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Abstract—The control of virus spreading over complex
networks with a limited budget has attracted much attention
but remains challenging. This article aims at addressing the
combinatorial, discrete resource allocation problems (RAPs) in
virus spreading control. To meet the challenges of increasing
network scales and improve the solving efficiency, an evolutionary
divide-and-conquer algorithm is proposed, namely, a coevolu-
tionary algorithm with network-community-based decomposition
(NCD-CEA). It is characterized by the community-based divid-
ing technique and cooperative coevolution conquering thought.
First, to reduce the time complexity, NCD-CEA divides a network
into multiple communities by a modified community detection
method such that the most relevant variables in the solution
space are clustered together. The problem and the global swarm
are subsequently decomposed into subproblems and subswarms
with low-dimensional embeddings. Second, to obtain high-quality
solutions, an alternative evolutionary approach is designed by
promoting the evolution of subswarms and the global swarm, in
turn, with subsolutions evaluated by local fitness functions and
global solutions evaluated by a global fitness function. Extensive
experiments on different networks show that NCD-CEA has a
competitive performance in solving RAPs. This article advances
toward controlling virus spreading over large-scale networks.
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I. INTRODUCTION

V IRUS spreading, including the pervasion of infec-
tious diseases and the diffusion of computer mal-

wares, has caused great panic and a huge economic loss
in past centuries [1]. Necessary resource interventions have
been proved to be effective in virus control. For example,
Africa malaria has posed a great threat to the life of people in
decades, especially in developing countries, but it has fallen by
40% between 2000 and 2015 due to the wide distribution of
preventive resources (insecticide-treated nets) [2]. The recent
worldwide cyberattack—WannaCry ransomware attack—has
affected more than 150 countries and caused billions of eco-
nomic losses, and anti-malware programs are the key to ensure
the security of networking devices.

Since virus spreading is hard to be simulated in the real
world due to huge expenditure and high risk of control failure,
mathematical simulation and analog control become effective
ways to help determine the public policies in the real-world
crises. In virus spreading control, relevant studies can be
divided into three complementary lines of research.

A. Topology Adaption

Some early studies based on complex network theory sug-
gested that network topologies took significant impacts on
spreading dynamics [3], [4]. As a result, a fair number of
topology adaption strategies were developed, for example,
removing certain connections by using topology-manipulative
algorithms [3], [5] removing a fraction of nodes with high-
degree centrality [5], [6] and isolating the nodes at high
infection risk [7]–[10]. These strategies could efficiently erad-
icate virus diffusion to some extent, but they usually ignored
the cost of adaption [3], [6], [8] or caused a great loss on
network connectivity [3], [5]–[7].

B. Node Intervention

In contrast to the topology adaption, the node interven-
tion emphasized transitioning the node state or reducing the
infection rates instead of cutting off contacts in networks.
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The measures to prevent epidemic spread includes vaccinat-
ing the healthy nodes by the zero-determinant strategy [11]
or convex-based optimization [12]; protecting nodes from
infection by distributing timely information [13], [14]; and
healing the top-q infected nodes by contact tracing [15]
or priority planning [16]. The measures to defense mal-
ware diffusion includes deploying malware detectors by
genetic algorithms [17] and genetic programming [18], and
developing anti-malware software by evolutionary compu-
tation techniques [19]. Besides, some studies focused on
auditing anti-malware tools through the evolving android
malware [20], [21], which provided new insights for mal-
ware defense. Though the above strategies have shown their
advantages in the allocation of single-category resources, it is
still a difficulty to integrate the allocation of these different
resources.

C. Combinatorial Resource Allocation

Recent studies have paved the way for the allo-
cation of two or more resource categories [22]–[23].
Convex or quasiconvex optimization strategies, such as
geometric programming [22], [24], [25] and gradient-based
optimization [23], [26], became very popular. These strategies
performed well on the combinatorial allocation of continu-
ous resources. But empirically, the real-world resources in
virus spreading control are some concrete goods, tools, or
services, which have the discrete attribute. Allocating such dis-
crete resources becomes typical subset selection optimization,
which is nondeterministic polynomial hard (NP-hard) [27].
The solutions to NP-hard problems cannot be obtained in poly-
nomial time. Therefore, approximate optimization strategies,
instead of convex or quasiconvex optimization, become the
most promising choice [7]. Besides, since nonlinear objectives
in virus spreading control have high computing complex-
ity, most existing strategies were investigated in small-scale
networks, such as the networks with N = 20 nodes [22],
N = 50 nodes [23], or N = 100 nodes [1], [24], [26]. To con-
quer the challenge of large-scale networks, divide-and-conquer
policies should be considered, which can effectively reduce the
dimensions of the problems.

Therefore, the motivation of this article is to design
an approximate optimization strategy with a graph-based
divide-and-conquer policy, to solve the combinatorial, dis-
crete resource allocation problems (RAPs) in large-scale
networks.

As an efficient approximation optimization policy, evo-
lutionary algorithms (EAs) have demonstrated their advan-
tages in solving traditional scheduling problems, such as the
knapsack problems [28], cloud resource scheduling [29], task
allocation [30], etc. But so far, there are still few cases of
EAs for the scheduling of discrete resources in the network-
based virus control. One challenge lies in that existing EAs
are designed for continuous optimization problems which may
be trapped in a local optima in dealing with the discrete
optimization problems [28], [31]. Another challenge is that
the fitness functions of virus spreading problems are com-
plicated, nonlinear, and high dimensional. As the network
scale increases linearly, the dimensionality of the solution

space increases exponentially. In large-scale networks with
more than 1000 nodes (large-scale optimization), existing
EAs lose their effectiveness and efficiency, and thus there
is an urgent need to develop novel EAs suitable for such
situations [32], [33].

The major contribution of this article is to propose a coevo-
lutionary algorithm with network-community-based decompo-
sition (NCD-CEA) so that the aforementioned issues can be
alleviated. The major highlights are as follows.

