting interdependent variables. Based
on this, its variants, such as DG2 [24], XDG [31], and
GDG [21], have been further proposed to detect more complex
structures in optimization problems.

B. Novel Learning Strategies for PSO Variants

In PSO, imitating the foraging behavior of a flock of birds,
particles in a swarm are optimized by searching the entire

solution space to find a globally best solution. In this algo-
rithm, pbseti and gbest are utilized to guide the learning of all
particles, which easily leads to premature convergence. pbesti
is the personal best position of the ith particle in current gener-
ation and gbest is the best position found in the particle swarm
so far. In contrast to the traditional PSOs, inspired by the com-
petition of human society, Cheng and Jin proposed a CSO [5],
which adopts one predominant particle instead of pbesti and
gbest. In detail, two particles are randomly selected from the
swarm for comparison. Then, the loser is updated by learning
from the winner, which goes directly to the next generation.
In CSO, only the loser is updated in the following way:

Vl(t + 1) = r1(t)Vl(t)+ r2(t)(Xw(t)− Xl(t))

+ ψr3(t)
(
X̄(t)− Xl(t)

)
(1)

Xl(t + 1) = Xl(t)+ Vl(t + 1) (2)

where Xl(t) and Vl(t) are the position and velocity of the loser
in the t-th generation. ri (i = 1, 2, 3) is the random variable
within [0, 1], and ψ is the control parameter of X̄(t).

Algorithms similar to CSO are SL-PSO [6] and LLSO [35].
Observing these algorithms, we can find that the update or
learning methods of these optimizers greatly increase the
diversity of the swarm, thus, premature convergence may
be avoided. Despite the large amount of work involved in
dealing with large-scale optimization, premature convergence
and falling into local optima are still the main challenges in
large-scale optimization.

III. TWO-PHASE LEARNING-BASED SWARM OPTIMIZER

A. Motivation

Studying CSO, LLSO, and SL-PSO, we find that this type
of optimizer does not have a good balance between diversity
and convergence. CSO emphasizes the diversity and ignores
the convergence. In contrast, LLSO and SL-PSO focus on con-
vergence abilities. Therefore, these algorithms can be further
improved. To optimize high-dimensional problems more effec-
tively, we seek inspiration from nature and human society.
In education, different students usually have different poten-
tials or learning abilities, and their abilities can be quickly
improved by learning from each other. In particular, the group
cooperative learning model is widely used in educational prac-
tice [14], [29]. Similarly, in swarms, different particles have
different exploration and exploitation abilities in traversing
the objective space. Thus, they should be treated differently.
Enlightened by this, a mass learning strategy is proposed in
TPLSO, which randomly selects several particles from the
swarm to form a group, and then a competition mechanism is
adopted to update the members. In real life, the team’s strength
is often further enhanced by improving the ability of the team’s
leaders because smart leaders can better guide the team. Thus,
an elite learning method is introduced to improve the fitness
value of elite particles, which have better fitness values than
others in the swarm. In this phase, elite particles are selected,
and then the elite particles are updated by learning from any
two particles better than themselves. Inspired by the above
observation and phenomenon, a reinforced competition-based
learning strategy for PSO is proposed, namely, the TPLSO.
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B. TPLSO

In TPLSO, the entire evolution process is divided into two
parts, namely, mass learning and elite learning.

1) Mass Learning: During this stage, assume the number
of particles in the swarm is NP, and the NP particles are fur-
ther divided into NP/K study groups according to K particles
as a group. For each group, different particles have different
abilities in exploring and exploiting the search space, and these
particles update their positions through the collaboration and
competitive strategies. Specifically, the particles compete with
each other to determine their ranking in the group; the winner
is represented by W, and the inferior and worst particles are
represented by L1 and L2, respectively. Then, L1 updates its
position by learning from W, as in CSO. For L2, both W and
L1 are used to update its state. The winner passes directly to
the elite learning phase, while the losers update their position
and velocity using the following strategy:

⎧
⎪⎨

⎪⎩

VL2 = R1VL2 + R2
(
XW − XL2

) + ϕR3
(
XL1 − XL2

)
(3a)

VL1 = R1VL1 + R2
(
XW − XL1

) + ϕR3
(
X − XL1

)
(3b)

XLi = XLi + VLi; i = 1, 2 (3c)

where XW , XLi , VW , and VLi represent the position and velocity
of the winner and loser of the competition in each group. It is
worth noting that L1 is the winner compared with L2. R1, R2,
and R3 are three random variables with a range of [0, 1]. ϕ
is a parameter within [0, 1] that controls the influence of XL1

or X̄. X̄ is the mean position of each group or mean position
value of the swarm. For X̄, a global version and a local version
can be adopted in this article.