1) A network-community-based decomposition strat-
egy is designed to help the divide-and-conquer
problem. In the strategy, the community structure
of a network is detected by a modified Louvain
algorithm (MLA). Compared to the original Louvain
algorithm (Louvain) [34], an MLA includes a specific
control mechanism to control the number of commu-
nities and the size of each community, so that super
communities and the mini-communities can be avoided.
Then, based on the neighborhood propagation features
of the problem and community structure characteristics
of the network, the strategy divides the problem into
multiple subproblems with low-dimensional solution
space. In contrast to the existing spreading control
policies, the proposed decomposition strategy can
effectively reduce the time complexity and improve
solving efficiency.

2) An alternative evolution process is designed to coordi-
nate the solving of subproblems and the global problem,
corresponding to the local evolution of subswarms and
the global evolution of the swarm in coevolutionary
algorithms (CEAs). But in existing CEAs, the local
fitness evaluations are the same as the global fitness eval-
uation. If there are intractable objectives in RAPs, the
global fitness evaluation becomes especially time con-
suming. In NCD-CEA, the local fitness functions only
refer to the subproblems which have low-dimensional
solution space, thereby reducing the execution time of
the algorithm. Besides, to avoid trapping into the local
optima, we start the evolution of the global swarm after
certain intervals to correct and guide the evolution of
subswarms. The alternative evolution way can enhance
the searching diversity of subswarms and promote global
exploration.

3) The proposed NCD-CEA launches a new attempt for
solving the combinatorial, discrete RAPs in large-
scale networks. As far as we know, this is the
first attempt for solving virus spreading control
problems by CEAs. Extensive experiments on var-
ious complex networks show that NCD-CEA pro-
duces high-quality solutions to the problems than its
competitors.

The remainder of this article is organized as follows.
Section II introduces preliminary knowledge about the coop-
erative coevolution (CC) approach and community structure
detection. Section III formulates the problems. Section IV
elaborates on the proposed NCD-CEA. Section V presents
experimental results and discussions. Section VI concludes this
article.
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II. PRELIMINARY

In this section, we provide the background of the CC
approach and community structure detection.

A. Cooperative Coevolution Approach

The CC approach provides a user-specified decomposition
possibility to divide the population into multiple interacting
subpopulations [35], resulting in cooperative coevolution algo-
rithms (CCEAs). CCEAs take advantage of maintaining
the solution diversity due to the parallel evolution of
multiple subpopulations. For a full review of CCEAs, refer
to [36]. We introduce the most relevant studies in the
following.

The original CC was used to improve the performance of
genetic algorithms (GAs), resulting in cooperative coevolu-
tion GAs (CCGAs) [35]. The CCGA was proven to be with
lower computational costs than the original GA in solving
function optimization problems [35]. Then, Van Den Bergh
and Engelbrecht used the CC approach to improve the
particle swarm optimizers (PSOs) in 2004 [37], and
called the new algorithm as CPSO-SK . The experimen-
tal results showed CPSO-SK performed better than the
original PSOs in increasing the solution diversity. Later,
Li and Yao [38] developed a new cooperative coevolving
particle swarm optimization (CCPSO2) to solve the high-
dimensional, nonseparable, and many-variable problems. In
recent years, an increasing number of CCEAs was developed
to solve the large-scale optimization and acquired favor-
able effect [39]. These studies demonstrated that CCEAs had
potential in large-scale optimization. Therefore, we consider
CCEAs as a good choice for controlling large-scale virus
spreading.

Though CCEAs have been receiving much attention for
the large-scale optimization, there are still some important
challenges unsolved. The first is the problem decomposi-
tion and variable linkage learning. Existing nongraph-based
CCEAs tend to calculate each element in the solution space
independently [35] or calculate the element-cluster gathered
by random grouping methods [38] and differential grouping
methods [40]. These CCEAs have been tested to be effec-
tive and efficient in CEC benchmark sets, but they lost
their effectiveness and efficiency in solving network-based
optimization problems. That is because variables in network-
based optimization problems are not independent of each other
but influenced by their neighboring variables, with the neigh-
boring relationships closely connected to network topologies.
The second challenge lies in the cooperation way among
subpopulations and the fitness evaluation way. After divid-
ing the solution space, how to effectively coordinate multiple
interacting subswarms so that the high-quality solutions can
be obtained becomes the focus [38]. However, existing fit-
ness evaluation ways take high time and space expenditure
for maintaining frequent cooperation, especially in solving
large-scale optimization problems. To address the above two
challenges, we explore a novel swarm decomposition method
and a new fitness evaluation way in this article which is
enlightened by the technique of community structure detection.

B. Community Structure Detection

Community structure is very common in the real-world
networks, such as population contact networks, social
networks, and Internet [41]. It is manifested in dense connec-
tions among nodes in same communities and sparse connec-
tions among nodes in different communities [42]. Community
structure characterizes the topology structure of the network
and helps understand how the substructures affect each
other [43]. So far, Newman–Girvan’s modularity [44] is one
of the most popular criteria in the community structure detec-
tion, which evaluates how well the network is divided into
communities. Concretely, the modularity function, marked as
Q, is defined as the difference between the number of edges
within communities and the expected number of randomly dis-
tributed edges between communities. Given an undirected and
unweighted network with N nodes (identified by their number)
and m edges, which can be divided into L communities, let Ci

represent the ith community, i = 1, . . . , L. The modularity is
calculated by

Q =
L∑

i=1

(
Ei

m
−
(

Ki

2m

)2
)

(1)

where Ei represents the number of edges existing in Ci, and
Ki is the sum of degree of nodes inside the community Ci.
A larger value of Q corresponds to the better community
structures.

By using the modularity function, we test the classical
community structure detection algorithms by conduct-
ing preliminary experiments on complex networks.
The test algorithms include: the clique percolation
method (CPM) [45], the expectation–maximization (EM)
algorithm [46], the Girvan–Newman (GN) algorithm [47],
the Louvain method (Louvain) [34], the Lancichinetti–
Fortunato method (LFM) [48], the label propagation
algorithm (LPA) [49], and the structural clustering algorithm
for networks (SCANs) [50]. Finally, we have found that
the Louvain algorithm outperforms other algorithms in
maximizing modularity.