1) X̄g is the mean position of all particles in each evolution.
2) X̄l is the mean position of each group in each generation.
2) Elite Learning: During the elite learning phase, parti-

cles in the swarm are sorted in an ascending order of the
fitness value. Afterward, the first N particles of this swarm
are selected to form a new swarm, denoted by Ph, and the
remaining particles are passed directly to the next generation
of the swarm. In addition, the swarm size of Ph is set as NP/2,
in which NP is the original swarm size. Observing the parti-
cles in Ph, we can see that these N particles are the elite ones,
which have better fitness values than the remaining particles
in the original swarm. Consequently, these particles usually
possess more beneficial information to guide other particle
learning and are more likely to be close to the global opti-
mum area. In Ph, the particle (j) randomly selects two better
particles (r1 and r2) from the current swarm, and then updates
its position and velocity via

Vj = R1Vj + R2
(
Xr1 − Xj

) + ϕR3
(
Xr2 − Xj

)
(4)

Xj = Xj + Vj (5)

where j, r1, r2 ∈ [1,N] represent three particle indices, respec-
tively. Specifically, r1 and r2 are the indices of two randomly
selected exemplars. The other parameters are set as previously.
Note that r1 < r2 < j shows that j is lower than r2, and they
both are lower than r1. Thus, Xj is worse than Xr2 , and both
are worse than Xr1 . Mutual learning between the elite particles
further improves their fitness values so that fast convergence
can be achieved.

Fig. 1. General idea of TPLSO. The entire evolution process is divided into
two phases: mass learning and elite learning. The upper part of this graph is
the mass learning process, and the lower part is the elite learning process. In
the mass learning phase, three particles are randomly selected from P(t) for
competitions. The losers, whose fitness is worse will be updated by learning
from the winner, and the winner is directly passed to the elite learning phase.
Afterward, particles in P1(t) are sorted in ascending order of fitness value.
Then, in the elite learning phase, the first N particles are selected to form a
new swarm Ph. In Ph, the particle updates its position by learning from two
randomly selected particles with a better fitness value.

Algorithm 1 Pseudocode of TPLSO. NP and N Are the Sizes
of Swarms P and Ph, Respectively. K Is Each Group Size.
The Terminal Condition Is the Maximum Number of Fitness
Evaluations
1: randomly initialize P(0);
2: while the terminal condition is not satisfied do
3: //the first phase: Name the swarm at this phase as P1
4: Calculate the fitness of all particles in P1;
5: Divide all particles into NP/K groups;
6: Identify winner (W) and losers (L1, L2) based on competitive mecha-

nisms and f (XW ) < f (XL1 ) < f (XL2 );
7: Update XL1 according to Eq. (3b) and Eq. (3c);
8: Update XL2 using Eq. (3a) and Eq. (3c);
9: Add XW , XL1 and XL2 into the next phase;

10: //the second phase: Name the swarm at this phase as P2
11: Sort particles in P2 in ascending order of fitness value;
12: N optimal particles in P2 are selected from P1 to form a new swarm,

namely, Ph;
13: for j = 3, . . . ,N do
14: Select two particles from [1, j − 1] levels: r1, r2;
15: if r1 > r2 then
16: Swap(r1, r2);
17: end if
18: Update particle Xj using Eq. (4) and Eq. (5);
19: end for
20: end while

Combining the above two learning phases, the framework
of TPLSO is displayed in Fig. 1. The pseudocode of TPLSO
is also summarized in Algorithm 1.

C. Theoretical Analysis

Exploration and exploitation play important roles when the
particles traverse the search space. A good optimizer should
compromise between these two aspects. Here, we investi-
gate the exploration and exploitation capacities of TPLSO by
comparing with LLSO [35] and global PSO (GPSO) [7].