The Louvain algorithm is a two-phase algorithm [34]. It
starts with an undirected and unweighted network, and is fol-
lowed by two phases of operation. The first phase is to divide
the network into communities by maximizing the gain of the
modularity. The second phase is to build a new network by
transforming the communities into nodes, and redefining the
multiple edges between two communities as a new weighted
edge which takes the sum of weights of former edges as the
new weight. The two phases will not stop until there is no
more gain of modularity (�Qj). �Qj is calculated by using

�Qj =
⎡

⎣
∑

j,in+Ki,j

m
−
(∑

j,tot+Ki

2m

)2
⎤

⎦

−
⎡

⎣
∑

j,in

m
−
(∑

j,tot

2m

)2

−
(

Ki

2m

)2
⎤

⎦ (2)

where
∑

j,in is the sum of weights of edges within the commu-
nity Cj.

∑
j,tot is the sum of the weights of the weighted edges
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Fig. 1. General view of the SEIV model.

connected to nodes in Cj. Ki,j is the sum of the weights of the
edges which connect the node i and the nodes in Cj. Ki is the
sum of weights of edges linked to node i. m is the sum of
the weights of all the edges in the new network. The Louvain
algorithm is a stochastic algorithm with a greedy searching
strategy, in other words, the results of community structure
detection are affected by the sequence of the nodes. In the
following, we do not change this greedy strategy in the origi-
nal Louvain algorithm, but add some extra functions to control
the community number and the size of each community.

III. PROBLEM FORMULATION

In this section, we introduce the models for virus spreading
dynamics and resource allocation. Based on the models, two
RAPs in virus spreading control are formulated.

A. Virus Spreading Model

The most commonly used spreading models are susceptible-
infected (SI) models [51], [52]; SI-susceptible (SIS)
models [30]; SI-recovery (SIR) models [14], [53]; and
SIR-susceptible (SIRS) models [54]. As a variant of SIRS
models, the susceptible–exposed–infected–vigilant (SEIV)
model takes advantages on three aspects [22]: 1) it further
considers the exposed state E, referring to the asymptomatic
state of biological virus infection or the undetectable state of
computer virus; 2) it replaces the recovery state R in SIR and
SIRS models by the vigilant state V that covers more immune
situations such as the information-based immunization; and
3) it can be generalized to SI, SIS, SIR, and SIRS models by
adjusting parameters. Therefore, we base this article on the
SEIV model.

A general view of the SEIV model is shown in Fig. 1, with
N representing the total number of nodes in the network. The
capital letters S, E, I, and V represent the susceptible, exposed,
infected, and vigilant states, respectively, which are marked
with different colors. The states S and V are two healthy states,
and the states E and I are two infectious states which can
spread the virus. More details about parameters, equations,
and optimization objectives in the SEIV model are shown in
Table I. By following the equations of state transition process
and node infection process in Table I, the spreading dynamics,
referring to the state probabilities of all nodes, can be gained.
Based on the two optimization objectives of the SEIV model,
two optimization problems are formulated in this article.

B. Resource Allocation Model

Generally, control measures to suppress virus spreading cor-
respond to the allocation of specific resources [22]. If we

consider biological viruses and computer viruses, respectively,
their control measures can be listed as follows. As to bio-
logical viruses, control measures include rapid vaccination
of uninfected population [12], [55]; isolating the individu-
als at high infection risks [56]; reducing contacts between
individuals [3]; etc. The defense measures of computer viruses
are similar to those of biological viruses [57], for instance,
allocating detectors to prevent malwares [17], [18]; immu-
nizing nodes [58]; blocking network topology [59]; recov-
ering the attacked systems; enhancing the anti-malware
tools [19]–[21]; etc. As a whole, we classify the control
resources into three groups: 1) the infection-free resource r1
(e.g., biological vaccines and system bug fixes), which helps
the node i transition from state S to state V by adjusting param-
eter θi; 2) the infection-prevented resource r2 (e.g., antivirus
masks, virus warning messages), which hinders the transition
of the node i from state S to state V by adjusting the parame-
ters βE

i and βI
i ; and 3) the infection-removed resource r3 (e.g.,

hospital isolation wards, curative medicines, and antivirus pro-
grams), which helps the node i transition from state I to state
V by adjusting the parameter δi. The allocation model of
resources is formulated in Table II.

To simplify the resource allocation process, we assume that
when an individual is allocated with some specific resources,
its basic attributes (infection rate, recovery rate, immunization
rate, etc.) will be consistently changed. For example, when
a healthy individual is allocated with the medical drug, it can
recover from the infection quickly whenever it is infected. This
may cause some resource waste in simulation experiments, but
will not affect the practical effects. In reality, individual states
are not probabilistic but definite, so the individual state will
be binarized according to the corresponding probabilities with
detailed operation process shown in [60].

C. Two Optimization Problems

Based on the two optimization objectives in the SEIV
model, two RAPs in virus spreading control are formulated
as follows.

The RAP with an easy objective (Easy-RAP), which aims
to minimize the average infection rate of nodes with limited
resource cost, is formulated by

min. u

s.t. Cost(R) < C. (3)

The RAP with a hard objective (Hard-RAP), which aims to
minimize the maximum real part of eigenvalues of matrix L′
with limited resource cost, is formulated by

min . λ(L′)
s.t. Cost(R) < C. (4)

In both the problems, the optimization vector is the resource
allocation matrix R = [τri|τri ∈ {0, 1}], r = 1, 2, 3, i =
1, . . . , N. Each variable τri in the matrix represents the allo-
cation situation of the resource r to the node i, as described
in Table II. Note that the optimization objectives of the two
problems are the fitness functions of EAs in this article and
the limited resource budgets are the constraint conditions.
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TABLE I
MAIN PARAMETERS AND EQUATIONS OF THE SEIV MODEL

TABLE II
MAIN PARAMETERS AND FUNCTIONS OF THE RESOURCE ALLOCATION MODEL

The solving procedure is as follows. A virus spread envi-
ronment is first built based on a network topology and the
SEIV model is shown in Table I. Then, based on the qualified
solutions provided by EAs, the resources are allocated to the
nodes accordingly. These resources take effect by the function

Effect(R) in Table II, namely, changing the parameters of
the SEIV model. Finally, the fitness values are calculated by
averaging over the infection rate of each node (for Easy-RAP)
or taking the maximum real part of eigenvalues of the matrix
L′ (for Hard-RAP).
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Fig. 2. Framework of NCD-CEA, taking NC = 2 as an example.

In summary, the optimization problems combine the
resource allocation model and the SEIV model. The total
resource cost is related to the state probabilities in virus
spreading dynamics, and the resource effect functions are
embodied in the two objectives of the optimization problems.

IV. ALGORITHM FRAMEWORK

In this section, the proposed NCD-CEA is introduced. It can
be used to solve not only virus spreading control problems but
also other network-based optimization problems.

A. General Framework

From a systematic perspective, NCD-CEA is an evolution-
ary divide-and-conquer control policy for virus control. From
the perspective of algorithm design, it is a general framework,
in which the basic optimizer can be customized. In our pre-
liminary experiments, we find that a majority-voting binary
PSO (termed as MVBPSO) [61] can produce the best solu-
tions. Besides, MVBPSO is simply implemented and is very
robust to the change of resource cost. Therefore, MVBPSO is
selected as the basic optimizer in NCD-CEA.

Algorithm 1 NCD-CEA
Algorithm parameters: swarm size Ns, parameter nic, local iteration times
nin, number of communities NC,
Problem parameters: the network GN , the cost constraint C.
Output: Gbest.
Initialization: initialize some global solutions for the swarm and qualify them
by a repair mechanism.
Procedure:
1 The First Step(decomposing):
2 Divide the network into NC subnetworks by Algorithm 2.
3 Decompose the swarm into NC subswarms.
4 Decompose the problem into NC subproblems.
5 The Second Step (conquering):
6 repeat // Iters
7 flag = 1
8 repeat // nin
9 if flag = 1: // the evolution of subswarms
10 Update subswarms by MVBPSO.
11 Generate global solutions by merging subsolutions.
12 else: // the evolution of the swarm
13 Update the swarm by MVBPSO.
14 end if
15 Repair the unqualified solutions by repair mechanism.
16 Update Lbest and Gbest in the swarm.
17 if Gbest is not updated:
18 flag← 1− flag
19 end if
20 until nin times.
21 until the terminal condition is satisfied.
22 return Gbest.

The major principle of MVBPSO is introduced as follows.
Given a swarm with Ns particles, for the kth particle, its posi-
tion is represented by Xk = [x(r,c)

k ], with r = 1, 2, 3, c =
1, 2, . . . , N. Pbestk = [pbest(r,c)k ] denotes its local best posi-
tion. Gbest = [gbest(r,c)] represents the global best solution of
the whole swarm. Then, the position Xk is updated according
to the majority voting of two variants of Pbestk and Gbest.
These variants can effectively avoid early maturing, which
are generated as follows. We will sample n random elements
from Gbest and Pbestk, and store their indices (r, c) into VG

k
and VP

k , respectively. The updating rules of MVBPSO are
formulated by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VG
k = Sampling(Gbest, �dis(Gbest, Xk)�)

VP
k = Sampling(Pbestk, �dis(Pbestk, Xk)�)⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xg(r,c) = 1− gbest(r,c), if (r, c) ∈ VG
k

xp(r,c)
k = 1− pbest(r,c)k , if (r, c) ∈ VP

k

x(r,c)
k =

⎧
⎨

⎩

xg(r,c)
k , if xg(r,c)

k = xp(r,c)
k{

1, random(0, 1) < 0.5
0, otherwise

, otherwise

(5)

where random(0, 1) generates a random number within the
range of (0, 1). Sampling(Gbest, n) is the sampling function,
where n is obtained by rounding down the Euclidean distance
between Gbest and Xk, namely, n = �dis(Gbest, Xk)�. XPk =
[xp(r,c)

k ] and XG = [xg(r,c)] are the variants of Pbestk and
Gbest, respectively.

The framework of NCD-CEA is shown in Fig. 2, in which
the parameters of NCD-CEA are defined as follows. flag
is a self-adaptive parameter which decides the alternating
of subswarm evolution or swarm evolution. The parameter
NC denotes the number of subnetworks/communities (also
the number of subswarms). The parameter nin represents the
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Algorithm 2 MLA
Input: the network GN , the adjacency matrix A, the number of communities
NC.
Output: communities
1 Divide GN into communities by the Louvain algorithm.
2 Aggregation Function:
3 repeat
4 The first phase (aggregate the two smallest community-nodes):
5 Select the two community-nodes with smallest size.
6 Merge the two community-nodes to build a new community.
7 The second phase (build a new community-node):
8 Transform the community found in the first phase into

a new community-node, whose size is the number of
nodes in the community, and whose weight is the sum
of the weights of edges inside the community.

9 The new edge denotes the links between communities,
whose weight is the sum of the weights of edges between
nodes in the two communities.

10 until the number of communities is not larger than NC.
11 Dichotomy Function:
12 repeat
13 Select the community of largest size.
14 Build a new graph based on the largest community.
15 Divide the graph into communities by the Louvain algorithm.
16 Merge the communities by Aggregation Function until there

are 2 communities in the graph.
17 until the number of communities is not smaller than NC
18 return the independent communities generated from GN

iteration times of each flag turn. Iters defines the terminal con-
dition of the algorithm, that is, the execution of the algorithm
is terminated when the algorithm runs for Iters iterations. The
pseudocode of NCD-CEA is shown in Algorithm 1, There are
three main processes.