1) Exploration Ability: For EA, improving its exploration
ability is equivalent to promoting the swarm diversity so that
it can avoid falling into the local areas and finding more
promising areas. Exploration is particularly important for the
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Fig. 2. Illustration of the search dynamics of LLSO on a multimodal problem.
In this case, point A represents the start position of the particle, and the
particles eventually fall into a local optimum.

high-dimensional and multimodal problems with a large num-
ber of local traps. The observation of (3a), (3b), and (4)
indicates that the learning samples of the particles in (3a) and
(4) are two different individuals, and the samples learned from
the particles in (3b) are the winner and the mean value of the
corresponding groups. According to the theoretical analysis in
LLSO [35], regarding (3a) and (4), it is easy to conclude that
TPLSO has the same excellent exploration ability as LLSO
and has higher diversity than classic PSOs, which utilize pbesti
and gbest to guide particle learning such as GPSO. To further
investigate the exploration ability of TPLSO, X̄ is the mean
value of each group in this section, and (3b) was rewritten as
follows:

⎧
⎨

⎩

VL1 = R1VL1 + p1
(
XW − XL1

) + p2
(
XL1 − XL2

)
(6a)

p1 = R2 + ϕR3

3
, p2 = −ϕR3

3
(6b)

where R1, R2, R3, and ϕ are positive numbers; thus, we have
p1 > 0 and p2 < 0.

Similarly, we can also write the update formula of LLSO
as follows:

Vi,j = R1Vi,j + R2

(
Xrl1,k1

− Xi,j

)
+ ϕR3

(
Xrl2,k2

− Xi,j

)
(7)

Xi,j = Xi,j + Vi,j. (8)

According to the derivation of LLSO [35], the first term on the
right-hand side of (7) is a positive number, and the other two
terms are negative numbers. Therefore, the values of Vi,j and
f (Xi,j) continue to decrease so that the particles can constantly
search for more promising areas. Unlike (6a), the second term
on the right-hand side of (6a) is negative, and the other two
are positive, and the value of VL1 may increase. Thus, particles
may search for poor areas. Compared with LLSO, this update
strategy may lead to worse performance, but the truth may be
the opposite. Let us consider a situation where A is the start
position of the particle, as illustrated in Fig. 2. According to
the update method of particles in LLSO, as shown in (7), the
particles move toward a more promising area in each iteration.
In Fig. 2, the particles approach the local optimal area and
eventually lead to premature convergence. However, in (6a),
the third term on the right is a positive number, and its sum
with the second term may also be positive. Then, the values
of VL1 and f (XL1) increase, indicating that the next position of
the particle may be worse than the current position, as shown
in Fig. 3. In Fig. 3, the particle moves from positions A to B

Fig. 3. Illustration of the search dynamics of TPLSO on a multimodal
problem. A is the start position of the particle, B is the particle position in
the next generation, and global optima can be obtained.

and finally finds the global optimal area. Therefore, we can
infer that the diversity of TPLSO may be better than LLSO.
Thus, TPLSO has a better ability to jump out of the local
optimal areas and can find the more promising areas faster.
Furthermore, if X̄ is the mean position of the swarm, the result
of exploration ability is the same as before.

2) Exploitation Ability: Exploitation ability and explo-
ration ability are equally important for EAs because the good
exploitation ability of an EA can quickly locate better areas
so that the optimization time can be reduced, which is impor-
tant to some problems with limited computational resources
and unimodal problems. To analyze the exploitation ability of
TPLSO, two particles XW and XL2 are selected from one group
in the mass learning phase. Then, we have

f (XW) ≤ f
(
XL2

)
. (9)

Combining pbest and gbest defined in classic PSO, the
following relationship can be obtained:

{
f (gbest) ≤ f

(
pbestW

) ≤ f (XW)

f (gbest) ≤ f
(
pbestL2

) ≤ f
(
XL2

)
.

(10)

Let

�FTPLSO = ∣∣f
(
XL2

) − f (XW)
∣∣ (11)

�FLLSO = ∣∣f
(
XL2

) − f
(
Xrl1,k1

)∣∣ (12)

where Xrl1,k1 is selected from a higher level than XL2 , and
Xrl1,k1 is better than all particles below its level. XW is only
better than XL1 and XL2 . Thus, we have f (Xrl1,k1) ≤ f (XW).
Similarly, for the canonical PSO such as GPSO, it has

�FGPSO = ∣∣f
(
XL2

) − f (gbest)
∣∣. (13)

According to the definition of Xrl1,k1 , we achieve the following
relationship:

f (gbest) ≤ f
(
Xrl1,k1

)
. (14)