1) Initialization: First, a population of solutions are ran-
domly generated within the scope of {0, 1}(3,N). If
a randomly generated solution fails to satisfy the con-
straint, a repair mechanism will be applied to generate
qualified solutions. The repair mechanism works by
repeatedly removing some resources from an unqualified
solution, namely, changing the corresponding bits from
1 to 0, until the constraint is satisfied. To accelerate the
repairing process, we randomly remove two resources at
each repairing step.

2) Decomposition: The network is decomposed into NC
communities by Algorithm 2. Then, the global swarm
can be decomposed to NC subswarms according to the
mapping between the network and communities. Each
subswarm solves an independent subproblem, which is
extracted from the global problem. To achieve this, we
first build an independent subnetwork from the commu-
nity. Then, the local fitness functions are built on the
subnetwork, whose calculation is the same as the global
fitness function, and the constraint cost C is decomposed
into NC parts according to the ratios between nodes in
subnetworks and nodes in the network. Due to the good
locality of the problem, such kind of decomposition is
feasible. More details about the decomposition processes
are introduced in Section IV-B.

3) Conquering: During the evolution of subswarms, each
subswarm generates a subsolution to the corresponding
subproblem. The NC subsolutions generated by differ-
ent subswarms form a complete solution to the entire

problem. In contrast, the evolution of the global swarm
directly generates a complete solution to the problem,
but it takes a much longer time than the evolution of
subswarms. Similar to the initialization process, a com-
plete solution may not satisfy the constraint, thus we also
need to use the repair mechanism to make the complete
solution become feasible. In the proposed NCD-CEA,
the evolution of subswarms and that of the global swarm
work cooperatively, which will be introduced in detail
in Section IV-C.

B. Network-Community-Based Decomposition

An MLA is presented in Algorithm 2 to divide the network
into communities. Compared to the original Louvain algo-
rithm, MLA includes two additional control mechanisms:

1) The Community Number Control: The number of com-
munities in the original Louvain is uncertain due to the
greedy strategy. Too many communities in the network
decrease the influence of subsolutions, while too few
communities increase the computational cost. Therefore,
effective control to the number of communities is
required.

2) The Community Size Control: The original Louvain
algorithm may generate communities with very uneven
sizes. The super communities become the bottleneck of
the algorithm and slow down the algorithm execution
time, while the mini-communities waste the machine
resources.

In fact, the community size and the community number depend
on each other. Therefore, a specific control mechanism is
designed to exert both kinds of control implemented by aggre-
gation function and dichotomy function in Algorithm 2. We
use the aggregation function to reduce the number of com-
munities by aggregating the two smallest communities, and
dichotomy function to increase the number of communities by
dimidiating the super communities by following the principle
of modularity maximization.

After the community structure detection, each community
is formulated as an independent undirected-and-unweighted
subgraph, which serves as background environments of the
subproblems. Synchronously, the global swarm is decom-
posed into multiple subswarms, where each subswarm inherits
a proportion of information of the global swarm.

C. Alternative Evolution Process

In our preliminary experiments, we found that the global
swarm evolution promotes the exploitation, but the global fit-
ness evaluation is very time consuming especially in large
scale networks. Though the fitness evaluation and the evo-
lution of subswarms were time saving, it might be trapped
into local optima due to the loss of global evaluations. To bal-
ance the exploitation and exploration, an alternative evolution
process is designed in NCE-CEA.

Details about the alternative evolution process are embod-
ied in Algorithm 1, which can be described as follows. We
use a self-adaptive parameter flag ∈ {0, 1} to determine the
specific evolution way in the next generation. If flag = 1, the
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offspring is generated by the cooperation of subswarms, oth-
erwise it is generated by the evolution of the global swarm.
Only when Gbest is not updated, flag is updated to 1−flag. We
set flag = 1 by default. Whatever the turn is the subswarms or
global swarm, they will evolve for nin times to fully explore
the located solution space. Multiple subsolutions provided by
the corresponding subswarms will constitute a complete global
solution that can be used to update Gbest.

The two evolution processes play different roles in the
algorithm: 1) the evolution of subswarms enhances the local
searching, for the variables in each subswarm are closely
connected to each other, which facilitate the local fitness eval-
uations and 2) the evolution of the global swarm promotes the
global searching and improves the solution diversity by learn-
ing from its own best experience and the entire swarm’s best
experience. Therefore, to some extent, the evolution of sub-
swarms acts as the early accelerator and the evolution of the
global swarm acts as an engine of jumping out of local optima.

V. EXPERIMENTS

In this section, we first provide the parameter configura-
tion used in the experiments. Then, we verify the competitive
performance of NCD-CEA by comparing it with different vari-
ants of BPSO and some state-of-the-art EAs. The parameter
sensitivity analysis is provided later. Finally, the model sta-
bility analysis shows that NCD-CEA can effectively prevent
virus spread.

A. Experimental Configuration

Network Configuration: Detailed information about the
networks is shown in Table SI in the supplementary
material, including nine networks with different charac-
teristics and size. All the artificial networks, respectively,
regular (RG) networks [60], Barabasi–Albert (BA) scale-
free networks [62], and Watts–Strogatz (WS) small world
networks [63], are generated by the Python-Networkx pack-
age under the environment of Anaconda 3. The degree of
nodes in RG networks is fixed, thereby RG networks have
ordered structure but poor scalability. The degree of nodes in
BA networks presents power-law distributions due to the pref-
erential attachment, thereby BA networks are robust to random
failures but weak to deliberate attacks due to such scale-free
property [62]. WS networks are generated by first initial-
izing a neighbor coupled network with fixed node degree,
and then randomly rewiring each edge by a probability p.
WS networks are characterized by RG networks and random
networks. The real networks are two sets of human contact
network data and a computer network data, namely, Primary
School Temporal Network Data in BMC Infectious Diseases
2014 (Ps-contact)1 [64], Face-to-Face Behavior Data of People
during the Exhibition Infectious in 2009 at the Science Gallery
in Dublin (Ex-contact)2 [65], and DNC emails corecipients

1The Ps-contact network data can be downloaded from:
http://www.sociopatterns.org/datasets/primary-school-temporal-network-data/.