Combining the above formulas, the following relationship can
be derived:

�FTPLSO ≤ �FLLSO ≤ �FGPSO. (15)

The above formula shows that TPLSO, compared with LLSO
and GPSO, has a better ability to exploit the small gaps
between two positions whose fitness values are very similar.
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D. Time Complexity Study

Generally, the time complexity is calculated by ana-
lyzing the extra time in each iteration without the fit-
ness evaluations [5]. According to LLSO [35], LLSO
takes O(NP + NP log(NP)) + O(NP ∗ D) in each genera-
tion. From Algorithm 1, we can see that it takes O(NP) +
O([((K − 1) ∗ NP)/K] ∗ D) in the mass learning phase,
and for the elite learning phase, it takes O(NP log(NP)) +
O(N ∗ D). Therefore, the computation of TPLSO is O(NP +
NP log(NP)) + O(([((K − 1) ∗ NP)/K] + N) ∗ D), where NP
and D are the swarm size and dimension, respectively. K
is the group size in the mass learning phase, and N is the
swarm size of Ph. In this article, N and K are set as (NP/2)
and 3, respectively. Therefore, the time complexity of TPLSO
is O(NP + NP log(NP)) + O([(7 ∗ NP)/6] ∗ D). In conclu-
sion, compared to LLSO, TPLSO will take more time in each
generation.

IV. EXPERIMENTS

In this section, a suite of experiments is conducted to study
the performance of TPLSO from different perspectives. Two
benchmark sets, namely, CEC’2010 [32] and CEC’2013 [18],
are selected here. The CEC’2010 benchmark set consists of
separable functions, partially separable functions, and non-
separable functions. Based on CEC’2010, the CEC’2013
benchmark set introduced some new characteristics, such as
the imbalance contribution of subcomponents and overlap-
ping functions. Consequently, the functions in CEC’2013 are
much more complicated and harder to optimize than those
of the CEC’2010. In this article, unless otherwise specified,
all statistical results are over 30 independent runs. The maxi-
mum of fitness evaluations for each independent run is set to
3000 × D, where D is the dimension size of the optimization
problems [35].

A. Parameter Study

In TPLSO, three additional parameters are introduced,
namely, the group size K, the swarm size NP, and the control
parameter ϕ. First, the setting of K here has a crucial impact on
the algorithm. Thus, to accurately set the study group size (K),
several experiments are carried out on the above functions with
K = 2, 3, 4, and the statistical results are shown in Table I. In
addition, ϕ, NP, and D here are set as 0.15, 600, and 1000,
respectively. From Table I, we can find that K = 3 is the most
reasonable setting.

Second, the particles generally tend to exhibit premature
convergence with a small swarm size (NP). This is because a
small swarm size cannot provide high diversity for the swarm.
In contrast, if NP is set to a large number, more computing
resources are needed during each generation, which is imprac-
tical for computationally expensive problems. According to
CSO [5], we can find that there exist a correlation between
NP and ϕ. Thus, to properly set these two parameters, some
experiments are conducted on TPLSO with NP varying from
400 to 800 and ϕ varying from 0.05 to 0.25.

Table II shows the statistical results of TPLSO with differen-
tial combinations of these two parameters on eight CEC’2010

TABLE I
STATISTICAL RESULT (MEAN VALUE IS ON THE FIRST LINE AND STD

VALUE IS ON THE SECOND LINE) OF OPTIMIZATION ERROR OBTAINED

BY TPLSO ON SEVERAL TEST FUNCTIONS OF 1000-D WITH THE SWARM

SIZE NP = 600, ϕ = 0.15, AND K VARYING FROM 2 TO 4

functions f1, f2, f6, f7, f11, f12, f16, and f17, where f1 and f2
are separable functions, and the remaining ones are partially
separable functions. Moreover, f1, f7, f12, and f17 are unimodal
functions, while f2, f6, f11, and f16 are multimodal functions.
These functions contain almost all types of problems: fully and
partially separable, and unimodal and multimodal. Generally,
partially separable functions are more difficult to optimize
than fully separable functions, and multimodal functions are
more difficult to optimize compared with unimodal functions.
Multimodal and partially separable functions are closer to
real-word optimization problems, so more attention should be
focused on these types of functions. From Table II, we can see
that the unimodal functions perform better when NP = 400,
while the advantage of the multimodal functions concentrates
on larger swarm sizes, such as NP = 600. This is because
the small swarm size cannot provide a high diversity for the
swarm.

In summary, NP = 600, ϕ = 0.15, and K = 3 are used
for TPLSO on 1000-D. Specifically, ϕ is set to 0.2 for non-
separable functions (such as f19 and f20 in CEC’2010 function
sets, and f13–f15 in CEC’2013 function sets) for TPLSO on
1000-D because higher diversity is required when optimizing
nonseparable functions.

B. Exploration and Exploitation Influence of EAs

Exploration ability is a crucial factor in addressing the
multimodal problems because a good exploration ability can
increase the probability of particles to jump out of the local
optimum. Exploitation ability can affect the convergence speed
of particles; thus, exploitation should be properly biased to
seek fast convergence when dealing with unimodal prob-
lems [26], [28]. However, exploitation and exploration are
often conflicting, so a good EA should balance between these
two aspects. To verify that TPLSO is able to compromise
these two abilities properly, a set of experiments is conducted
on four CEC’2010 test functions and compared with CSO
and GPSO. The used functions are f3 (fully separable and
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TABLE II
MEAN VALUES (FIRST LINE) AND STD VALUE (SECOND LINE) OF OPTIMIZATION ERRORS OBTAINED BY TPLSO ON SEVERAL FUNCTIONS IN

CEC’2010 TEST FUNCTIONS OF 1000-D WITH THE SWARM SIZE NP VARYING FROM 400 TO 800, K = 3 AND ϕ FROM 0.05 TO 0.25

(a) (b) (c) (d)

Fig. 4. Swarm diversity and fitness values of TPLSO, CSO, and GPSO on four 1000-D benchmark functions, that is, f3, f7, f8, and f18 from CEC’10.
(a) Shows the fitness value and diversity of the comparative methods on f3, while (b), (c), and (d) are the corresponding results of f7, f8, and f18, respectively.

unimodal), f7 (partially separable and unimodal), f8 (partially
separable and multimodal), and f18 (partially separable and
multimodal), respectively.

The diversity is used to measure particle exploration abili-
ties, and it is defined as [5], [22]

DP = 1

NP

NP∑

j=1

√√√√
D∑

d=1

(
xd

j − xd
)

(16)

where DP is the diversity of swarm P, xd = (1/NP)
∑NP

j=1 xd
j

is the mean value of the dth dimension over all particles in
the swarm. xd

j is the value of the dth dimension of particle j,
and NP is the swarm size.

The comparative results of the three algorithms are shown
in Fig. 4. The maximum number of FEs is set at 3000 × D,
where D is the dimension size. In addition, the swarm size NP
is set to 400 for all algorithms here. We obtain the following
findings from this figure.

From Fig. 4(a) and (b), for the unimodal functions, we find
that the exploitation ability of TPLSO is properly biased on
f3 and f7; thus, TPLSO has a better solution and converges
faster than CSO and GPSO. Specifically, considering f7, it
can be seen that after FEs > 2.5E + 06, the fitness value
and diversity of TPLSO have changed substantially because
the high diversity is maintained during the mass learning
phase, which allows the particles to jump out of the local
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TABLE III
OPTIMIZATION ERRORS (MEAN VALUES AND STANDARD DEVIATIONS ARE ON THE FIRST AND SECOND ROWS, RESPECTIVELY.

THE THIRD ROW SHOWS THE T -VALUES) ON 1000-D TEST FUNCTIONS (CEC’2010)

trap and then quickly converge in the elite learning phase.
The same results also can be observed from f8. For the
multimodal functions, the ability to explore TPLSO is prop-
erly emphasized so that stagnation and premature convergence
can be avoided. Therefore, TPLSO obtains more satisfactory
performance compared with CSO and GPSO on multimodal
functions f8 and f18. In summary, we find that TPLSO not
only maintains the good exploitation and exploration abili-
ties but also compromises these two aspects well during each
evolution.