2The Ex-contact network data can be downloaded from: http://konect.uni-
koblenz.de/networks/sociopatterns-infectious.

network in the 2016 Democratic National Committee email
leak (Email)3 [66].

Problems Configuration: Before allocating the resources,
we first build a virtual virus spread scenario by evolving the
SEIV model for several times with the time interval called
as resource intervention time t. Originally, two fixed nodes
act as the source of infection (state E). At time t, there has
been a proportion of nodes are infected, shown by pE+ pI . In
the right part of Table SI in the supplementary material, we
provide the optimal solutions for Hard-EAP and Easy-EAP
based on the assumption of infinite resource budget, namely,
the lower bound of u and lower bound of λ. The values of
the optimal solutions differ in the network environment and
spread dynamically. The lower bound of λ is very close but
not equal to −0.01. In reality, the resource budget cannot be
infinite, so we set it as C = 0.3Cmax in the following experi-
ments, where Cmax representing the upper bound of resource
cost when resources r1, r2, and r3 are allocated to all nodes
in the network.

Comparison Algorithms: The proposed algorithm is com-
pared with multiple versions of BPSO [67] and some state-
of-the-art EAs. The parameters of all algorithms used in the
comparison have been carefully adjusted to the best. The
detailed description and parameter configurations for the com-
parison algorithms are shown in Table SII in the supplementary
material. The BPSO variants include BPSOS2, BPSOS3,
BPSOS4, BPSOV1, BPSOV2, and BPSOV3. Thereinto, the
classical particle swarm optimization (BPSO or BPSOS1) can
be represented by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v(r,c)
k ← wv(r,c)

k + c1r1(pbest(r,c)k − x(r,c)
k )

+ c2r2(gbest(r,c) − x(r,c)
k )

S1(v(r,c)
k ) = 1

/
(1+ exp(−v(r,c)

k ))

x(r,c)
k =

{
1, if rand(0, 1) < S1(v(r,c)

k )

0, otherwise

(6)

where w is the inertia coefficient, c1 and c2 are two accel-
eration coefficients, and r1 and r2 are two random param-
eters uniformly distributed within [0, 1]. The discretization
method is in BPSO is a standard sigmoid function, called
as “S1(·).” Besides, there are still other S-shape and V-shape
discretization methods can replace “S1(·),” which are listed
as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2(v(r,c)
k ) = 1

/
(1+ exp(−2v(r,c)

k ))

S3(v(r,c)
k ) = 1

/
(1+ exp(−v(r,c)

k /2))

S4(x(r,c)
k , v(r,c)

k )← 1
/

(1+ exp(−x(r,c)
k −

⌊
v(r,c)

k

⌋
))

V1(v(r,c)
k ) =

⎧
⎨

⎩
1− 2

/
(1+ exp(−v(r,c)

k )), if v(r,c)
k ≤ 0

2
/

(1+ exp(−v(r,c)
k ))− 1, otherwise

V2(v(r,c)
k ) =

∣∣∣ 2
π

ac tan(π
2 v(r,c)

k )

∣∣∣
V3(v(r,c)

k ) =
∣∣∣tanh(v(r,c)

k )

∣∣∣
(7)

3The Email network data can be downloaded from: http://konect.uni-
koblenz.de/networks/dnc-corecipient.
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Table SIII in the supplementary material shows that MVBPSO
is the best algorithm in above BPSO variants, so we only
take MVBPSO as the comparison algorithm in the follow-
ing. Besides, some popular EAs and some state-of-the-art
algorithms are compared. Two GAs are included: 1) the
GAs with elitist expected value selection, partially matched
crossover, and bit-reverse mutation (called as GA1) [68] and
2) the GA with tournament selection, basic crossover rate
pc, and basic mutation rate pm (called as GA2) [69]. The
above GAs have been successfully used in solving mal-
ware prevention problems [19], [20]. Some state-of-the-art
EAs include: ant colony system for solving 0/1 knapsack
problems (ACS) [70], self-adaptive differential evolution with
neighborhood search (SaNSDE) [71], the competitive swarm
optimizer (CSO) [72], and the level-based learning swarm
optimizer (LLSO) [32]. Besides, the comprehensive learn-
ing PSO (CLPSO) [73] proposed by Liang et al. is also
investigated.

Algorithm Configuration: The NCD-CEA and the algo-
rithms used in comparison share the same initialization and
solution repairing methods. The final solutions are obtained
by averaging over some independent runs of algorithms called
as Runs. In each run, their basic settings also stay the same. For
simplicity, we use a fixed swarm size Ns = 20 for all experi-
ments. In small-scale networks (RG100, BA100, and WS100),
we set Iters = 500 and Runs = 50. In larger-scale networks
(WS500, WS1000, Ps-contact, Ex-contact, and Email), we set
Iters = 1000 and Runs = 30.

In addition, NCD-CEA and the comparison algorithms are
implemented by Python language. All the experiments are exe-
cuted on a PC with 8 Intel Core i5-3470 3.20-GHz CPUs, 8-Gb
memory. The software platform is Anaconda3 for Ubuntu
12.04 LTS 64-b system.

B. Parameter Analysis

In NCD-CEA, two parameters are introduced: 1) the num-
ber of subswarms (equal to the number of communities NC) in
the strategy of network-community-based decomposition and
2) the local iteration times (nin) in the alternative evolution
process. NCD-CEA with higher value of NC can be used to
deal with higher dimensional optimization problems for the
parallel evolution of the subswarms that contributes a lot to
the speedup of computational time in NCD-CEA. But due to
the limitations of computational resources, we set the max-
imum value of NC only to 8 in this article. Finally, we set
NC ∈ {1, 2, 4, 8} and nin ∈ {2, 5, 10, 20} to test the algorithm
performance.

The experimental results are shown in Tables SIV and
SV in the supplementary material. The best parameter set-
tings depend on the network topologies and differ on the
optimization objectives. Overall, for solving Easy-EAP, NCD-
CEA is not sensitive to parameter NC and a large value of
parameter nin (nin = 10, nin = 20) can produce better solu-
tions as the network scale increases. For solving Hard-EAP, the
higher values of nin contribute to better solutions (see Fig. 3).
The influence of NC depends on network topology. In small-
scale networks (N = 100), the original MVBPSO (equal to

Fig. 3. Convergence speed of NCD-CEA with different nin.

NCD-CEA with NC = 1) is mostly recommended, because
the local evolution of subswarms contribute less to the global
optimization. While in networks with a larger scale (N > 100),
there is a wider solution space, and the global evolution can-
not locate the better solution quickly. In this situation, the
local search conducted by the separable subswarm can accel-
erate the updating process. Meanwhile, since the subsolutions
are evaluated by local fitness functions which consume less
time than the global fitness evaluation, especially when the
objective calculation is computationally complex.

It is worth mentioning that a fixed decomposition opera-
tion in NCD-CEA is better than the dynamic and repetitive
network decomposition, according to our preliminary exper-
imental results. Therefore, we keep the initially generated
communities unchanged in the later stage. Moreover, for the
networks with large scale, NCD-CEA with a large NC will
further reduce the time complexity due to the lower cost of
fitness evaluation, and it may produce better solutions, for
example, solutions referring to NCD-CEA with NC = 8 in
Ps-contact and Ex-contact networks are better than the those
about NC = 4 (see Table SV). But to verify the competi-
tiveness of NCD-CEA, we set NC = 4 for solving the two
problems in all networks.

C. Comparison Experiments

In this section, we compare NCD-CEA with different EAs.
Table III shows the comparison results among NCD-CEA and
eight popular EAs for solving Easy-EAP and Hard-EAP in
networks with N < 500. Thereinto, we find the top-three algo-
rithms are NCD-CEA, MVBPSO, and CLPSO. Comparison
results for the three algorithms are shown in Table IV, with
the network size N ≥ 500.

For effective comparisons, the Kruskal–Wallis nonparamet-
ric statistical test [74] is first used for multiple comparisons,
followed by pairwise comparisons using the Wilcoxon rank-
sum test [75], and the critical values are finally corrected
using Holm’s method [76]. The null hypothesis (H0) assumes
that there is no significant difference between the compared
objects. For the Kruskal–Wallis test, if the p-value is smaller
than 0.05, then the null hypothesis is refused, namely, the
algorithms provide significantly different solutions. For the
Wilcoxon rank-sum test, we choose the algorithm with the best
“mean” value as the control group, and others as the exper-
imental group by turn. When the p-value is larger than the
corrected critical value, the solution of the experimental group
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TABLE III
ALGORITHM COMPARISON ON SMALL-SCALE NETWORKS WITH N < 500. (a) FOR EASY-EAP. (b) FOR HARD-EAP.

(a)

(b)

is regarded as being as good as the one in the control group
marked by a superscript “=”. As a corrected version of the
Bonferroni method, Holm’s method is used to generate the cor-
rected critical values. As a corrected version of the Bonferroni

method, it is less strict and becomes easier to detect significant
differences.

Table IV shows the experimental results in networks with
N < 500. For Easy-EAP which has a linearly separable
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TABLE IV
ALGORITHM COMPARISON ON LARGER-SCALE NETWORKS WITH N >= 500

object, NCD-CEA wins the first place according to the results
obtained by averaging over multiple independent runs. The
p-value obtained by the Kruskal–Wallis test shows that there is
a significant difference among all comparison algorithms. The
p-values of Wilcoxon rank-sum test demonstrate that NCD-
CEA is significantly distinguished from other algorithms.
Since NCD-CEA has best values of “mean”, “best”, and “std”
in most networks, its first place in solving Easy-EAP is solid.
For Hard-EAP which has a nonlinearly nonseparable objective,
NCD-CEA defeats MVBPSO and other algorithms in three of
five networks (BA100, Ps-contact, and Ex-contact), and has
equal solution quality with MVBPSO in the RG100 network,
and lose out to MVBPSO in the WS100 network. For both
the problems, NCD-CEA, MVBPSO, and CLPSO-S1 defeat
most of the other algorithms and win the first three places.
Then, the places are SaNSDE-V1 > LLSO-V3 > CSO-S1 >

(GA1, GA2). ACS ranks the last for Easy-EAP, but it defeats
LLSO-V3, CSO-S1, GA1, and GA2 in four of five networks
for Hard-EAP.

Table IV shows the experimental results in networks with
N ≥ 500. Only the solutions provided by the first three
algorithms (NCD-CEA, MVBPSO, and CLPSO) are shown. In
these networks with larger size, NCD-CEA gives the best solu-
tions in all the three network and both the problems. Results of
Kruskal–Wallis test show the differences among the three algo-
rithms. Results of Wilcoxon rank-sum test show that there is
a significant difference between NCD-CEA and other algo-
rithms in solving Easy-EAP and Hard-EAP. In other words,
the leading performance of NCD-CEA is not accidental.

The above observations produce a crucial conclusion:
NCD-CEA can produce the highest quality solutions in all
comparison algorithms. It is naturally suitable for solving the
problems with the linearly separable object and large-scale
discrete optimization due to its divide-and-conquer strategy.

Convergence Comparisons: The convergence behavior
of several representative algorithms in solving Easy-EAP

Fig. 4. Time comparison of NCD-CEA for Easy-EAP and Hard-EAP
happening in different size of networks.