There are two ways to calculate the mean position X̄ in
TPLSO, namely, one global version X̄g and one local ver-
sion X̄l. X̄g can preserve a higher diversity compared to X̄l.
Therefore, to further verify the diversity influence of EAs,
several experiments are conducted on the CEC’2010 bench-
mark function of TPLSO with different mean position. This
algorithm proposed in this article with X̄l was denoted by
TPLSO-L. The corresponding results are shown in Table III,
and the highlighted value indicates that TPLSO-L obtains
better performance. From this comparison, we can see that
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TABLE IV
OPTIMIZATION ERRORS (MEAN VALUES AND STANDARD DEVIATIONS ARE ON THE FIRST AND SECOND ROWS, RESPECTIVELY.

THE THIRD ROW SHOWS THE T -VALUES) ON 1000-D TEST FUNCTIONS (CEC’2013)

TPLSO-L shows better performance on the unimodal functions
compared with TPLSO.

C. Comparisons With State-of-the-Art Algorithms

To verify the feasibility of TPLSO, we compare it with a
series of state-of-the-art algorithms dealing with large-scale
optimization on the CEC’2010 and CEC’2013 function sets
with the dimension of 1000. In particular, four popular PSO
variant algorithms, including LLSO [35], CSO [5], SL-PSO [6],
and dynamic multiswarm particle swarm optimizer (DMS-L-
PSO) [20], and three CCEAs, namely, MLCC [38], cooperative
coevolution with DG (DECC-DG) [23], and CCPSO2 [19]
are selected for comparison. To provide a fair comparison,
the key parameters used in each algorithm are set as the
recommendations in the corresponding paper.

The statistical results on the CEC’2010 and CEC’2013 test
functions are shown in Tables III and IV, respectively. The T
values are listed along with the mean and standard deviation

for measuring the statistical results. The highlighted T value
indicates that TPLSO is significantly better than the corre-
sponding algorithm. Furthermore, a two-tailed T-test was used
to compare two different statistical results for the significance
level of α = 0.05. In addition, w/t/l in the last row indicates
that TPLSO wins on w functions, ties on the t functions, and
loses on l functions.

1) Results on CEC’2010: For the CEC’2010 functions
set, Table III shows that TPLSO achieves better performance
than the comparative algorithms on most of the 20 func-
tions. Compared with the four popular PSO variants, TPLSO
indicates its considerable advantages on 12, 17, 19, and 14
functions, respectively, while TPLSO fails only on 3, 2,
1, and 4 functions, respectively. In particular, in contrast
with DLLSO, which gains the best performance in the cur-
rent PSO variants, TPLSO fails only on two separable and
unimodal functions (f1, f3) and one partially separable and
multimodal function (f15). It is worth noting that TPLSO per-
forms identically on five functions (f4, f5, f13, f18, and f19) as
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DLLSO, and on these five functions, TPLSO obtains better
performance. Further observation shows that TPLSO has bet-
ter performance in most partially separable and nonseparable
functions, which indicates that TPLSO preserves the higher
diversity than DLLSO. In comparison with MLCC, CCPSO2,
and DECC-DG, TPLSO wins on 16, 19, and 16 functions, and
it only loses 4, 1, and 1 functions, respectively.

2) Results on CEC’2013: The statistical results of Table IV
demonstrate that TPLSO consistently outperforms the com-
parative algorithms on the CEC’2013 set, where the functions
are more difficult to optimize than those of the CEC’2010
set. Compared with the four PSO variants, TPLSO defeats
them on 9, 10, 10, and 10 functions. Compared with the three
CCEAs, TPLSO shows a significant effectiveness on at least
10 functions.

Observing the results in Tables III and IV, we find that
TPLSO achieves better performance in the solution quality.
The superiority of TPLSO can be attributed to the mass
and elite learning strategies and the exemplar method. In the
mass learning phase, particle grouping in the swarm and the
exemplar selection in the study group enhance the diversity
of the swarm. Particles have a greater chance to jump out
of the local optima and to look for more promising areas.
In the elite learning phase, mutual learning between particles
further enhances their fitness values, which leads to promis-
ing areas as soon as possible. In summary, these two types
of compromises in exploration and exploitation make TPLSO
achieve good performance.

V. CONCLUSION

In this article, we proposed a new swarm algorithm called
TPLSO that is based on mass learning and elite learning strate-
gies. The theoretical analysis shows that these two strategies
are able to preserve the exploration and exploitation abilities
of TPLSO well. Despite the simplicity of the proposed TPLSO
algorithm, the comparative studies on 1000-D CEC’2010 and
CEC’2013 test functions showed that it outperforms several
state-of-the-art approaches for large-scale optimization.
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