(Fig. S1) and Hard-EAP (Fig. S2) in the supplementary mate-
rial. From the algorithm comparison results in Figs. S1(a)–(b)
and S2(a)–(b), three conclusions can be drawn: 1) NCD-
CEA is able to preserve the highest quality solutions and
competitive convergence performance than its competing algo-
rithms. It conserves this superiority and stable performance
in most of the networks; 2) MVBPSO and CLSPO are sec-
ond to NCD-CEA, which have good ability to jump out of
local optima, but the convergence speed of them is still lower
than NCD-CEA on most networks; and 3) for Hard-EAP, ACS
can produce good solutions at early stage due, but it becomes
easy to be trapped into local optima at the later stage [see
Fig. S2(a) and (b) in the supplementary material]. This phe-
nomenon is caused by the introduction of heuristic information
and the utilization of an aggressive pseudorandom propor-
tion selection rule in ACS. This conclusion is consistent with
previous studies [77], [78].

In Figs. S1(c)–(e) and S2(c)–(e) in the supplementary mate-
rial, we depict the convergence trends of the first three
algorithms, with the original lines with square points to depict
the trends of NCD-CEA. In the network with larger scales,
such as WS500, Email, and WS1000 networks, MVBPSO and
CLPSO significantly lose their competitiveness.
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Fig. 5. Number of infectious nodes after resource intervention, taking Hard-EAP as example. (a) Ps-contact with 242 nodes. (b) Ex-contact with 410 nodes.
(c) Email with 906 nodes.

Time Comparisons: To validate the competitive efficiency
of NCD-CEA, we compare the execution time of NCD-CEA
and the comparison algorithms. Results are obtained by aver-
aging over all independent runs, where each execution process
is not disturbed by other programs to make sure the execu-
tion time is accurate. The platform and programming language
keep the same for all comparison algorithms, which have been
introduced in Section V-A. All results are shown in “Average
time” fields in Tables III and IV. Since the elapsed time of
algorithms in RG100, BA100, and WS100 are almost equal,
we only showed the average time for WS100, Ps-contact, Ex-
contact, WS500, Email, and WS1000 networks. There are two
statistical results.

1) As shown in Table III, NCD-CEA elapses the least
time for solving Hard-EAP happening in all the
three networks, and wins over other algorithms in two of
three networks for solving Easy-EAP. In Table IV, as the
network scale increases from 500 to 1000, the advan-
tages of NCD-CEA in reducing the time complexity
become more and more clear.

2) In small networks, the time costs of NCD-CEA for Easy-
EAP and Hard-EAP are close to each other, but as the
network size increases, the elapsed time of Hard-EAP is
increased exponentially, while the elapsed time of Easy-
EAP is increased linearly.

The solution space of both Easy-EAP and Hard-EAP is O(2N),
with N representing the network size. As shown in Fig. 4,
different from Easy-EAP whose objective can be calculated in
polynomial time, the solving time complexity of the objectives
of Hard-EAPs is O(N2). It illustrates that the hard objective of
Hard-EAP is still a bottleneck for the application of algorithms
on the super-large-scale networks with tens of thousands of
nodes. Solving such a bottleneck needs further investigations
in the effective methods for computing maximum eigenvalues.

To conclude, compared to most EAs, NCD-CEA can pro-
vide higher quality solutions using less computational cost.
Those advantages are especially significant for the problems
happening in large-scale networks.

D. Effectiveness in Virus Control

The final goal of this article is to prevent virus spread.
Existing studies [79] have provided both the theoretical and
experimental evidences that as long as the algorithm takes

priority in comparison experiments, it would take advantage
of epidemic control. Since NCD-CEA performs better than the
other algorithms in comparison experiments, it should perform
best in actual virus control theoretically.

To verify this assumption, we investigate the virus spread
dynamically after resource intervention in three practical
networks (Ps-contact, Ex-contact, and Email). Three algo-
rithms with good performance are compared: 1) CLPSO;
2) MVBPSO; and 3) NCD-CEA, taking λ as the solution
evaluation criterion. Besides, we also consider a random solu-
tion (called as “Random”) and an empty solution (called
as “None”). A population of feasible solutions is generated
through the initialization process of NCD-CEA, and then the
best one in them is selected as the random solution. The none
solution represents the situation of no resource intervention.
As the solutions determine the resource allocation, the vari-
able of SEIV model in the network will be changed. Then,
we evolve the SEIV model for 300 times to observe the virus
spread dynamically. The experimental results are obtained by
averaging over 20 independent runs. As is shown in Fig. 5,
the number of infectious nodes is at a high level if without
any resource intervention. The resource distribution, even with
a random solution, can significantly decrease the number of
infectious nodes. The higher quality is the solution, the better
is the virus prevention effect. According to Tables III and IV,
for Hard-EAP, NCD-CEA performs best in minimizing the
optimization objective. Accordingly, the algorithm which leads
to the fewest infectious individuals is NCD-CEA, followed by
MVBPSO and CLPSO.

It can be observed from the experimental results that a better
solution with a smaller λ can usually achieve a better control
effect. Since NCD-CEA outperforms the other algorithms used
in terms of minimizing λ, it also has the best performance in
virus control.

VI. CONCLUSION

In this article, we consider the discrete resources to imi-
tate the real-world resources. The virus spreading control,
therefore, becomes typical subset selection optimization prob-
lems which are nondifferentiable, nonconvex, and NP-hard. To
solve the problems, we propose an evolutionary divide-and-
conquer algorithm (namely, NCD-CEA), in which a network-
community-based decomposition strategy and an alternative
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evolution process are designed to improve its efficiency and
produce high-quality solutions.

The major topic of this article is dividing and conquering
the virus spreading control problems, so we only focus on the
theoretical framework of the algorithm. There are still many
aspects waited to undergo. First, as a general algorithm frame-
work, NCD-CEA utilizes community detection techniques to
divide the problem and the solution space. But if the network
is highly coupled, namely, the community structure is not sig-
nificant, NCD-CEA will devolve into its basic optimizer inside
and lose the superiority. Second, the default optimizer of NCD-
CEA is originally designed for discrete optimization. Facing
continuous optimization, who is the most suitable optimizer is
not tested and discussed in this article.

In the future, we hope to explore a more collaborative way
in coordinating the evolution of subswarms, to adapt the highly
coupled networks. Thereafter, the basic continuous optimizers
for NCD-CEA will be explored to widen its application fields.
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